clray

view src/scene.cc @ 62:d9520da6b801

minor readme fix
author John Tsiombikas <nuclear@member.fsf.org>
date Mon, 28 Dec 2015 10:31:58 +0200
parents 3d13924b22e6
children
line source
1 #include <stdlib.h>
2 #include <string.h>
3 #include <math.h>
4 #include <float.h>
5 #include <assert.h>
6 #include <map>
7 #include "scene.h"
8 #include "ogl.h"
9 #include "vector.h"
11 #define CHECK_AABB(aabb) \
12 assert(aabb.max[0] >= aabb.min[0] && aabb.max[1] >= aabb.min[1] && aabb.max[2] >= aabb.min[2])
15 #define MIN(a, b) ((a) < (b) ? (a) : (b))
16 #define MAX(a, b) ((a) > (b) ? (a) : (b))
19 static int flatten_kdtree(const KDNode *node, KDNodeGPU *kdbuf, int *count);
20 static void draw_kdtree(const KDNode *node, int level = 0);
21 static bool build_kdtree(KDNode *kd, const Face *faces, int level = 0);
22 static float eval_cost(const Face *faces, const int *face_idx, int num_faces, const AABBox &aabb, int axis);
23 static void free_kdtree(KDNode *node);
24 static void print_item_counts(const KDNode *node, int level);
25 static int clip_face(const Face &inface, float splitpos, int axis, int sign, Face *faces);
26 static float calc_sq_area(const Vector3 &a, const Vector3 &b, const Vector3 &c);
29 static int accel_param[NUM_ACCEL_PARAMS] = {
30 64, // max tree depth
31 MAX_NODE_FACES, // max items per node (0 means ignore limit)
32 5, // estimated traversal cost
33 15 // estimated interseciton cost
34 };
37 void set_accel_param(int p, int v)
38 {
39 assert(p >= 0 && p < NUM_ACCEL_PARAMS);
40 accel_param[p] = v;
41 }
44 float AABBox::calc_surface_area() const
45 {
46 float area1 = (max[0] - min[0]) * (max[1] - min[1]);
47 float area2 = (max[3] - min[3]) * (max[1] - min[1]);
48 float area3 = (max[0] - min[0]) * (max[3] - min[3]);
50 return 2.0f * (area1 + area2 + area3);
51 }
53 KDNode::KDNode()
54 {
55 left = right = 0;
56 cost = 0.0;
57 }
60 Scene::Scene()
61 {
62 facebuf = 0;
63 num_faces = -1;
64 kdtree = 0;
65 kdbuf = 0;
66 }
68 Scene::~Scene()
69 {
70 delete [] facebuf;
71 delete [] kdbuf;
72 free_kdtree(kdtree);
73 }
75 bool Scene::add_mesh(Mesh *m)
76 {
77 // make sure triangles have material ids
78 for(size_t i=0; i<m->faces.size(); i++) {
79 m->faces[i].matid = m->matid;
80 }
82 try {
83 meshes.push_back(m);
84 }
85 catch(...) {
86 return false;
87 }
89 // invalidate facebuffer and count
90 delete [] facebuf;
91 facebuf = 0;
92 num_faces = -1;
94 return true;
95 }
97 bool Scene::add_light(const Light &lt)
98 {
99 try {
100 lights.push_back(lt);
101 }
102 catch(...) {
103 return false;
104 }
105 return true;
106 }
108 int Scene::get_num_meshes() const
109 {
110 return (int)meshes.size();
111 }
113 int Scene::get_num_lights() const
114 {
115 return (int)lights.size();
116 }
118 int Scene::get_num_faces() const
119 {
120 if(num_faces >= 0) {
121 return num_faces;
122 }
124 num_faces = 0;
125 for(size_t i=0; i<meshes.size(); i++) {
126 num_faces += meshes[i]->faces.size();
127 }
