rev |
line source |
nuclear@35
|
1 #include <stdlib.h>
|
John@15
|
2 #include <math.h>
|
nuclear@25
|
3 #include <float.h>
|
nuclear@26
|
4 #include <assert.h>
|
nuclear@35
|
5 #include <map>
|
nuclear@22
|
6 #include "scene.h"
|
nuclear@27
|
7 #include "ogl.h"
|
nuclear@6
|
8
|
nuclear@38
|
9 #define CHECK_AABB(aabb) \
|
nuclear@38
|
10 assert(aabb.max[0] >= aabb.min[0] && aabb.max[1] >= aabb.min[1] && aabb.max[2] >= aabb.min[2])
|
nuclear@38
|
11
|
nuclear@26
|
12
|
nuclear@37
|
13 #define MIN(a, b) ((a) < (b) ? (a) : (b))
|
nuclear@37
|
14 #define MAX(a, b) ((a) > (b) ? (a) : (b))
|
nuclear@37
|
15
|
nuclear@37
|
16
|
nuclear@53
|
17 static int flatten_kdtree(const KDNode *node, KDNodeGPU *kdbuf, int *count);
|
nuclear@27
|
18 static void draw_kdtree(const KDNode *node, int level = 0);
|
nuclear@32
|
19 static bool build_kdtree(KDNode *kd, const Face *faces, int level = 0);
|
nuclear@32
|
20 static float eval_cost(const Face *faces, const int *face_idx, int num_faces, const AABBox &aabb, int axis);
|
nuclear@26
|
21 static void free_kdtree(KDNode *node);
|
nuclear@27
|
22 static void print_item_counts(const KDNode *node, int level);
|
nuclear@58
|
23 static int split_face(const Face *inface, int axis, Face *face1, Face *face2);
|
nuclear@26
|
24
|
nuclear@26
|
25
|
nuclear@26
|
26 static int accel_param[NUM_ACCEL_PARAMS] = {
|
nuclear@44
|
27 64, // max tree depth
|
nuclear@44
|
28 MAX_NODE_FACES, // max items per node (0 means ignore limit)
|
nuclear@26
|
29 5, // estimated traversal cost
|
nuclear@26
|
30 15 // estimated interseciton cost
|
nuclear@26
|
31 };
|
nuclear@26
|
32
|
nuclear@26
|
33
|
nuclear@26
|
34 void set_accel_param(int p, int v)
|
nuclear@26
|
35 {
|
nuclear@26
|
36 assert(p >= 0 && p < NUM_ACCEL_PARAMS);
|
nuclear@26
|
37 accel_param[p] = v;
|
nuclear@26
|
38 }
|
nuclear@26
|
39
|
nuclear@26
|
40
|
John@15
|
41 #define FEQ(a, b) (fabs((a) - (b)) < 1e-8)
|
John@15
|
42 bool Face::operator ==(const Face &f) const
|
John@15
|
43 {
|
John@15
|
44 for(int i=0; i<3; i++) {
|
John@15
|
45 for(int j=0; j<3; j++) {
|
John@15
|
46 if(!FEQ(v[i].pos[j], f.v[i].pos[j])) {
|
John@15
|
47 return false;
|
John@15
|
48 }
|
John@15
|
49 if(!FEQ(v[i].normal[j], f.v[i].normal[j])) {
|
John@15
|
50 return false;
|
John@15
|
51 }
|
John@15
|
52 }
|
John@15
|
53 if(!FEQ(normal[i], f.normal[i])) {
|
John@15
|
54 return false;
|
John@15
|
55 }
|
John@15
|
56 }
|
John@15
|
57 return true;
|
John@15
|
58 }
|
John@15
|
59
|
nuclear@25
|
60 float AABBox::calc_surface_area() const
|
nuclear@25
|
61 {
|
nuclear@25
|
62 float area1 = (max[0] - min[0]) * (max[1] - min[1]);
|
nuclear@25
|
63 float area2 = (max[3] - min[3]) * (max[1] - min[1]);
|
nuclear@25
|
64 float area3 = (max[0] - min[0]) * (max[3] - min[3]);
|
nuclear@25
|
65
|
nuclear@25
|
66 return 2.0f * (area1 + area2 + area3);
|
nuclear@25
|
67 }
|
nuclear@25
|
68
|
nuclear@26
|
69 KDNode::KDNode()
|
nuclear@26
|
70 {
|
nuclear@26
|
71 left = right = 0;
|
nuclear@32
|
72 cost = 0.0;
|
nuclear@26
|
73 }
|
nuclear@26
|
74
|
nuclear@25
|
75
|
nuclear@24
|
76 Scene::Scene()
|
nuclear@24
|
77 {
|
nuclear@24
|
78 facebuf = 0;
|
nuclear@24
|
79 num_faces = -1;
|
