rev |
line source |
nuclear@35
|
1 #include <stdlib.h>
|
John@15
|
2 #include <math.h>
|
nuclear@25
|
3 #include <float.h>
|
nuclear@26
|
4 #include <assert.h>
|
nuclear@35
|
5 #include <map>
|
nuclear@22
|
6 #include "scene.h"
|
nuclear@27
|
7 #include "ogl.h"
|
nuclear@6
|
8
|
nuclear@26
|
9
|
nuclear@37
|
10 #define MIN(a, b) ((a) < (b) ? (a) : (b))
|
nuclear@37
|
11 #define MAX(a, b) ((a) > (b) ? (a) : (b))
|
nuclear@37
|
12
|
nuclear@37
|
13
|
nuclear@35
|
14 static void flatten_kdtree(const KDNode *node, KDNodeGPU *kdbuf, int *count, std::map<const KDNode*, int> *flatmap);
|
nuclear@35
|
15 static void fix_child_links(const KDNode *node, KDNodeGPU *kdbuf, const std::map<const KDNode*, int> &flatmap);
|
nuclear@27
|
16 static void draw_kdtree(const KDNode *node, int level = 0);
|
nuclear@32
|
17 static bool build_kdtree(KDNode *kd, const Face *faces, int level = 0);
|
nuclear@32
|
18 static float eval_cost(const Face *faces, const int *face_idx, int num_faces, const AABBox &aabb, int axis);
|
nuclear@26
|
19 static void free_kdtree(KDNode *node);
|
nuclear@27
|
20 static void print_item_counts(const KDNode *node, int level);
|
nuclear@26
|
21
|
nuclear@26
|
22
|
nuclear@26
|
23 static int accel_param[NUM_ACCEL_PARAMS] = {
|
nuclear@28
|
24 40, // max tree depth
|
nuclear@26
|
25 0, // max items per node (0 means ignore limit)
|
nuclear@26
|
26 5, // estimated traversal cost
|
nuclear@26
|
27 15 // estimated interseciton cost
|
nuclear@26
|
28 };
|
nuclear@26
|
29
|
nuclear@26
|
30
|
nuclear@26
|
31 void set_accel_param(int p, int v)
|
nuclear@26
|
32 {
|
nuclear@26
|
33 assert(p >= 0 && p < NUM_ACCEL_PARAMS);
|
nuclear@26
|
34 accel_param[p] = v;
|
nuclear@26
|
35 }
|
nuclear@26
|
36
|
nuclear@26
|
37
|
John@15
|
38 #define FEQ(a, b) (fabs((a) - (b)) < 1e-8)
|
John@15
|
39 bool Face::operator ==(const Face &f) const
|
John@15
|
40 {
|
John@15
|
41 for(int i=0; i<3; i++) {
|
John@15
|
42 for(int j=0; j<3; j++) {
|
John@15
|
43 if(!FEQ(v[i].pos[j], f.v[i].pos[j])) {
|
John@15
|
44 return false;
|
John@15
|
45 }
|
John@15
|
46 if(!FEQ(v[i].normal[j], f.v[i].normal[j])) {
|
John@15
|
47 return false;
|
John@15
|
48 }
|
John@15
|
49 }
|
John@15
|
50 if(!FEQ(normal[i], f.normal[i])) {
|
John@15
|
51 return false;
|
John@15
|
52 }
|
John@15
|
53 }
|
John@15
|
54 return true;
|
John@15
|
55 }
|
John@15
|
56
|
nuclear@25
|
57 float AABBox::calc_surface_area() const
|
nuclear@25
|
58 {
|
nuclear@25
|
59 float area1 = (max[0] - min[0]) * (max[1] - min[1]);
|
nuclear@25
|
60 float area2 = (max[3] - min[3]) * (max[1] - min[1]);
|
nuclear@25
|
61 float area3 = (max[0] - min[0]) * (max[3] - min[3]);
|
nuclear@25
|
62
|
nuclear@25
|
63 return 2.0f * (area1 + area2 + area3);
|
nuclear@25
|
64 }
|
nuclear@25
|
65
|
nuclear@26
|
66 KDNode::KDNode()
|
nuclear@26
|
67 {
|
nuclear@26
|
68 left = right = 0;
|
nuclear@32
|
69 cost = 0.0;
|
nuclear@26
|
70 }
|
nuclear@26
|
71
|
nuclear@25
|
72
|
nuclear@24
|
73 Scene::Scene()
|
nuclear@24
|
74 {
|
nuclear@24
|
75 facebuf = 0;
|
nuclear@24
|
76 num_faces = -1;
|
nuclear@24
|
77 kdtree = 0;
|
nuclear@28
|
78 kdbuf = 0;
|
nuclear@24
|
79 }
|
nuclear@24
|
80
|
nuclear@24
|
81 Scene::~Scene()
|
nuclear@24
|
82 {
|
nuclear@24
|
83 delete [] facebuf;
|
nuclear@28
|
84 delete [] kdbuf;
|
nuclear@28
|
85 free_kdtree(kdtree);
|
nuclear@24
|
86 }
|
nuclear@24
|
87
|
nuclear@13
|
88 bool Scene::add_mesh(Mesh *m)
|
nuclear@13
|
89 {
|
nuclear@13
|
90 // make sure triangles have material ids