128 return num_faces;
129 }
131 int Scene::get_num_materials() const
132 {
133 return (int)matlib.size();
134 }
136 int Scene::get_num_kdnodes() const
137 {
138 return kdtree_nodes(kdtree);
139 }
141 Mesh **Scene::get_meshes()
142 {
143 if(meshes.empty()) {
144 return 0;
145 }
146 return &meshes[0];
147 }
149 const Mesh * const *Scene::get_meshes() const
150 {
151 if(meshes.empty()) {
152 return 0;
153 }
154 return &meshes[0];
155 }
157 Light *Scene::get_lights()
158 {
159 if(lights.empty()) {
160 return 0;
161 }
162 return &lights[0];
163 }
165 const Light *Scene::get_lights() const
166 {
167 if(lights.empty()) {
168 return 0;
169 }
170 return &lights[0];
171 }
173 Material *Scene::get_materials()
174 {
175 if(matlib.empty()) {
176 return 0;
177 }
178 return &matlib[0];
179 }
181 const Material *Scene::get_materials() const
182 {
183 if(matlib.empty()) {
184 return 0;
185 }
186 return &matlib[0];
187 }
189 const Face *Scene::get_face_buffer() const
190 {
191 if(facebuf) {
192 return facebuf;
193 }
195 int num_meshes = get_num_meshes();
197 printf("constructing face buffer with %d faces (out of %d meshes)\n", get_num_faces(), num_meshes);
198 facebuf = new Face[num_faces];
199 Face *fptr = facebuf;
201 for(int i=0; i<num_meshes; i++) {
202 for(size_t j=0; j<meshes[i]->faces.size(); j++) {
203 *fptr++ = meshes[i]->faces[j];
204 }
205 }
206 return facebuf;
207 }
209 const KDNodeGPU *Scene::get_kdtree_buffer() const
210 {
211 if(kdbuf) {
212 return kdbuf;
213 }
215 if(!kdtree) {
216 ((Scene*)this)->build_kdtree();
217 }
219 int num_nodes = get_num_kdnodes();
220 kdbuf = new KDNodeGPU[num_nodes];
222 int count = 0;
224 // first arrange the kdnodes into an array (flatten)
225 flatten_kdtree(kdtree, kdbuf, &count);
227 return kdbuf;
228 }
230 static int flatten_kdtree(const KDNode *node, KDNodeGPU *kdbuf, int *count)
231 {
232 const size_t max_node_items = sizeof kdbuf[0].face_idx / sizeof kdbuf[0].face_idx[0];
233 int idx = (*count)++;
235 // copy the node
236 kdbuf[idx].aabb = node->aabb;
237 kdbuf[idx].num_faces = 0;
239 for(size_t i=0; i<node->face_idx.size(); i++) {
240 if(i >= max_node_items) {
241 fprintf(stderr, "WARNING too many faces per leaf node!\n");
242 break;
243 }
244 kdbuf[idx].face_idx[i] = node->face_idx[i];
245 kdbuf[idx].num_faces++;
246 }
248 // recurse to the left/right (if we're not in a leaf node)
249 if(node->left) {
250 assert(node->right);
252 kdbuf[idx].left = flatten_kdtree(node->left, kdbuf, count);
253 kdbuf[idx].right = flatten_kdtree(node->right, kdbuf, count);
254 } else {
255 kdbuf[idx].left = kdbuf[idx].right = -1;
256 }
258 return idx;
259 }
261 void Scene::draw_kdtree() const
262 {
263 glPushAttrib(GL_ENABLE_BIT);
264 glDisable(GL_LIGHTING);
265 glDepthMask(0);
267 glBegin(GL_LINES);
268 ::draw_kdtree(kdtree, 0);
269 glEnd();
271 glDepthMask(1);
272 glPopAttrib();
273 }
275 static float palette[][3] = {
276 {0, 1, 0},
277 {1, 0, 0},
