rev |
line source |
John@15
|
1 #include <math.h>
|
nuclear@25
|
2 #include <float.h>
|
nuclear@26
|
3 #include <assert.h>
|
nuclear@22
|
4 #include "scene.h"
|
nuclear@27
|
5 #include "ogl.h"
|
nuclear@6
|
6
|
nuclear@26
|
7
|
nuclear@27
|
8 static void draw_kdtree(const KDNode *node, int level = 0);
|
nuclear@32
|
9 static bool build_kdtree(KDNode *kd, const Face *faces, int level = 0);
|
nuclear@32
|
10 static float eval_cost(const Face *faces, const int *face_idx, int num_faces, const AABBox &aabb, int axis);
|
nuclear@26
|
11 static void free_kdtree(KDNode *node);
|
nuclear@32
|
12 static void kdtree_gpu_flatten(KDNodeGPU *kdbuf, int idx, const KDNode *node);
|
nuclear@27
|
13 static void print_item_counts(const KDNode *node, int level);
|
nuclear@26
|
14
|
nuclear@26
|
15
|
nuclear@26
|
16 static int accel_param[NUM_ACCEL_PARAMS] = {
|
nuclear@28
|
17 40, // max tree depth
|
nuclear@26
|
18 0, // max items per node (0 means ignore limit)
|
nuclear@26
|
19 5, // estimated traversal cost
|
nuclear@26
|
20 15 // estimated interseciton cost
|
nuclear@26
|
21 };
|
nuclear@26
|
22
|
nuclear@26
|
23
|
nuclear@26
|
24 void set_accel_param(int p, int v)
|
nuclear@26
|
25 {
|
nuclear@26
|
26 assert(p >= 0 && p < NUM_ACCEL_PARAMS);
|
nuclear@26
|
27 accel_param[p] = v;
|
nuclear@26
|
28 }
|
nuclear@26
|
29
|
nuclear@26
|
30
|
John@15
|
31 #define FEQ(a, b) (fabs((a) - (b)) < 1e-8)
|
John@15
|
32 bool Face::operator ==(const Face &f) const
|
John@15
|
33 {
|
John@15
|
34 for(int i=0; i<3; i++) {
|
John@15
|
35 for(int j=0; j<3; j++) {
|
John@15
|
36 if(!FEQ(v[i].pos[j], f.v[i].pos[j])) {
|
John@15
|
37 return false;
|
John@15
|
38 }
|
John@15
|
39 if(!FEQ(v[i].normal[j], f.v[i].normal[j])) {
|
John@15
|
40 return false;
|
John@15
|
41 }
|
John@15
|
42 }
|
John@15
|
43 if(!FEQ(normal[i], f.normal[i])) {
|
John@15
|
44 return false;
|
John@15
|
45 }
|
John@15
|
46 }
|
John@15
|
47 return true;
|
John@15
|
48 }
|
John@15
|
49
|
nuclear@25
|
50 float AABBox::calc_surface_area() const
|
nuclear@25
|
51 {
|
nuclear@25
|
52 float area1 = (max[0] - min[0]) * (max[1] - min[1]);
|
nuclear@25
|
53 float area2 = (max[3] - min[3]) * (max[1] - min[1]);
|
nuclear@25
|
54 float area3 = (max[0] - min[0]) * (max[3] - min[3]);
|
nuclear@25
|
55
|
nuclear@25
|
56 return 2.0f * (area1 + area2 + area3);
|
nuclear@25
|
57 }
|
nuclear@25
|
58
|
nuclear@26
|
59 KDNode::KDNode()
|
nuclear@26
|
60 {
|
nuclear@26
|
61 left = right = 0;
|
nuclear@32
|
62 cost = 0.0;
|
nuclear@26
|
63 }
|
nuclear@26
|
64
|
nuclear@25
|
65
|
nuclear@24
|
66 Scene::Scene()
|
nuclear@24
|
67 {
|
nuclear@24
|
68 facebuf = 0;
|
nuclear@24
|
69 num_faces = -1;
|
nuclear@24
|
70 kdtree = 0;
|
nuclear@28
|
71 kdbuf = 0;
|
nuclear@24
|
72 }
|
nuclear@24
|
73
|
nuclear@24
|
74 Scene::~Scene()
|
nuclear@24
|
75 {
|
nuclear@24
|
76 delete [] facebuf;
|
nuclear@28
|
77 delete [] kdbuf;
|
nuclear@28
|