|
nuclear@13
|
91 for(size_t i=0; i<m->faces.size(); i++) {
|
nuclear@13
|
92 m->faces[i].matid = m->matid;
|
nuclear@13
|
93 }
|
nuclear@24
|
94
|
nuclear@24
|
95 try {
|
nuclear@24
|
96 meshes.push_back(m);
|
nuclear@24
|
97 }
|
nuclear@24
|
98 catch(...) {
|
nuclear@24
|
99 return false;
|
nuclear@24
|
100 }
|
nuclear@24
|
101
|
nuclear@24
|
102 // invalidate facebuffer and count
|
nuclear@24
|
103 delete [] facebuf;
|
nuclear@24
|
104 facebuf = 0;
|
nuclear@24
|
105 num_faces = -1;
|
nuclear@24
|
106
|
nuclear@13
|
107 return true;
|
nuclear@13
|
108 }
|
nuclear@13
|
109
|
John@14
|
110 int Scene::get_num_meshes() const
|
John@14
|
111 {
|
John@14
|
112 return (int)meshes.size();
|
John@14
|
113 }
|
John@14
|
114
|
nuclear@13
|
115 int Scene::get_num_faces() const
|
nuclear@13
|
116 {
|
nuclear@24
|
117 if(num_faces >= 0) {
|
nuclear@24
|
118 return num_faces;
|
nuclear@24
|
119 }
|
nuclear@24
|
120
|
nuclear@24
|
121 num_faces = 0;
|
nuclear@13
|
122 for(size_t i=0; i<meshes.size(); i++) {
|
nuclear@13
|
123 num_faces += meshes[i]->faces.size();
|
nuclear@13
|
124 }
|
nuclear@13
|
125 return num_faces;
|
nuclear@13
|
126 }
|
nuclear@13
|
127
|
John@14
|
128 int Scene::get_num_materials() const
|
John@14
|
129 {
|
John@14
|
130 return (int)matlib.size();
|
John@14
|
131 }
|
John@14
|
132
|
nuclear@35
|
133 int Scene::get_num_kdnodes() const
|
nuclear@35
|
134 {
|
nuclear@35
|
135 return kdtree_nodes(kdtree);
|
nuclear@35
|
136 }
|
nuclear@35
|
137
|
John@14
|
138 Material *Scene::get_materials()
|
John@14
|
139 {
|
John@14
|
140 if(matlib.empty()) {
|
John@14
|
141 return 0;
|
John@14
|
142 }
|
John@14
|
143 return &matlib[0];
|
John@14
|
144 }
|
John@14
|
145
|
John@14
|
146 const Material *Scene::get_materials() const
|
John@14
|
147 {
|
John@14
|
148 if(matlib.empty()) {
|
John@14
|
149 return 0;
|
John@14
|
150 }
|
John@14
|
151 return &matlib[0];
|
John@14
|
152 }
|
nuclear@24
|
153
|
nuclear@24
|
154 const Face *Scene::get_face_buffer() const
|
nuclear@24
|
155 {
|
nuclear@24
|
156 if(facebuf) {
|
nuclear@24
|
157 return facebuf;
|
nuclear@24
|
158 }
|
nuclear@24
|
159
|
nuclear@24
|
160 int num_meshes = get_num_meshes();
|
nuclear@24
|
161
|
nuclear@24
|
162 printf("constructing face buffer with %d faces (out of %d meshes)\n", get_num_faces(), num_meshes);
|
nuclear@24
|
163 facebuf = new Face[num_faces];
|
nuclear@24
|
164 Face *fptr = facebuf;
|
nuclear@24
|
165
|
nuclear@24
|
166 for(int i=0; i<num_meshes; i++) {
|
nuclear@24
|
167 for(size_t j=0; j<meshes[i]->faces.size(); j++) {
|
nuclear@24
|
168 *fptr++ = meshes[i]->faces[j];
|
nuclear@24
|
169 }
|
nuclear@24
|
170 }
|
nuclear@24
|
171 return facebuf;
|
nuclear@24
|
172 }
|
nuclear@24
|
173
|
nuclear@35
|
174 static int find_node_index(const KDNode *node, const std::map<const KDNode*, int> &flatmap);
|
nuclear@35
|
175
|
nuclear@35
|
176 static bool validate_flat_tree(const KDNode *node, const KDNodeGPU *kdbuf, int count, const std::map<const KDNode*, int> &flatmap)
|
nuclear@35
|
177 {
|
nuclear@35
|
178 if(!node) return true;
|
nuclear@35
|
179
|
nuclear@35
|
180 int idx = find_node_index(node, flatmap);
|
nuclear@35
|
181 int left_idx = find_node_index(node->left, flatmap);
|
nuclear@35
|
182 int right_idx = find_node_index(node->right, flatmap);
|
nuclear@35
|
183
|
nuclear@35
|
184 if(kdbuf[idx].left != left_idx) {
|
nuclear@35
|
185 fprintf(stderr, "%d's left should be %d. it's: %d\n", idx, left_idx, kdbuf[idx].left);