278 {0, 0, 1},
279 {1, 1, 0},
280 {0, 0, 1},
281 {1, 0, 1}
282 };
283 static int pal_size = sizeof palette / sizeof *palette;
285 static void draw_kdtree(const KDNode *node, int level)
286 {
287 if(!node) return;
289 draw_kdtree(node->left, level + 1);
290 draw_kdtree(node->right, level + 1);
292 glColor3fv(palette[level % pal_size]);
294 glVertex3fv(node->aabb.min);
295 glVertex3f(node->aabb.max[0], node->aabb.min[1], node->aabb.min[2]);
296 glVertex3f(node->aabb.max[0], node->aabb.min[1], node->aabb.min[2]);
297 glVertex3f(node->aabb.max[0], node->aabb.max[1], node->aabb.min[2]);
298 glVertex3f(node->aabb.max[0], node->aabb.max[1], node->aabb.min[2]);
299 glVertex3f(node->aabb.min[0], node->aabb.max[1], node->aabb.min[2]);
300 glVertex3f(node->aabb.min[0], node->aabb.max[1], node->aabb.min[2]);
301 glVertex3fv(node->aabb.min);
303 glVertex3f(node->aabb.min[0], node->aabb.min[1], node->aabb.max[2]);
304 glVertex3f(node->aabb.max[0], node->aabb.min[1], node->aabb.max[2]);
305 glVertex3f(node->aabb.max[0], node->aabb.min[1], node->aabb.max[2]);
306 glVertex3fv(node->aabb.max);
307 glVertex3fv(node->aabb.max);
308 glVertex3f(node->aabb.min[0], node->aabb.max[1], node->aabb.max[2]);
309 glVertex3f(node->aabb.min[0], node->aabb.max[1], node->aabb.max[2]);
310 glVertex3f(node->aabb.min[0], node->aabb.min[1], node->aabb.max[2]);
312 glVertex3fv(node->aabb.min);
313 glVertex3f(node->aabb.min[0], node->aabb.min[1], node->aabb.max[2]);
314 glVertex3f(node->aabb.max[0], node->aabb.min[1], node->aabb.min[2]);
315 glVertex3f(node->aabb.max[0], node->aabb.min[1], node->aabb.max[2]);
316 glVertex3f(node->aabb.max[0], node->aabb.max[1], node->aabb.min[2]);
317 glVertex3fv(node->aabb.max);
318 glVertex3f(node->aabb.min[0], node->aabb.max[1], node->aabb.min[2]);
319 glVertex3f(node->aabb.min[0], node->aabb.max[1], node->aabb.max[2]);
320 }
322 bool Scene::build_kdtree()
323 {
324 assert(kdtree == 0);
326 const Face *faces = get_face_buffer();
327 int num_faces = get_num_faces();
329 printf("Constructing kd-tree out of %d faces ...\n", num_faces);
331 int icost = accel_param[ACCEL_PARAM_COST_INTERSECT];
332 int tcost = accel_param[ACCEL_PARAM_COST_TRAVERSE];
333 printf(" max items per leaf: %d\n", accel_param[ACCEL_PARAM_MAX_NODE_ITEMS]);
334 printf(" SAH parameters - tcost: %d - icost: %d\n", tcost, icost);
336 free_kdtree(kdtree);
337 kdtree = new KDNode;
339 /* Start the construction of the kdtree by adding all faces of the scene
340 * to the new root node. At the same time calculate the root's AABB.
341 */
342 kdtree->aabb.min[0] = kdtree->aabb.min[1] = kdtree->aabb.min[2] = FLT_MAX;
343 kdtree->aabb.max[0] = kdtree->aabb.max[1] = kdtree->aabb.max[2] = -FLT_MAX;
345 for(int i=0; i<num_faces; i++) {
346 const Face *face = faces + i;
348 // for each vertex of the face ...
349 for(int j=0; j<3; j++) {
350 const float *pos = face->v[j].pos;
352 // for each element (xyz) of the position vector ...