nuclear@24
|
80 kdtree = 0;
|
nuclear@28
|
81 kdbuf = 0;
|
nuclear@24
|
82 }
|
nuclear@24
|
83
|
nuclear@24
|
84 Scene::~Scene()
|
nuclear@24
|
85 {
|
nuclear@24
|
86 delete [] facebuf;
|
nuclear@28
|
87 delete [] kdbuf;
|
nuclear@28
|
88 free_kdtree(kdtree);
|
nuclear@24
|
89 }
|
nuclear@24
|
90
|
nuclear@13
|
91 bool Scene::add_mesh(Mesh *m)
|
nuclear@13
|
92 {
|
nuclear@13
|
93 // make sure triangles have material ids
|
nuclear@13
|
94 for(size_t i=0; i<m->faces.size(); i++) {
|
nuclear@13
|
95 m->faces[i].matid = m->matid;
|
nuclear@13
|
96 }
|
nuclear@24
|
97
|
nuclear@24
|
98 try {
|
nuclear@24
|
99 meshes.push_back(m);
|
nuclear@24
|
100 }
|
nuclear@24
|
101 catch(...) {
|
nuclear@24
|
102 return false;
|
nuclear@24
|
103 }
|
nuclear@24
|
104
|
nuclear@24
|
105 // invalidate facebuffer and count
|
nuclear@24
|
106 delete [] facebuf;
|
nuclear@24
|
107 facebuf = 0;
|
nuclear@24
|
108 num_faces = -1;
|
nuclear@24
|
109
|
nuclear@13
|
110 return true;
|
nuclear@13
|
111 }
|
nuclear@13
|
112
|
nuclear@54
|
113 bool Scene::add_light(const Light <)
|
nuclear@54
|
114 {
|
nuclear@54
|
115 try {
|
nuclear@54
|
116 lights.push_back(lt);
|
nuclear@54
|
117 }
|
nuclear@54
|
118 catch(...) {
|
nuclear@54
|
119 return false;
|
nuclear@54
|
120 }
|
nuclear@54
|
121 return true;
|
nuclear@54
|
122 }
|
nuclear@54
|
123
|
John@14
|
124 int Scene::get_num_meshes() const
|
John@14
|
125 {
|
John@14
|
126 return (int)meshes.size();
|
John@14
|
127 }
|
John@14
|
128
|
nuclear@54
|
129 int Scene::get_num_lights() const
|
nuclear@54
|
130 {
|
nuclear@54
|
131 return (int)lights.size();
|
nuclear@54
|
132 }
|
nuclear@54
|
133
|
nuclear@13
|
134 int Scene::get_num_faces() const
|
nuclear@13
|
135 {
|
nuclear@24
|
136 if(num_faces >= 0) {
|
nuclear@24
|
137 return num_faces;
|
nuclear@24
|
138 }
|
nuclear@24
|
139
|
nuclear@24
|
140 num_faces = 0;
|
nuclear@13
|
141 for(size_t i=0; i<meshes.size(); i++) {
|
nuclear@13
|
142 num_faces += meshes[i]->faces.size();
|
nuclear@13
|
143 }
|
nuclear@13
|
144 return num_faces;
|
nuclear@13
|
145 }
|
nuclear@13
|
146
|
John@14
|
147 int Scene::get_num_materials() const
|
John@14
|
148 {
|
John@14
|
149 return (int)matlib.size();
|
John@14
|
150 }
|
John@14
|
151
|
nuclear@35
|
152 int Scene::get_num_kdnodes() const
|
nuclear@35
|
153 {
|
nuclear@35
|
154 return kdtree_nodes(kdtree);
|
nuclear@35
|
155 }
|
nuclear@35
|
156
|
nuclear@54
|
157 Mesh **Scene::get_meshes()
|
nuclear@54
|
158 {
|
nuclear@54
|
159 if(meshes.empty()) {
|
nuclear@54
|
160 return 0;
|
nuclear@54
|
161 }
|
nuclear@54
|
162 return &meshes[0];
|
nuclear@54
|
163 }
|
nuclear@54
|
164
|
nuclear@54
|
165 const Mesh * const *Scene::get_meshes() const
|
nuclear@54
|
166 {
|
nuclear@54
|
167 if(meshes.empty()) {
|
nuclear@54
|
168 return 0;
|
nuclear@54
|
169 }
|
nuclear@54
|
170 return &meshes[0];
|
nuclear@54
|
171 }
|
nuclear@54
|
172
|
nuclear@54
|
173 Light *Scene::get_lights()
|
nuclear@54
|
174 {
|
nuclear@54
|
175 if(lights.empty()) {
|
nuclear@54
|
176 return 0;
|
nuclear@54
|
177 }
|
nuclear@54
|
178 return &lights[0];
|
nuclear@54
|
179 }
|
nuclear@54
|
180
|
nuclear@54
|
181 const Light *Scene::get_lights() const
|