|
nuclear@35
|
186 return false;
|
nuclear@35
|
187 }
|
nuclear@35
|
188 if(kdbuf[idx].right != right_idx) {
|
nuclear@35
|
189 fprintf(stderr, "%d's right should be %d. it's: %d\n", idx, right_idx, kdbuf[idx].right);
|
nuclear@35
|
190 return false;
|
nuclear@35
|
191 }
|
nuclear@35
|
192 return validate_flat_tree(node->left, kdbuf, count, flatmap) && validate_flat_tree(node->right, kdbuf, count, flatmap);
|
nuclear@35
|
193 }
|
nuclear@35
|
194
|
nuclear@28
|
195 const KDNodeGPU *Scene::get_kdtree_buffer() const
|
nuclear@28
|
196 {
|
nuclear@28
|
197 if(kdbuf) {
|
nuclear@28
|
198 return kdbuf;
|
nuclear@28
|
199 }
|
nuclear@28
|
200
|
nuclear@28
|
201 if(!kdtree) {
|
nuclear@28
|
202 ((Scene*)this)->build_kdtree();
|
nuclear@28
|
203 }
|
nuclear@28
|
204
|
nuclear@35
|
205 /* we'll associate kdnodes with flattened array indices through this map as
|
nuclear@35
|
206 * we add them so that the second child-index pass, will be able to find
|
nuclear@35
|
207 * the children indices of each node.
|
nuclear@35
|
208 */
|
nuclear@35
|
209 std::map<const KDNode*, int> flatmap;
|
nuclear@35
|
210 flatmap[0] = -1;
|
nuclear@28
|
211
|
nuclear@35
|
212 int num_nodes = get_num_kdnodes();
|
nuclear@35
|
213 kdbuf = new KDNodeGPU[num_nodes];
|
nuclear@35
|
214
|
nuclear@35
|
215 int count = 0;
|
nuclear@35
|
216
|
nuclear@35
|
217 // first arrange the kdnodes into an array (flatten)
|
nuclear@35
|
218 flatten_kdtree(kdtree, kdbuf, &count, &flatmap);
|
nuclear@35
|
219
|
nuclear@35
|
220 // then fix all the left/right links to point to the correct nodes
|
nuclear@35
|
221 fix_child_links(kdtree, kdbuf, flatmap);
|
nuclear@35
|
222
|
nuclear@35
|
223 assert(validate_flat_tree(kdtree, kdbuf, count, flatmap));
|
nuclear@35
|
224
|
nuclear@28
|
225 return kdbuf;
|
nuclear@28
|
226 }
|
nuclear@28
|
227
|
nuclear@35
|
228 static void flatten_kdtree(const KDNode *node, KDNodeGPU *kdbuf, int *count, std::map<const KDNode*, int> *flatmap)
|
nuclear@28
|
229 {
|
nuclear@35
|
230 int idx = (*count)++;
|
nuclear@29
|
231
|
nuclear@35
|
232 // copy the node
|
nuclear@35
|
233 kdbuf[idx].aabb = node->aabb;
|
nuclear@35
|
234 for(size_t i=0; i<node->face_idx.size(); i++) {
|
nuclear@35
|
235 kdbuf[idx].face_idx[i] = node->face_idx[i];
|
nuclear@28
|
236 }
|
nuclear@35
|
237 kdbuf[idx].num_faces = node->face_idx.size();
|
nuclear@35
|
238
|
nuclear@35
|
239 // update the node* -> array-position mapping
|
nuclear@35
|
240 (*flatmap)[node] = idx;
|
nuclear@35
|
241
|
nuclear@35
|
242 // recurse to the left/right (if we're not in a leaf node)
|
nuclear@35
|
243 if(node->left) {
|
nuclear@35
|
244 assert(node->right);
|
nuclear@35
|
245
|
nuclear@35
|
246 flatten_kdtree(node->left, kdbuf, count, flatmap);
|
nuclear@35
|
247 flatten_kdtree(node->right, kdbuf, count, flatmap);
|
nuclear@35
|
248 }
|
nuclear@28
|
249 }
|
nuclear@28
|
250
|
nuclear@35
|
251 static int find_node_index(const KDNode *node, const std::map<const KDNode*, int> &flatmap)
|
nuclear@29
|
252 {
|
nuclear@35
|
253 std::map<const KDNode*, int>::const_iterator it = flatmap.find(node);
|
nuclear@35
|
254 assert(it != flatmap.end());
|
nuclear@35
|
255 return it->second;
|
nuclear@35
|
256 }
|
nuclear@35
|
257
|
nuclear@35
|
258 static void fix_child_links(const KDNode *node, KDNodeGPU *kdbuf, const std::map<const KDNode*, int> &flatmap)
|
nuclear@35
|
259 {
|
nuclear@35
|
260 if(!node) return;
|
nuclear@35
|
261
|
nuclear@35
|
262 int idx = find_node_index(node, flatmap);