353 for(int k=0; k<3; k++) {
354 if(pos[k] < kdtree->aabb.min[k]) {
355 kdtree->aabb.min[k] = pos[k];
356 }
357 if(pos[k] > kdtree->aabb.max[k]) {
358 kdtree->aabb.max[k] = pos[k];
359 }
360 }
361 }
363 kdtree->face_idx.push_back(i); // add the face
364 }
366 CHECK_AABB(kdtree->aabb);
368 // calculate the heuristic for the root
369 kdtree->cost = eval_cost(faces, &kdtree->face_idx[0], kdtree->face_idx.size(), kdtree->aabb, 0);
371 // now proceed splitting the root recursively
372 if(!::build_kdtree(kdtree, faces)) {
373 fprintf(stderr, "failed to build kdtree\n");
374 return false;
375 }
377 printf(" tree depth: %d\n", kdtree_depth(kdtree));
378 print_item_counts(kdtree, 0);
379 return true;
380 }
382 struct Split {
383 int axis;
384 float pos;
385 float sum_cost;
386 float cost_left, cost_right;
387 };
389 static void find_best_split(const KDNode *node, int axis, const Face *faces, Split *split)
390 {
391 Split best_split;
392 best_split.sum_cost = FLT_MAX;
394 for(size_t i=0; i<node->face_idx.size(); i++) {
395 const Face *face = faces + node->face_idx[i];
397 float splitpt[2];
398 splitpt[0] = MIN(face->v[0].pos[axis], MIN(face->v[1].pos[axis], face->v[2].pos[axis]));
399 splitpt[1] = MAX(face->v[0].pos[axis], MAX(face->v[1].pos[axis], face->v[2].pos[axis]));
401 for(int j=0; j<2; j++) {
402 if(splitpt[j] <= node->aabb.min[axis] || splitpt[j] >= node->aabb.max[axis]) {
403 continue;
404 }
406 AABBox aabb_left, aabb_right;
407 aabb_left = aabb_right = node->aabb;
408 aabb_left.max[axis] = splitpt[j];
409 aabb_right.min[axis] = splitpt[j];
411 float left_cost = eval_cost(faces, &node->face_idx[0], node->face_idx.size(), aabb_left, axis);
412 float right_cost = eval_cost(faces, &node->face_idx[0], node->face_idx.size(), aabb_right, axis);
413 float sum_cost = left_cost + right_cost - accel_param[ACCEL_PARAM_COST_TRAVERSE]; // tcost is added twice
415 if(sum_cost < best_split.sum_cost) {
416 best_split.cost_left = left_cost;
417 best_split.cost_right = right_cost;
418 best_split.sum_cost = sum_cost;
419 best_split.pos = splitpt[j];
420 }
421 }
422 }
424 assert(split);
425 *split = best_split;
426 split->axis = axis;
427 }
429 static bool build_kdtree(KDNode *kd, const Face *faces, int level)
430 {
431 int opt_max_depth = accel_param[ACCEL_PARAM_MAX_TREE_DEPTH];
432 int opt_max_items = accel_param[ACCEL_PARAM_MAX_NODE_ITEMS];
434 if(kd->face_idx.empty() || level >= opt_max_depth) {
435 return true;
436 }
438 Split best_split;
439 best_split.axis = -1;
440 best_split.sum_cost = FLT_MAX;
442 for(int i=0; i<3; i++) {
443 Split split;
444 find_best_split(kd, i, faces, &split);
446 if(split.sum_cost < best_split.sum_cost) {
447 best_split = split;
448 }
449 }
451 if(best_split.axis == -1) {
452 return true; // can't split any more, only 0-area splits available
453 }
455 //printf("current cost: %f, best_cost: %f\n", kd->cost, best_sum_cost);
456 if(best_split.sum_cost > kd->cost && (opt_max_items == 0 || (int)kd->face_idx.size() <= opt_max_items)) {
457 return true; // stop splitting if it doesn't reduce the cost
458 }
460 kd->axis = best_split.axis;
462 // create the two children
463 KDNode *kdleft, *kdright;
464 kdleft = new KDNode;
465 kdright = new KDNode;
467 kdleft->aabb = kdright->aabb = kd->aabb;
469 kdleft->aabb.max[kd->axis] = best_split.pos;
470 kdright->aabb.min[kd->axis] = best_split.pos;
472 kdleft->cost = best_split.cost_left;
473 kdright->cost = best_split.cost_right;
475 // TODO would it be much better if we actually split faces that straddle the splitting plane?