78 free_kdtree(kdtree);
|
nuclear@24
|
79 }
|
nuclear@24
|
80
|
nuclear@13
|
81 bool Scene::add_mesh(Mesh *m)
|
nuclear@13
|
82 {
|
nuclear@13
|
83 // make sure triangles have material ids
|
nuclear@13
|
84 for(size_t i=0; i<m->faces.size(); i++) {
|
nuclear@13
|
85 m->faces[i].matid = m->matid;
|
nuclear@13
|
86 }
|
nuclear@24
|
87
|
nuclear@24
|
88 try {
|
nuclear@24
|
89 meshes.push_back(m);
|
nuclear@24
|
90 }
|
nuclear@24
|
91 catch(...) {
|
nuclear@24
|
92 return false;
|
nuclear@24
|
93 }
|
nuclear@24
|
94
|
nuclear@24
|
95 // invalidate facebuffer and count
|
nuclear@24
|
96 delete [] facebuf;
|
nuclear@24
|
97 facebuf = 0;
|
nuclear@24
|
98 num_faces = -1;
|
nuclear@24
|
99
|
nuclear@13
|
100 return true;
|
nuclear@13
|
101 }
|
nuclear@13
|
102
|
John@14
|
103 int Scene::get_num_meshes() const
|
John@14
|
104 {
|
John@14
|
105 return (int)meshes.size();
|
John@14
|
106 }
|
John@14
|
107
|
nuclear@13
|
108 int Scene::get_num_faces() const
|
nuclear@13
|
109 {
|
nuclear@24
|
110 if(num_faces >= 0) {
|
nuclear@24
|
111 return num_faces;
|
nuclear@24
|
112 }
|
nuclear@24
|
113
|
nuclear@24
|
114 num_faces = 0;
|
nuclear@13
|
115 for(size_t i=0; i<meshes.size(); i++) {
|
nuclear@13
|
116 num_faces += meshes[i]->faces.size();
|
nuclear@13
|
117 }
|
nuclear@13
|
118 return num_faces;
|
nuclear@13
|
119 }
|
nuclear@13
|
120
|
John@14
|
121 int Scene::get_num_materials() const
|
John@14
|
122 {
|
John@14
|
123 return (int)matlib.size();
|
John@14
|
124 }
|
John@14
|
125
|
John@14
|
126 Material *Scene::get_materials()
|
John@14
|
127 {
|
John@14
|
128 if(matlib.empty()) {
|
John@14
|
129 return 0;
|
John@14
|
130 }
|
John@14
|
131 return &matlib[0];
|
John@14
|
132 }
|
John@14
|
133
|
John@14
|
134 const Material *Scene::get_materials() const
|
John@14
|
135 {
|
John@14
|
136 if(matlib.empty()) {
|
John@14
|
137 return 0;
|
John@14
|
138 }
|
John@14
|
139 return &matlib[0];
|
John@14
|
140 }
|
nuclear@24
|
141
|
nuclear@24
|
142 const Face *Scene::get_face_buffer() const
|
nuclear@24
|
143 {
|
nuclear@24
|
144 if(facebuf) {
|
nuclear@24
|
145 return facebuf;
|
nuclear@24
|
146 }
|
nuclear@24
|
147
|
nuclear@24
|
148 int num_meshes = get_num_meshes();
|
nuclear@24
|
149
|
nuclear@24
|
150 printf("constructing face buffer with %d faces (out of %d meshes)\n", get_num_faces(), num_meshes);
|
nuclear@24
|
151 facebuf = new Face[num_faces];
|
nuclear@24
|
152 Face *fptr = facebuf;
|
nuclear@24
|
153
|
nuclear@24
|
154 for(int i=0; i<num_meshes; i++) {
|
nuclear@24
|
155 for(size_t j=0; j<meshes[i]->faces.size(); j++) {
|
nuclear@24
|
156 *fptr++ = meshes[i]->faces[j];
|
nuclear@24
|
157 }
|
nuclear@24
|
158 }
|
nuclear@24
|
159 return facebuf;
|
nuclear@24
|
160 }
|
nuclear@24
|
161
|
nuclear@28
|
162 const KDNodeGPU *Scene::get_kdtree_buffer() const
|
nuclear@28
|
163 {
|
nuclear@28
|
164 if(kdbuf) {
|
nuclear@28
|
165 return kdbuf;
|
nuclear@28
|