|
nuclear@35
|
263
|
nuclear@35
|
264 kdbuf[idx].left = find_node_index(node->left, flatmap);
|
nuclear@35
|
265 if(!node->left && kdbuf[idx].left != -1) abort();
|
nuclear@35
|
266 kdbuf[idx].right = find_node_index(node->right, flatmap);
|
nuclear@35
|
267 if(!node->right && kdbuf[idx].right != -1) abort();
|
nuclear@35
|
268
|
nuclear@35
|
269 fix_child_links(node->left, kdbuf, flatmap);
|
nuclear@35
|
270 fix_child_links(node->right, kdbuf, flatmap);
|
nuclear@29
|
271 }
|
nuclear@24
|
272
|
nuclear@27
|
273 void Scene::draw_kdtree() const
|
nuclear@27
|
274 {
|
nuclear@27
|
275 glPushAttrib(GL_ENABLE_BIT);
|
nuclear@27
|
276 glDisable(GL_LIGHTING);
|
nuclear@27
|
277 glDepthMask(0);
|
nuclear@27
|
278
|
nuclear@27
|
279 glBegin(GL_LINES);
|
nuclear@27
|
280 ::draw_kdtree(kdtree, 0);
|
nuclear@27
|
281 glEnd();
|
nuclear@27
|
282
|
nuclear@27
|
283 glDepthMask(1);
|
nuclear@27
|
284 glPopAttrib();
|
nuclear@27
|
285 }
|
nuclear@27
|
286
|
nuclear@27
|
287 static float palette[][3] = {
|
nuclear@27
|
288 {0, 1, 0},
|
nuclear@27
|
289 {1, 0, 0},
|
nuclear@27
|
290 {0, 0, 1},
|
nuclear@27
|
291 {1, 1, 0},
|
nuclear@27
|
292 {0, 0, 1},
|
nuclear@27
|
293 {1, 0, 1}
|
nuclear@27
|
294 };
|
nuclear@27
|
295 static int pal_size = sizeof palette / sizeof *palette;
|
nuclear@27
|
296
|
nuclear@27
|
297 static void draw_kdtree(const KDNode *node, int level)
|
nuclear@27
|
298 {
|
nuclear@27
|
299 if(!node) return;
|
nuclear@27
|
300
|
nuclear@27
|
301 draw_kdtree(node->left, level + 1);
|
nuclear@27
|
302 draw_kdtree(node->right, level + 1);
|
nuclear@27
|
303
|
nuclear@27
|
304 glColor3fv(palette[level % pal_size]);
|
nuclear@27
|
305
|
nuclear@27
|
306 glVertex3fv(node->aabb.min);
|
nuclear@27
|
307 glVertex3f(node->aabb.max[0], node->aabb.min[1], node->aabb.min[2]);
|
nuclear@27
|
308 glVertex3f(node->aabb.max[0], node->aabb.min[1], node->aabb.min[2]);
|
nuclear@27
|
309 glVertex3f(node->aabb.max[0], node->aabb.max[1], node->aabb.min[2]);
|
nuclear@27
|
310 glVertex3f(node->aabb.max[0], node->aabb.max[1], node->aabb.min[2]);
|
nuclear@27
|
311 glVertex3f(node->aabb.min[0], node->aabb.max[1], node->aabb.min[2]);
|
nuclear@27
|
312 glVertex3f(node->aabb.min[0], node->aabb.max[1], node->aabb.min[2]);
|
nuclear@27
|
313 glVertex3fv(node->aabb.min);
|
nuclear@27
|
314
|
nuclear@27
|
315 glVertex3f(node->aabb.min[0], node->aabb.min[1], node->aabb.max[2]);
|
nuclear@27
|
316 glVertex3f(node->aabb.max[0], node->aabb.min[1], node->aabb.max[2]);
|
nuclear@27
|
317 glVertex3f(node->aabb.max[0], node->aabb.min[1], node->aabb.max[2]);
|
nuclear@27
|
318 glVertex3fv(node->aabb.max);
|
nuclear@27
|
319 glVertex3fv(node->aabb.max);
|
nuclear@27
|
320 glVertex3f(node->aabb.min[0], node->aabb.max[1], node->aabb.max[2]);
|
nuclear@27
|
321 glVertex3f(node->aabb.min[0], node->aabb.max[1], node->aabb.max[2]);
|
nuclear@27
|
322 glVertex3f(node->aabb.min[0], node->aabb.min[1], node->aabb.max[2]);
|
nuclear@27
|
323
|
nuclear@27
|
324 glVertex3fv(node->aabb.min);
|
nuclear@27
|
325 glVertex3f(node->aabb.min[0], node->aabb.min[1], node->aabb.max[2]);
|
nuclear@27
|
326 glVertex3f(node->aabb.max[0], node->aabb.min[1], node->aabb.min[2]);
|
nuclear@27
|
327 glVertex3f(node->aabb.max[0], node->aabb.min[1], node->aabb.max[2]);
|
nuclear@27
|
328 glVertex3f(node->aabb.max[0], node->aabb.max[1], node->aabb.min[2]);
|
nuclear@27
|
329 glVertex3fv(node->aabb.max);
|
nuclear@27
|
330 glVertex3f(node->aabb.min[0], node->aabb.max[1], node->aabb.min[2]);