476 for(size_t i=0; i<kd->face_idx.size(); i++) {
477 int fidx = kd->face_idx[i];
478 const Face *face = faces + fidx;
480 if(face->v[0].pos[kd->axis] < best_split.pos ||
481 face->v[1].pos[kd->axis] < best_split.pos ||
482 face->v[2].pos[kd->axis] < best_split.pos) {
483 kdleft->face_idx.push_back(fidx);
484 }
485 if(face->v[0].pos[kd->axis] >= best_split.pos ||
486 face->v[1].pos[kd->axis] >= best_split.pos ||
487 face->v[2].pos[kd->axis] >= best_split.pos) {
488 kdright->face_idx.push_back(fidx);
489 }
490 }
491 kd->face_idx.clear(); // only leaves have faces
493 kd->left = kdleft;
494 kd->right = kdright;
496 return build_kdtree(kd->left, faces, level + 1) && build_kdtree(kd->right, faces, level + 1);
497 }
499 static float eval_cost(const Face *faces, const int *face_idx, int num_faces, const AABBox &aabb, int axis)
500 {
501 int num_inside = 0;
502 int tcost = accel_param[ACCEL_PARAM_COST_TRAVERSE];
503 int icost = accel_param[ACCEL_PARAM_COST_INTERSECT];
505 for(int i=0; i<num_faces; i++) {
506 const Face *face = faces + face_idx[i];
508 for(int j=0; j<3; j++) {
509 if(face->v[j].pos[axis] >= aabb.min[axis] && face->v[j].pos[axis] < aabb.max[axis]) {
510 num_inside++;
511 break;
512 }
513 }
514 }
516 float dx = aabb.max[0] - aabb.min[0];
517 float dy = aabb.max[1] - aabb.min[1];
518 float dz = aabb.max[2] - aabb.min[2];
520 if(dx < 0.0) {
521 fprintf(stderr, "FOO DX = %f\n", dx);
522 abort();
523 }
524 if(dy < 0.0) {
525 fprintf(stderr, "FOO DX = %f\n", dy);
526 abort();
527 }
528 if(dz < 0.0) {
529 fprintf(stderr, "FOO DX = %f\n", dz);
530 abort();
531 }
533 if(dx < 1e-6 || dy < 1e-6 || dz < 1e-6) {
534 return FLT_MAX; // heavily penalize 0-area voxels
535 }
537 float sarea = 2.0 * (dx + dy + dz);//aabb.calc_surface_area();
538 return tcost + sarea * num_inside * icost;
539 }
541 static void free_kdtree(KDNode *node)
542 {
543 if(node) {
544 free_kdtree(node->left);
545 free_kdtree(node->right);
546 delete node;
547 }
548 }
550 int kdtree_depth(const KDNode *node)
551 {
552 if(!node) return 0;
554 int left = kdtree_depth(node->left);
555 int right = kdtree_depth(node->right);
556 return (left > right ? left : right) + 1;
557 }
559 int kdtree_nodes(const KDNode *node)
560 {
561 if(!node) return 0;
562 return kdtree_nodes(node->left) + kdtree_nodes(node->right) + 1;
563 }
565 static void print_item_counts(const KDNode *node, int level)
566 {
567 if(!node) return;
569 for(int i=0; i<level; i++) {
570 fputs(" ", stdout);
571 }
572 printf("- %d (cost: %f)\n", (int)node->face_idx.size(), node->cost);
574 print_item_counts(node->left, level + 1);
575 print_item_counts(node->right, level + 1);
576 }
578 #define SGN(x) ((x) >= 0 ? 1 : -1)
579 #define INSIDE(x) (SGN((x) - (splitpos)) == sign)
580 #define OUTSIDE(x) (!INSIDE(x))
582 #define LERPV3(res, a, b, t) \
583 do { \
584 (res)[0] = (a)[0] + ((b)[0] - (a)[0]) * (t); \
585 (res)[1] = (a)[1] + ((b)[1] - (a)[1]) * (t); \