nuclear@54
|
182 {
|
nuclear@54
|
183 if(lights.empty()) {
|
nuclear@54
|
184 return 0;
|
nuclear@54
|
185 }
|
nuclear@54
|
186 return &lights[0];
|
nuclear@54
|
187 }
|
nuclear@54
|
188
|
John@14
|
189 Material *Scene::get_materials()
|
John@14
|
190 {
|
John@14
|
191 if(matlib.empty()) {
|
John@14
|
192 return 0;
|
John@14
|
193 }
|
John@14
|
194 return &matlib[0];
|
John@14
|
195 }
|
John@14
|
196
|
John@14
|
197 const Material *Scene::get_materials() const
|
John@14
|
198 {
|
John@14
|
199 if(matlib.empty()) {
|
John@14
|
200 return 0;
|
John@14
|
201 }
|
John@14
|
202 return &matlib[0];
|
John@14
|
203 }
|
nuclear@24
|
204
|
nuclear@24
|
205 const Face *Scene::get_face_buffer() const
|
nuclear@24
|
206 {
|
nuclear@24
|
207 if(facebuf) {
|
nuclear@24
|
208 return facebuf;
|
nuclear@24
|
209 }
|
nuclear@24
|
210
|
nuclear@24
|
211 int num_meshes = get_num_meshes();
|
nuclear@24
|
212
|
nuclear@24
|
213 printf("constructing face buffer with %d faces (out of %d meshes)\n", get_num_faces(), num_meshes);
|
nuclear@24
|
214 facebuf = new Face[num_faces];
|
nuclear@24
|
215 Face *fptr = facebuf;
|
nuclear@24
|
216
|
nuclear@24
|
217 for(int i=0; i<num_meshes; i++) {
|
nuclear@24
|
218 for(size_t j=0; j<meshes[i]->faces.size(); j++) {
|
nuclear@24
|
219 *fptr++ = meshes[i]->faces[j];
|
nuclear@24
|
220 }
|
nuclear@24
|
221 }
|
nuclear@24
|
222 return facebuf;
|
nuclear@24
|
223 }
|
nuclear@24
|
224
|
nuclear@28
|
225 const KDNodeGPU *Scene::get_kdtree_buffer() const
|
nuclear@28
|
226 {
|
nuclear@28
|
227 if(kdbuf) {
|
nuclear@28
|
228 return kdbuf;
|
nuclear@28
|
229 }
|
nuclear@28
|
230
|
nuclear@28
|
231 if(!kdtree) {
|
nuclear@28
|
232 ((Scene*)this)->build_kdtree();
|
nuclear@28
|
233 }
|
nuclear@28
|
234
|
nuclear@35
|
235 int num_nodes = get_num_kdnodes();
|
nuclear@35
|
236 kdbuf = new KDNodeGPU[num_nodes];
|
nuclear@35
|
237
|
nuclear@35
|
238 int count = 0;
|
nuclear@35
|
239
|
nuclear@35
|
240 // first arrange the kdnodes into an array (flatten)
|
nuclear@53
|
241 flatten_kdtree(kdtree, kdbuf, &count);
|
nuclear@35
|
242
|
nuclear@28
|
243 return kdbuf;
|
nuclear@28
|
244 }
|
nuclear@28
|
245
|
nuclear@53
|
246 static int flatten_kdtree(const KDNode *node, KDNodeGPU *kdbuf, int *count)
|
nuclear@28
|
247 {
|
nuclear@38
|
248 const size_t max_node_items = sizeof kdbuf[0].face_idx / sizeof kdbuf[0].face_idx[0];
|
nuclear@35
|
249 int idx = (*count)++;
|
nuclear@29
|
250
|
nuclear@35
|
251 // copy the node
|
nuclear@35
|
252 kdbuf[idx].aabb = node->aabb;
|
nuclear@38
|
253 kdbuf[idx].num_faces = 0;
|
nuclear@38
|
254
|
nuclear@35
|
255 for(size_t i=0; i<node->face_idx.size(); i++) {
|
nuclear@38
|
256 if(i >= max_node_items) {
|
nuclear@38
|
257 fprintf(stderr, "WARNING too many faces per leaf node!\n");
|
nuclear@38
|
258 break;
|
nuclear@38
|
259 }
|
nuclear@35
|
260 kdbuf[idx].face_idx[i] = node->face_idx[i];
|
nuclear@38
|
261 kdbuf[idx].num_faces++;
|
nuclear@28
|
262 }
|
nuclear@35
|
263
|
nuclear@35
|
264 // recurse to the left/right (if we're not in a leaf node)
|
nuclear@35
|
265 if(node->left) {
|
nuclear@35
|
266 assert(node->right);
|
nuclear@35
|
267
|
nuclear@53
|