|
nuclear@27
|
331 glVertex3f(node->aabb.min[0], node->aabb.max[1], node->aabb.max[2]);
|
nuclear@34
|
332 /*if(!node->left) return;
|
nuclear@34
|
333
|
nuclear@34
|
334 AABBox *bleft = &node->left->aabb;
|
nuclear@34
|
335
|
nuclear@34
|
336 int axis = level % 3;
|
nuclear@34
|
337 switch(axis) {
|
nuclear@34
|
338 case 0:
|
nuclear@34
|
339 glVertex3f(bleft->max[0], bleft->min[1], bleft->min[2]);
|
nuclear@34
|
340 glVertex3f(bleft->max[0], bleft->max[1], bleft->min[2]);
|
nuclear@34
|
341 glVertex3f(bleft->max[0], bleft->max[1], bleft->min[2]);
|
nuclear@34
|
342 glVertex3f(bleft->max[0], bleft->max[1], bleft->max[2]);
|
nuclear@34
|
343 glVertex3f(bleft->max[0], bleft->max[1], bleft->max[2]);
|
nuclear@34
|
344 glVertex3f(bleft->max[0], bleft->min[1], bleft->max[2]);
|
nuclear@34
|
345 glVertex3f(bleft->max[0], bleft->min[1], bleft->max[2]);
|
nuclear@34
|
346 glVertex3f(bleft->max[0], bleft->min[1], bleft->min[2]);
|
nuclear@34
|
347 break;
|
nuclear@37
|
348
|
nuclear@34
|
349 case 1:
|
nuclear@34
|
350 glVertex3f(bleft->min[0], bleft->min[1], bleft->max[2]);
|
nuclear@34
|
351 glVertex3f(bleft->min[0], bleft->max[1], bleft->max[2]);
|
nuclear@34
|
352 glVertex3f(bleft->min[0], bleft->max[1], bleft->max[2]);
|
nuclear@34
|
353 glVertex3f(bleft->max[0], bleft->max[1], bleft->max[2]);
|
nuclear@34
|
354 glVertex3f(bleft->max[0], bleft->max[1], bleft->max[2]);
|
nuclear@34
|
355 glVertex3f(bleft->max[0], bleft->min[1], bleft->max[2]);
|
nuclear@34
|
356 glVertex3f(bleft->max[0], bleft->min[1], bleft->max[2]);
|
nuclear@34
|
357 glVertex3f(bleft->min[0], bleft->min[1], bleft->max[2]);
|
nuclear@34
|
358 break;
|
nuclear@37
|
359
|
nuclear@34
|
360 case 2:
|
nuclear@34
|
361 glVertex3f(bleft->min[0], bleft->max[1], bleft->min[2]);
|
nuclear@34
|
362 glVertex3f(bleft->max[0], bleft->max[1], bleft->min[2]);
|
nuclear@34
|
363 glVertex3f(bleft->max[0], bleft->max[1], bleft->min[2]);
|
nuclear@34
|
364 glVertex3f(bleft->max[0], bleft->max[1], bleft->max[2]);
|
nuclear@34
|
365 glVertex3f(bleft->max[0], bleft->max[1], bleft->max[2]);
|
nuclear@34
|
366 glVertex3f(bleft->min[0], bleft->max[1], bleft->max[2]);
|
nuclear@34
|
367 glVertex3f(bleft->min[0], bleft->max[1], bleft->max[2]);
|
nuclear@34
|
368 glVertex3f(bleft->min[0], bleft->max[1], bleft->min[2]);
|
nuclear@34
|
369 break;
|
nuclear@34
|
370
|
nuclear@34
|
371 default:
|
nuclear@34
|
372 break;
|
nuclear@34
|
373 }*/
|
nuclear@27
|
374 }
|
nuclear@27
|
375
|
nuclear@27
|
376 bool Scene::build_kdtree()
|
nuclear@24
|
377 {
|
nuclear@29
|
378 assert(kdtree == 0);
|
nuclear@29
|
379
|
nuclear@24
|
380 const Face *faces = get_face_buffer();
|
nuclear@24
|
381 int num_faces = get_num_faces();
|
nuclear@24
|
382
|
nuclear@25
|
383 printf("Constructing kd-tree out of %d faces ...\n", num_faces);
|
nuclear@25
|
384
|
nuclear@27
|
385 int icost = accel_param[ACCEL_PARAM_COST_INTERSECT];
|
nuclear@27
|
386 int tcost = accel_param[ACCEL_PARAM_COST_TRAVERSE];
|
nuclear@27
|
387 printf(" max items per leaf: %d\n", accel_param[ACCEL_PARAM_MAX_NODE_ITEMS]);
|
nuclear@27
|
388 printf(" SAH parameters - tcost: %d - icost: %d\n", tcost, icost);
|
nuclear@27
|
389
|
nuclear@25
|
390 free_kdtree(kdtree);
|
nuclear@25
|
391 kdtree = new KDNode;
|
nuclear@25
|
392
|
nuclear@25
|
393 /* Start the construction of the kdtree by adding all faces of the scene
|
nuclear@25
|
394 * to the new root node. At the same time calculate the root's AABB.