586 (res)[2] = (a)[2] + ((b)[2] - (a)[2]) * (t); \
587 } while(0)
589 #define NORMALIZE(v) \
590 do { \
591 float mag = (float)sqrt((v)[0] * (v)[0] + (v)[1] * (v)[1] + (v)[2] * (v)[2]); \
592 (v)[0] /= mag; \
593 (v)[1] /= mag; \
594 (v)[2] /= mag; \
595 } while(0)
597 static int clip_face(const Face &inface, float splitpos, int axis, int sign, Face *faces)
598 {
599 assert(axis >= 0 && axis < 3);
601 std::vector<Vertex> verts;
602 bool clipped = false;
604 for(int i=0; i<3; i++) {
605 const Vertex *vstart = inface.v + i;
606 const Vertex *vend = inface.v + ((i + 1) % 3);
608 float start = vstart->pos[axis];
609 float end = vend->pos[axis];
611 if(OUTSIDE(start) && INSIDE(end)) {
612 float t = (splitpos - start) / (end - start);
614 Vertex newv;
615 memset(&newv, 0, sizeof newv);
616 LERPV3(newv.pos, vstart->pos, vend->pos, t);
617 LERPV3(newv.normal, vstart->normal, vend->normal, t);
618 LERPV3(newv.tex, vstart->tex, vend->tex, t);
619 NORMALIZE(newv.normal);
621 verts.push_back(newv);
622 clipped = true;
624 } else if(INSIDE(start) && INSIDE(end)) {
625 verts.push_back(inface.v[i]);
626 } else if(INSIDE(start) && OUTSIDE(end)) {
627 verts.push_back(inface.v[i]);
629 float t = (splitpos - start) / (end - start);
631 Vertex newv;
632 memset(&newv, 0, sizeof newv);
633 LERPV3(newv.pos, vstart->pos, vend->pos, t);
634 LERPV3(newv.normal, vstart->normal, vend->normal, t);
635 LERPV3(newv.tex, vstart->tex, vend->tex, t);
636 NORMALIZE(newv.normal);
638 verts.push_back(newv);
639 clipped = true;
640 }
641 }
643 if(!clipped) {
644 return 0;
645 }
647 assert(verts.size() < 5);
648 bool quad = verts.size() > 3;
650 if(!quad) {
651 faces[0] = inface;
652 faces[0].v[0] = verts[0];
653 faces[0].v[1] = verts[1];
654 faces[0].v[2] = verts[2];
655 return 1;
656 }
658 /* calculate triangle areas for both possible splits and pick the one
659 * with the smallest absolute difference to avoid slivers.
660 */
661 float area1, area2;
663 area1 = calc_sq_area(verts[0].pos, verts[1].pos, verts[2].pos);
664 area2 = calc_sq_area(verts[0].pos, verts[2].pos, verts[3].pos);
665 float s1diff = fabs(area1 - area2);
667 area1 = calc_sq_area(verts[0].pos, verts[1].pos, verts[3].pos);
668 area2 = calc_sq_area(verts[1].pos, verts[2].pos, verts[3].pos);
669 float s2diff = fabs(area1 - area2);
671 faces[0] = faces[1] = inface;
672 if(s1diff < s2diff) {
673 faces[0].v[0] = verts[0];
674 faces[0].v[1] = verts[1];
675 faces[0].v[2] = verts[2];
676 faces[1].v[0] = verts[0];
677 faces[1].v[1] = verts[2];
678 faces[1].v[2] = verts[3];
679 } else {
680 faces[0].v[0] = verts[0];
681 faces[0].v[1] = verts[1];
682 faces[0].v[2] = verts[3];
683 faces[1].v[0] = verts[1];
684 faces[1].v[1] = verts[2];
685 faces[1].v[2] = verts[3];
686 }
687 return 2;
688 }
690 static float calc_sq_area(const Vector3 &a, const Vector3 &b, const Vector3 &c)
691 {
692 Vector3 v1 = b - a;
693 Vector3 v2 = c - a;
694 return cross(v1, v2).lengthsq();
695 }