268 kdbuf[idx].left = flatten_kdtree(node->left, kdbuf, count);
|
nuclear@53
|
269 kdbuf[idx].right = flatten_kdtree(node->right, kdbuf, count);
|
nuclear@53
|
270 } else {
|
nuclear@53
|
271 kdbuf[idx].left = kdbuf[idx].right = -1;
|
nuclear@35
|
272 }
|
nuclear@28
|
273
|
nuclear@53
|
274 return idx;
|
nuclear@29
|
275 }
|
nuclear@24
|
276
|
nuclear@27
|
277 void Scene::draw_kdtree() const
|
nuclear@27
|
278 {
|
nuclear@27
|
279 glPushAttrib(GL_ENABLE_BIT);
|
nuclear@27
|
280 glDisable(GL_LIGHTING);
|
nuclear@27
|
281 glDepthMask(0);
|
nuclear@27
|
282
|
nuclear@27
|
283 glBegin(GL_LINES);
|
nuclear@27
|
284 ::draw_kdtree(kdtree, 0);
|
nuclear@27
|
285 glEnd();
|
nuclear@27
|
286
|
nuclear@27
|
287 glDepthMask(1);
|
nuclear@27
|
288 glPopAttrib();
|
nuclear@27
|
289 }
|
nuclear@27
|
290
|
nuclear@27
|
291 static float palette[][3] = {
|
nuclear@27
|
292 {0, 1, 0},
|
nuclear@27
|
293 {1, 0, 0},
|
nuclear@27
|
294 {0, 0, 1},
|
nuclear@27
|
295 {1, 1, 0},
|
nuclear@27
|
296 {0, 0, 1},
|
nuclear@27
|
297 {1, 0, 1}
|
nuclear@27
|
298 };
|
nuclear@27
|
299 static int pal_size = sizeof palette / sizeof *palette;
|
nuclear@27
|
300
|
nuclear@27
|
301 static void draw_kdtree(const KDNode *node, int level)
|
nuclear@27
|
302 {
|
nuclear@27
|
303 if(!node) return;
|
nuclear@27
|
304
|
nuclear@27
|
305 draw_kdtree(node->left, level + 1);
|
nuclear@27
|
306 draw_kdtree(node->right, level + 1);
|
nuclear@27
|
307
|
nuclear@27
|
308 glColor3fv(palette[level % pal_size]);
|
nuclear@27
|
309
|
nuclear@27
|
310 glVertex3fv(node->aabb.min);
|
nuclear@27
|
311 glVertex3f(node->aabb.max[0], node->aabb.min[1], node->aabb.min[2]);
|
nuclear@27
|
312 glVertex3f(node->aabb.max[0], node->aabb.min[1], node->aabb.min[2]);
|
nuclear@27
|
313 glVertex3f(node->aabb.max[0], node->aabb.max[1], node->aabb.min[2]);
|
nuclear@27
|
314 glVertex3f(node->aabb.max[0], node->aabb.max[1], node->aabb.min[2]);
|
nuclear@27
|
315 glVertex3f(node->aabb.min[0], node->aabb.max[1], node->aabb.min[2]);
|
nuclear@27
|
316 glVertex3f(node->aabb.min[0], node->aabb.max[1], node->aabb.min[2]);
|
nuclear@27
|
317 glVertex3fv(node->aabb.min);
|
nuclear@27
|
318
|
nuclear@27
|
319 glVertex3f(node->aabb.min[0], node->aabb.min[1], node->aabb.max[2]);
|
nuclear@27
|
320 glVertex3f(node->aabb.max[0], node->aabb.min[1], node->aabb.max[2]);
|
nuclear@27
|
321 glVertex3f(node->aabb.max[0], node->aabb.min[1], node->aabb.max[2]);
|
nuclear@27
|
322 glVertex3fv(node->aabb.max);
|
nuclear@27
|
323 glVertex3fv(node->aabb.max);
|
nuclear@27
|
324 glVertex3f(node->aabb.min[0], node->aabb.max[1], node->aabb.max[2]);
|
nuclear@27
|
325 glVertex3f(node->aabb.min[0], node->aabb.max[1], node->aabb.max[2]);
|
nuclear@27
|
326 glVertex3f(node->aabb.min[0], node->aabb.min[1], node->aabb.max[2]);
|
nuclear@27
|
327
|
nuclear@27
|
328 glVertex3fv(node->aabb.min);
|
nuclear@27
|
329 glVertex3f(node->aabb.min[0], node->aabb.min[1], node->aabb.max[2]);
|
nuclear@27
|
330 glVertex3f(node->aabb.max[0], node->aabb.min[1], node->aabb.min[2]);
|
nuclear@27
|
331 glVertex3f(node->aabb.max[0], node->aabb.min[1], node->aabb.max[2]);
|
nuclear@27
|
332 glVertex3f(node->aabb.max[0], node->aabb.max[1], node->aabb.min[2]);
|
nuclear@27