|
nuclear@25
|
395 */
|
nuclear@25
|
396 kdtree->aabb.min[0] = kdtree->aabb.min[1] = kdtree->aabb.min[2] = FLT_MAX;
|
nuclear@25
|
397 kdtree->aabb.max[0] = kdtree->aabb.max[1] = kdtree->aabb.max[2] = -FLT_MAX;
|
nuclear@25
|
398
|
nuclear@24
|
399 for(int i=0; i<num_faces; i++) {
|
nuclear@25
|
400 const Face *face = faces + i;
|
nuclear@25
|
401
|
nuclear@25
|
402 // for each vertex of the face ...
|
nuclear@25
|
403 for(int j=0; j<3; j++) {
|
nuclear@25
|
404 const float *pos = face->v[j].pos;
|
nuclear@25
|
405
|
nuclear@25
|
406 // for each element (xyz) of the position vector ...
|
nuclear@25
|
407 for(int k=0; k<3; k++) {
|
nuclear@25
|
408 if(pos[k] < kdtree->aabb.min[k]) {
|
nuclear@25
|
409 kdtree->aabb.min[k] = pos[k];
|
nuclear@25
|
410 }
|
nuclear@25
|
411 if(pos[k] > kdtree->aabb.max[k]) {
|
nuclear@25
|
412 kdtree->aabb.max[k] = pos[k];
|
nuclear@25
|
413 }
|
nuclear@25
|
414 }
|
nuclear@25
|
415 }
|
nuclear@25
|
416
|
nuclear@32
|
417 kdtree->face_idx.push_back(i); // add the face
|
nuclear@24
|
418 }
|
nuclear@24
|
419
|
nuclear@26
|
420 // calculate the heuristic for the root
|
nuclear@32
|
421 kdtree->cost = eval_cost(faces, &kdtree->face_idx[0], kdtree->face_idx.size(), kdtree->aabb, 0);
|
nuclear@26
|
422
|
nuclear@25
|
423 // now proceed splitting the root recursively
|
nuclear@32
|
424 if(!::build_kdtree(kdtree, faces)) {
|
nuclear@27
|
425 fprintf(stderr, "failed to build kdtree\n");
|
nuclear@27
|
426 return false;
|
nuclear@27
|
427 }
|
nuclear@27
|
428
|
nuclear@27
|
429 printf(" tree depth: %d\n", kdtree_depth(kdtree));
|
nuclear@27
|
430 print_item_counts(kdtree, 0);
|
nuclear@27
|
431 return true;
|
nuclear@24
|
432 }
|
nuclear@24
|
433
|
nuclear@37
|
434 struct Split {
|
nuclear@37
|
435 int axis;
|
nuclear@37
|
436 float pos;
|
nuclear@37
|
437 float sum_cost;
|
nuclear@37
|
438 float cost_left, cost_right;
|
nuclear@37
|
439 };
|
nuclear@37
|
440
|
nuclear@37
|
441 static void find_best_split(const KDNode *node, int axis, const Face *faces, Split *split)
|
nuclear@37
|
442 {
|
nuclear@37
|
443 Split best_split;
|
nuclear@37
|
444 best_split.sum_cost = FLT_MAX;
|
nuclear@37
|
445
|
nuclear@37
|
446 for(size_t i=0; i<node->face_idx.size(); i++) {
|
nuclear@37
|
447 const Face *face = faces + node->face_idx[i];
|
nuclear@37
|
448
|
nuclear@37
|
449 float splitpt[2];
|
nuclear@37
|
450 splitpt[0] = MIN(face->v[0].pos[axis], MIN(face->v[1].pos[axis], face->v[2].pos[axis]));
|
nuclear@37
|
451 splitpt[1] = MAX(face->v[0].pos[axis], MAX(face->v[1].pos[axis], face->v[2].pos[axis]));
|
nuclear@37
|
452
|
nuclear@37
|
453 for(int j=0; j<2; j++) {
|
nuclear@37
|
454 AABBox aabb_left, aabb_right;
|
nuclear@37
|
455 aabb_left = aabb_right = node->aabb;
|
nuclear@37
|
456 aabb_left.max[axis] = splitpt[j];
|
nuclear@37
|
457 aabb_right.min[axis] = splitpt[j];
|
nuclear@37
|
458
|
nuclear@37
|
459 float left_cost = eval_cost(faces, &node->face_idx[0], node->face_idx.size(), aabb_left, axis);
|
nuclear@37
|
460 float right_cost = eval_cost(faces, &node->face_idx[0], node->face_idx.size(), aabb_right, axis);
|
nuclear@37
|
461 float sum_cost = left_cost + right_cost - accel_param[ACCEL_PARAM_COST_TRAVERSE]; // tcost is added twice
|
nuclear@37
|
462
|
nuclear@37
|
463 if(sum_cost < best_split.sum_cost) {
|
nuclear@37
|
464 best_split.cost_left = left_cost;
|
nuclear@37
|
465 best_split.cost_right = right_cost;
|
nuclear@37
|
466 best_split.sum_cost = sum_cost;
|
nuclear@37
|
467 best_split.pos = splitpt[j];
|
nuclear@37
|
468 }
|
nuclear@37
|
469 }
|
nuclear@37
|
470 }
|
nuclear@37
|
471
|
nuclear@37
|
472 assert(split);
|
nuclear@37
|
473 *split = best_split;
|
nuclear@37
|
474 split->axis = axis;
|
nuclear@37
|
475 }
|
nuclear@37
|
476
|
nuclear@32
|
477 static bool build_kdtree(KDNode *kd, const Face *faces, int level)
|
nuclear@24
|
478 {
|
nuclear@28
|
479 int opt_max_depth = accel_param[ACCEL_PARAM_MAX_TREE_DEPTH];
|
nuclear@26
|
480 int opt_max_items = accel_param[ACCEL_PARAM_MAX_NODE_ITEMS];
|
nuclear@27
|
481
|
nuclear@32
|
482 if(kd->face_idx.empty() || level >= opt_max_depth) {
|
nuclear@27
|
483 return true;
|
nuclear@25
|
484 }
|
nuclear@25
|
485
|
nuclear@37
|
486 Split best_split;
|
nuclear@37
|
487 best_split.sum_cost = FLT_MAX;
|
nuclear@26
|
488
|
nuclear@37
|
489 for(int i=0; i<1; i++) {
|
nuclear@37
|
490 Split split;
|
nuclear@37
|
491 find_best_split(kd, i, faces, &split);
|
nuclear@26
|
492
|
nuclear@37
|
493 if(split.sum_cost < best_split.sum_cost) {
|
nuclear@37
|
494 best_split = split;
|
nuclear@26
|
495 }
|
nuclear@26
|
496 }
|
nuclear@26
|
497
|
nuclear@37
|
498 kd->axis = best_split.axis;
|
nuclear@37
|
499
|
nuclear@29
|
500 //printf("current cost: %f, best_cost: %f\n", kd->cost, best_sum_cost);
|
nuclear@37
|
501 if(best_split.sum_cost > kd->cost && (opt_max_items == 0 || (int)kd->face_idx.size() <= opt_max_items)) {
|
nuclear@27
|
502 return true; // stop splitting if it doesn't reduce the cost
|
nuclear@26
|
503 }
|
nuclear@26
|
504
|
nuclear@26
|
505 // create the two children
|
nuclear@26
|
506 KDNode *kdleft, *kdright;
|
nuclear@26
|
507 kdleft = new KDNode;
|
nuclear@26
|
508 kdright = new KDNode;
|
nuclear@26
|
509
|
nuclear@26
|
510 kdleft->aabb = kdright->aabb = kd->aabb;
|
nuclear@26
|
511
|
nuclear@37
|
512 kdleft->aabb.max[kd->axis] = best_split.pos;
|
nuclear@37
|
513 kdright->aabb.min[kd->axis] = best_split.pos;
|
nuclear@26
|
514
|
nuclear@37
|
515 kdleft->cost = best_split.cost_left;
|
nuclear@37
|
516 kdright->cost = best_split.cost_right;
|
nuclear@26
|
517
|
nuclear@34
|
518 // TODO would it be much better if we actually split faces that straddle the splitting plane?