|
333 glVertex3fv(node->aabb.max);
|
nuclear@27
|
334 glVertex3f(node->aabb.min[0], node->aabb.max[1], node->aabb.min[2]);
|
nuclear@27
|
335 glVertex3f(node->aabb.min[0], node->aabb.max[1], node->aabb.max[2]);
|
nuclear@27
|
336 }
|
nuclear@27
|
337
|
nuclear@27
|
338 bool Scene::build_kdtree()
|
nuclear@24
|
339 {
|
nuclear@29
|
340 assert(kdtree == 0);
|
nuclear@29
|
341
|
nuclear@24
|
342 const Face *faces = get_face_buffer();
|
nuclear@24
|
343 int num_faces = get_num_faces();
|
nuclear@24
|
344
|
nuclear@25
|
345 printf("Constructing kd-tree out of %d faces ...\n", num_faces);
|
nuclear@25
|
346
|
nuclear@27
|
347 int icost = accel_param[ACCEL_PARAM_COST_INTERSECT];
|
nuclear@27
|
348 int tcost = accel_param[ACCEL_PARAM_COST_TRAVERSE];
|
nuclear@27
|
349 printf(" max items per leaf: %d\n", accel_param[ACCEL_PARAM_MAX_NODE_ITEMS]);
|
nuclear@27
|
350 printf(" SAH parameters - tcost: %d - icost: %d\n", tcost, icost);
|
nuclear@27
|
351
|
nuclear@25
|
352 free_kdtree(kdtree);
|
nuclear@25
|
353 kdtree = new KDNode;
|
nuclear@25
|
354
|
nuclear@25
|
355 /* Start the construction of the kdtree by adding all faces of the scene
|
nuclear@25
|
356 * to the new root node. At the same time calculate the root's AABB.
|
nuclear@25
|
357 */
|
nuclear@25
|
358 kdtree->aabb.min[0] = kdtree->aabb.min[1] = kdtree->aabb.min[2] = FLT_MAX;
|
nuclear@25
|
359 kdtree->aabb.max[0] = kdtree->aabb.max[1] = kdtree->aabb.max[2] = -FLT_MAX;
|
nuclear@25
|
360
|
nuclear@24
|
361 for(int i=0; i<num_faces; i++) {
|
nuclear@25
|
362 const Face *face = faces + i;
|
nuclear@25
|
363
|
nuclear@25
|
364 // for each vertex of the face ...
|
nuclear@25
|
365 for(int j=0; j<3; j++) {
|
nuclear@25
|
366 const float *pos = face->v[j].pos;
|
nuclear@25
|
367
|
nuclear@25
|
368 // for each element (xyz) of the position vector ...
|
nuclear@25
|
369 for(int k=0; k<3; k++) {
|
nuclear@25
|
370 if(pos[k] < kdtree->aabb.min[k]) {
|
nuclear@25
|
371 kdtree->aabb.min[k] = pos[k];
|
nuclear@25
|
372 }
|
nuclear@25
|
373 if(pos[k] > kdtree->aabb.max[k]) {
|
nuclear@25
|
374 kdtree->aabb.max[k] = pos[k];
|
nuclear@25
|
375 }
|
nuclear@25
|
376 }
|
nuclear@25
|
377 }
|
nuclear@25
|
378
|
nuclear@32
|
379 kdtree->face_idx.push_back(i); // add the face
|
nuclear@24
|
380 }
|
nuclear@24
|
381
|
nuclear@38
|
382 CHECK_AABB(kdtree->aabb);
|
nuclear@38
|
383
|
nuclear@26
|
384 // calculate the heuristic for the root
|
nuclear@32
|
385 kdtree->cost = eval_cost(faces, &kdtree->face_idx[0], kdtree->face_idx.size(), kdtree->aabb, 0);
|
nuclear@26
|
386
|
nuclear@25
|
387 // now proceed splitting the root recursively
|
nuclear@32
|
388 if(!::build_kdtree(kdtree, faces)) {
|
nuclear@27
|
389 fprintf(stderr, "failed to build kdtree\n");
|
nuclear@27
|
390 return false;
|
nuclear@27
|
391 }
|
nuclear@27
|
392
|
nuclear@27
|
393 printf(" tree depth: %d\n", kdtree_depth(kdtree));
|
nuclear@27
|
394 print_item_counts(kdtree, 0);
|
nuclear@27
|
395 return true;
|
nuclear@24
|
396 }
|
nuclear@24
|
397
|
nuclear@37
|
398 struct Split {
|
nuclear@37
|
399 int axis;
|
nuclear@37
|
400 float pos;
|
nuclear@37
|
401 float sum_cost;
|
nuclear@37
|
402 float cost_left, cost_right;