|
nuclear@32
|
519 for(size_t i=0; i<kd->face_idx.size(); i++) {
|
nuclear@32
|
520 int fidx = kd->face_idx[i];
|
nuclear@32
|
521 const Face *face = faces + fidx;
|
nuclear@26
|
522
|
nuclear@37
|
523 if(face->v[0].pos[kd->axis] < best_split.pos ||
|
nuclear@37
|
524 face->v[1].pos[kd->axis] < best_split.pos ||
|
nuclear@37
|
525 face->v[2].pos[kd->axis] < best_split.pos) {
|
nuclear@32
|
526 kdleft->face_idx.push_back(fidx);
|
nuclear@26
|
527 }
|
nuclear@37
|
528 if(face->v[0].pos[kd->axis] >= best_split.pos ||
|
nuclear@37
|
529 face->v[1].pos[kd->axis] >= best_split.pos ||
|
nuclear@37
|
530 face->v[2].pos[kd->axis] >= best_split.pos) {
|
nuclear@32
|
531 kdright->face_idx.push_back(fidx);
|
nuclear@26
|
532 }
|
nuclear@26
|
533 }
|
nuclear@32
|
534 kd->face_idx.clear(); // only leaves have faces
|
nuclear@26
|
535
|
nuclear@26
|
536 kd->left = kdleft;
|
nuclear@26
|
537 kd->right = kdright;
|
nuclear@27
|
538
|
nuclear@32
|
539 return build_kdtree(kd->left, faces, level + 1) && build_kdtree(kd->right, faces, level + 1);
|
nuclear@26
|
540 }
|
nuclear@26
|
541
|
nuclear@32
|
542 static float eval_cost(const Face *faces, const int *face_idx, int num_faces, const AABBox &aabb, int axis)
|
nuclear@26
|
543 {
|
nuclear@26
|
544 int num_inside = 0;
|
nuclear@26
|
545 int tcost = accel_param[ACCEL_PARAM_COST_TRAVERSE];
|
nuclear@26
|
546 int icost = accel_param[ACCEL_PARAM_COST_INTERSECT];
|
nuclear@26
|
547
|
nuclear@32
|
548 for(int i=0; i<num_faces; i++) {
|
nuclear@32
|
549 const Face *face = faces + face_idx[i];
|
nuclear@26
|
550
|
nuclear@32
|
551 for(int j=0; j<3; j++) {
|
nuclear@32
|
552 if(face->v[j].pos[axis] >= aabb.min[axis] && face->v[j].pos[axis] < aabb.max[axis]) {
|
nuclear@26
|
553 num_inside++;
|
nuclear@26
|
554 break;
|
nuclear@26
|
555 }
|
nuclear@26
|
556 }
|
nuclear@26
|
557 }
|
nuclear@26
|
558
|
nuclear@27
|
559 float sarea = aabb.calc_surface_area();
|
nuclear@34
|
560 if(sarea < 1e-6) {
|
nuclear@27
|
561 return FLT_MAX; // heavily penalize 0-area voxels
|
nuclear@27
|
562 }
|
nuclear@27
|
563
|
nuclear@32
|
564 return tcost + sarea * num_inside * icost;
|
nuclear@24
|
565 }
|
nuclear@25
|
566
|
nuclear@25
|
567 static void free_kdtree(KDNode *node)
|
nuclear@25
|
568 {
|
nuclear@25
|
569 if(node) {
|
nuclear@25
|
570 free_kdtree(node->left);
|
nuclear@25
|
571 free_kdtree(node->right);
|
nuclear@25
|
572 delete node;
|
nuclear@25
|
573 }
|
nuclear@25
|
574 }
|
nuclear@27
|
575
|
nuclear@28
|
576 int kdtree_depth(const KDNode *node)
|
nuclear@27
|
577 {
|
nuclear@27
|
578 if(!node) return 0;
|
nuclear@27
|
579
|
nuclear@27
|
580 int left = kdtree_depth(node->left);
|
nuclear@27
|
581 int right = kdtree_depth(node->right);
|
nuclear@27
|
582 return (left > right ? left : right) + 1;
|
nuclear@27
|
583 }
|
nuclear@27
|
584
|
nuclear@28
|
585 int kdtree_nodes(const KDNode *node)
|
nuclear@28
|
586 {
|
nuclear@28
|
587 if(!node) return 0;
|
nuclear@28
|
588 return kdtree_nodes(node->left) + kdtree_nodes(node->right) + 1;
|
nuclear@28
|
589 }
|
nuclear@28
|
590
|
nuclear@27
|
591 static void print_item_counts(const KDNode *node, int level)
|
nuclear@27
|
592 {
|
nuclear@27
|
593 if(!node) return;
|
nuclear@27
|
594
|
nuclear@30
|
595 for(int i=0; i<level; i++) {
|
nuclear@27
|
596 fputs(" ", stdout);
|
nuclear@27
|
597 }
|
nuclear@32
|
598 printf("- %d (cost: %f)\n", (int)node->face_idx.size(), node->cost);
|
nuclear@27
|
599
|
nuclear@27
|
600 print_item_counts(node->left, level + 1);
|
nuclear@27
|
601 print_item_counts(node->right, level + 1);
|
nuclear@27
|
602 }
|