|
nuclear@37
|
403 };
|
nuclear@37
|
404
|
nuclear@37
|
405 static void find_best_split(const KDNode *node, int axis, const Face *faces, Split *split)
|
nuclear@37
|
406 {
|
nuclear@37
|
407 Split best_split;
|
nuclear@37
|
408 best_split.sum_cost = FLT_MAX;
|
nuclear@37
|
409
|
nuclear@37
|
410 for(size_t i=0; i<node->face_idx.size(); i++) {
|
nuclear@37
|
411 const Face *face = faces + node->face_idx[i];
|
nuclear@37
|
412
|
nuclear@37
|
413 float splitpt[2];
|
nuclear@37
|
414 splitpt[0] = MIN(face->v[0].pos[axis], MIN(face->v[1].pos[axis], face->v[2].pos[axis]));
|
nuclear@37
|
415 splitpt[1] = MAX(face->v[0].pos[axis], MAX(face->v[1].pos[axis], face->v[2].pos[axis]));
|
nuclear@37
|
416
|
nuclear@37
|
417 for(int j=0; j<2; j++) {
|
nuclear@38
|
418 if(splitpt[j] <= node->aabb.min[axis] || splitpt[j] >= node->aabb.max[axis]) {
|
nuclear@38
|
419 continue;
|
nuclear@38
|
420 }
|
nuclear@38
|
421
|
nuclear@37
|
422 AABBox aabb_left, aabb_right;
|
nuclear@37
|
423 aabb_left = aabb_right = node->aabb;
|
nuclear@37
|
424 aabb_left.max[axis] = splitpt[j];
|
nuclear@37
|
425 aabb_right.min[axis] = splitpt[j];
|
nuclear@37
|
426
|
nuclear@37
|
427 float left_cost = eval_cost(faces, &node->face_idx[0], node->face_idx.size(), aabb_left, axis);
|
nuclear@37
|
428 float right_cost = eval_cost(faces, &node->face_idx[0], node->face_idx.size(), aabb_right, axis);
|
nuclear@37
|
429 float sum_cost = left_cost + right_cost - accel_param[ACCEL_PARAM_COST_TRAVERSE]; // tcost is added twice
|
nuclear@37
|
430
|
nuclear@37
|
431 if(sum_cost < best_split.sum_cost) {
|
nuclear@37
|
432 best_split.cost_left = left_cost;
|
nuclear@37
|
433 best_split.cost_right = right_cost;
|
nuclear@37
|
434 best_split.sum_cost = sum_cost;
|
nuclear@37
|
435 best_split.pos = splitpt[j];
|
nuclear@37
|
436 }
|
nuclear@37
|
437 }
|
nuclear@37
|
438 }
|
nuclear@37
|
439
|
nuclear@37
|
440 assert(split);
|
nuclear@37
|
441 *split = best_split;
|
nuclear@37
|
442 split->axis = axis;
|
nuclear@37
|
443 }
|
nuclear@37
|
444
|
nuclear@32
|
445 static bool build_kdtree(KDNode *kd, const Face *faces, int level)
|
nuclear@24
|
446 {
|
nuclear@28
|
447 int opt_max_depth = accel_param[ACCEL_PARAM_MAX_TREE_DEPTH];
|
nuclear@26
|
448 int opt_max_items = accel_param[ACCEL_PARAM_MAX_NODE_ITEMS];
|
nuclear@27
|
449
|
nuclear@32
|
450 if(kd->face_idx.empty() || level >= opt_max_depth) {
|
nuclear@27
|
451 return true;
|
nuclear@25
|
452 }
|
nuclear@25
|
453
|
nuclear@37
|
454 Split best_split;
|
nuclear@38
|
455 best_split.axis = -1;
|
nuclear@37
|
456 best_split.sum_cost = FLT_MAX;
|
nuclear@26
|
457
|
nuclear@38
|
458 for(int i=0; i<3; i++) {
|
nuclear@37
|
459 Split split;
|
nuclear@37
|
460 find_best_split(kd, i, faces, &split);
|
nuclear@26
|
461
|
nuclear@37
|
462 if(split.sum_cost < best_split.sum_cost) {
|
nuclear@37
|
463 best_split = split;
|
nuclear@26
|
464 }
|
nuclear@26
|
465 }
|
nuclear@26
|
466
|
nuclear@38
|
467 if(best_split.axis == -1) {
|
nuclear@38
|
468 return true; // can't split any more, only 0-area splits available
|
nuclear@38
|
469 }
|
nuclear@37
|
470
|
nuclear@29
|
471 //printf("current cost: %f, best_cost: %f\n", kd->cost, best_sum_cost);
|
nuclear@37
|
472 if(best_split.sum_cost > kd->cost && (opt_max_items == 0 || (int)kd->face_idx.size() <= opt_max_items)) {
|
nuclear@27
|
473 return true; // stop splitting if it doesn't reduce the cost
|
nuclear@26
|
474 }
|
nuclear@26
|
475
|
nuclear@38
|
476 kd->axis = best_split.axis;
|
nuclear@38
|
477
|
nuclear@26
|
478 // create the two children
|
nuclear@26
|
479 KDNode *kdleft, *kdright;
|
nuclear@26
|
480 kdleft = new KDNode;
|
nuclear@26
|
481 kdright = new KDNode;
|
nuclear@26
|
482
|
nuclear@26
|
483 kdleft->aabb = kdright->aabb = kd->aabb;
|
nuclear@26
|
484
|
nuclear@37
|
485 kdleft->aabb.max[kd->axis] = best_split.pos;
|
nuclear@37
|
486 kdright->aabb.min[kd->axis] = best_split.pos;
|
nuclear@26
|
487
|
nuclear@37
|
488 kdleft->cost = best_split.cost_left;
|
nuclear@37
|
489 kdright->cost = best_split.cost_right;
|
nuclear@26
|
490
|
nuclear@34
|
491 // TODO would it be much better if we actually split faces that straddle the splitting plane?
|
nuclear@32
|
492 for(size_t i=0; i<kd->face_idx.size(); i++) {
|
nuclear@32
|
493 int fidx = kd->face_idx[i];
|
nuclear@32
|
494 const Face *face = faces + fidx;
|
nuclear@26
|
495
|
nuclear@37
|
496 if(face->v[0].pos[kd->axis] < best_split.pos ||
|
nuclear@37
|
497 face->v[1].pos[kd->axis] < best_split.pos ||
|
nuclear@37
|
498 face->v[2].pos[kd->axis] < best_split.pos) {
|
nuclear@32
|
499 kdleft->face_idx.push_back(fidx);
|
nuclear@26
|
500 }
|
nuclear@37
|
501 if(face->v[0].pos[kd->axis] >= best_split.pos ||
|
nuclear@37
|
502 face->v[1].pos[kd->axis] >= best_split.pos ||
|
nuclear@37
|
503 face->v[2].pos[kd->axis] >= best_split.pos) {
|
nuclear@32
|
504 kdright->face_idx.push_back(fidx);
|
nuclear@26
|
505 }
|
nuclear@26
|
506 }
|
nuclear@32
|
507 kd->face_idx.clear(); // only leaves have faces
|
nuclear@26
|
508
|
nuclear@26
|
509 kd->left = kdleft;
|
nuclear@26
|
510 kd->right = kdright;
|
nuclear@27
|
511
|
nuclear@32
|
512 return build_kdtree(kd->left, faces, level + 1) && build_kdtree(kd->right, faces, level + 1);
|
nuclear@26
|
513 }
|
nuclear@26
|
514
|
nuclear@32
|
515 static float eval_cost(const Face *faces, const int *face_idx, int num_faces, const AABBox &aabb, int axis)
|
nuclear@26
|
516 {
|
nuclear@26
|
517 int num_inside = 0;
|
nuclear@26
|
518 int tcost = accel_param[ACCEL_PARAM_COST_TRAVERSE];
|
nuclear@26
|
519 int icost = accel_param[ACCEL_PARAM_COST_INTERSECT];
|
nuclear@26
|
520
|
nuclear@32
|
521 for(int i=0; i<num_faces; i++) {
|
nuclear@32
|
522 const Face *face = faces + face_idx[i];
|
nuclear@26
|
523
|
nuclear@32
|
524 for(int j=0; j<3; j++) {
|
nuclear@32
|
525 if(face->v[j].pos[axis] >= aabb.min[axis] && face->v[j].pos[axis] < aabb.max[axis]) {
|
nuclear@26
|
526 num_inside++;
|
nuclear@26
|
527 break;
|
nuclear@26
|
528 }
|
nuclear@26
|
529 }
|
nuclear@26
|
530 }
|
nuclear@26
|
531
|
nuclear@38
|
532 float dx = aabb.max[0] - aabb.min[0];
|
nuclear@38
|
533 float dy = aabb.max[1] - aabb.min[1];
|
nuclear@38
|
534 float dz = aabb.max[2] - aabb.min[2];
|
nuclear@38
|
535
|
nuclear@38
|
536 if(dx < 0.0) {
|
nuclear@38
|
537 fprintf(stderr, "FOO DX = %f\n", dx);
|
nuclear@38
|
538 abort();
|
nuclear@38
|
539 }
|
nuclear@38
|
540 if(dy < 0.0) {
|
nuclear@38
|
541 fprintf(stderr, "FOO DX = %f\n", dy);
|
nuclear@38
|
542 abort();
|
nuclear@38
|
543 }
|
nuclear@38
|
544 if(dz < 0.0) {
|
nuclear@38
|
545 fprintf(stderr, "FOO DX = %f\n", dz);
|
nuclear@38
|
546 abort();
|
nuclear@38
|
547 }
|
nuclear@38
|
548
|
nuclear@38
|
549 if(dx < 1e-6 || dy < 1e-6 || dz < 1e-6) {
|
nuclear@27
|
550 return FLT_MAX; // heavily penalize 0-area voxels
|
nuclear@27
|
551 }
|
nuclear@27
|
552
|
nuclear@38
|
553 float sarea = 2.0 * (dx + dy + dz);//aabb.calc_surface_area();
|
nuclear@32
|
554 return tcost + sarea * num_inside * icost;
|
nuclear@24
|
555 }
|
nuclear@25
|
556
|
nuclear@25
|
557 static void free_kdtree(KDNode *node)
|
nuclear@25
|
558 {
|
nuclear@25
|
559 if(node) {
|
nuclear@25
|
560 free_kdtree(node->left);
|
nuclear@25
|
561 free_kdtree(node->right);
|
nuclear@25
|
562 delete node;
|
nuclear@25
|
563 }
|
nuclear@25
|
564 }
|
nuclear@27
|
565
|
nuclear@28
|
566 int kdtree_depth(const KDNode *node)
|
nuclear@27
|
567 {
|
nuclear@27
|
568 if(!node) return 0;
|
nuclear@27
|
569
|
nuclear@27
|
570 int left = kdtree_depth(node->left);
|
nuclear@27
|
571 int right = kdtree_depth(node->right);
|
nuclear@27
|
572 return (left > right ? left : right) + 1;
|
nuclear@27
|
573 }
|
nuclear@27
|
574
|
nuclear@28
|
575 int kdtree_nodes(const KDNode *node)
|
nuclear@28
|
576 {
|
nuclear@28
|
577 if(!node) return 0;
|
nuclear@28
|
578 return kdtree_nodes(node->left) + kdtree_nodes(node->right) + 1;
|
nuclear@28
|
579 }
|
nuclear@28
|
580
|
nuclear@27
|
581 static void print_item_counts(const KDNode *node, int level)
|
nuclear@27
|
582 {
|
nuclear@27
|
583 if(!node) return;
|
nuclear@27
|
584
|
nuclear@30
|
585 for(int i=0; i<level; i++) {
|
nuclear@27
|
586 fputs(" ", stdout);
|
nuclear@27
|
587 }
|
nuclear@32
|
588 printf("- %d (cost: %f)\n", (int)node->face_idx.size(), node->cost);
|
nuclear@27
|
589
|
nuclear@27
|
590 print_item_counts(node->left, level + 1);
|
nuclear@27
|
591 print_item_counts(node->right, level + 1);
|
nuclear@27
|
592 }
|
nuclear@58
|
593 /*
|
nuclear@58
|
594 #define SWAP(a, b, type) \
|
nuclear@58
|
595 do { \
|
nuclear@58
|
596 type tmp = a; \
|
nuclear@58
|
597 a = b; \
|
nuclear@58
|
598 b = tmp; \
|
nuclear@58
|
599 } while(0)
|
nuclear@58
|
600
|
nuclear@58
|
601 static bool clip_face(const Face *inface, float splitpos, int axis, Face *face1, Face *face2)
|
nuclear@58
|
602 {
|
nuclear@58
|
603 assert(inface && face1 && face2);
|
nuclear@58
|
604 assert(inface != face1 && inface != face2);
|
nuclear@58
|
605 assert(axis >= 0 && axis < 3);
|
nuclear@58
|
606
|
nuclear@58
|
607 std::vector<Vertex> verts;
|
nuclear@58
|
608
|
nuclear@58
|
609 // find the edges that must be split
|
nuclear@58
|
610 for(int i=0; i<3; i++) {
|
nuclear@58
|
611 verts.push_back(inface->v[i]);
|
nuclear@58
|
612
|
nuclear@58
|
613 float start = inface->v[i].pos[axis];
|
nuclear@58
|
614 float end = inface->v[(i + 1) % 3].pos[axis];
|
nuclear@58
|
615
|
nuclear@58
|
616 if((splitpos >= start && splitpos < end) || (splitpos >= end && splitpos < start)) {
|
nuclear@58
|
617
|
nuclear@58
|
618 }
|
nuclear@58
|
619 }
|
nuclear@58
|
620 }*/
|