166 }
|
nuclear@28
|
167
|
nuclear@28
|
168 if(!kdtree) {
|
nuclear@28
|
169 ((Scene*)this)->build_kdtree();
|
nuclear@28
|
170 }
|
nuclear@28
|
171
|
nuclear@29
|
172 int max_nodes = (int)pow(2, kdtree_depth(kdtree)) - 1;
|
nuclear@29
|
173 printf("allocating storage for the complete tree (%d)\n", max_nodes);
|
nuclear@28
|
174
|
nuclear@29
|
175 kdbuf = new KDNodeGPU[max_nodes + 1];
|
nuclear@32
|
176 kdtree_gpu_flatten(kdbuf, 1, kdtree);
|
nuclear@28
|
177 return kdbuf;
|
nuclear@28
|
178 }
|
nuclear@28
|
179
|
nuclear@29
|
180 static int ipow(int x, int n)
|
nuclear@28
|
181 {
|
nuclear@29
|
182 assert(n >= 0);
|
nuclear@29
|
183
|
nuclear@29
|
184 int res = 1;
|
nuclear@29
|
185 for(int i=0; i<n; i++) {
|
nuclear@29
|
186 res *= x;
|
nuclear@28
|
187 }
|
nuclear@29
|
188 return res;
|
nuclear@28
|
189 }
|
nuclear@28
|
190
|
nuclear@29
|
191 int Scene::get_kdtree_buffer_size() const
|
nuclear@29
|
192 {
|
nuclear@29
|
193 // 2**depth - 1 nodes for the complete tree + 1 for the unused heap item 0.
|
nuclear@29
|
194 return ipow(2, kdtree_depth(kdtree)) * sizeof(KDNodeGPU);
|
nuclear@29
|
195 }
|
nuclear@24
|
196
|
nuclear@27
|
197 void Scene::draw_kdtree() const
|
nuclear@27
|
198 {
|
nuclear@27
|
199 glPushAttrib(GL_ENABLE_BIT);
|
nuclear@27
|
200 glDisable(GL_LIGHTING);
|
nuclear@27
|
201 glDepthMask(0);
|
nuclear@27
|
202
|
nuclear@27
|
203 glBegin(GL_LINES);
|
nuclear@27
|
204 ::draw_kdtree(kdtree, 0);
|
nuclear@27
|
205 glEnd();
|
nuclear@27
|
206
|
nuclear@27
|
207 glDepthMask(1);
|
nuclear@27
|
208 glPopAttrib();
|
nuclear@27
|
209 }
|
nuclear@27
|
210
|
nuclear@27
|
211 static float palette[][3] = {
|
nuclear@27
|
212 {0, 1, 0},
|
nuclear@27
|
213 {1, 0, 0},
|
nuclear@27
|
214 {0, 0, 1},
|
nuclear@27
|
215 {1, 1, 0},
|
nuclear@27
|
216 {0, 0, 1},
|
nuclear@27
|
217 {1, 0, 1}
|
nuclear@27
|
218 };
|
nuclear@27
|
219 static int pal_size = sizeof palette / sizeof *palette;
|
nuclear@27
|
220
|
nuclear@27
|
221 static void draw_kdtree(const KDNode *node, int level)
|
nuclear@27
|
222 {
|
nuclear@27
|
223 if(!node) return;
|
nuclear@27
|
224
|
nuclear@27
|
225 draw_kdtree(node->left, level + 1);
|
nuclear@27
|
226 draw_kdtree(node->right, level + 1);
|
nuclear@27
|
227
|
nuclear@27
|
228 glColor3fv(palette[level % pal_size]);
|
nuclear@27
|
229
|
nuclear@27
|
230 glVertex3fv(node->aabb.min);
|
nuclear@27
|
231 glVertex3f(node->aabb.max[0], node->aabb.min[1], node->aabb.min[2]);
|
nuclear@27
|
232 glVertex3f(node->aabb.max[0], node->aabb.min[1], node->aabb.min[2]);
|
nuclear@27
|
233 glVertex3f(node->aabb.max[0], node->aabb.max[1], node->aabb.min[2]);
|
nuclear@27
|
234 glVertex3f(node->aabb.max[0], node->aabb.max[1], node->aabb.min[2]);
|
nuclear@27
|
235 glVertex3f(node->aabb.min[0], node->aabb.max[1], node->aabb.min[2]);
|
nuclear@27
|
236 glVertex3f(node->aabb.min[0], node->aabb.max[1], node->aabb.min[2]);
|
nuclear@27
|
237 glVertex3fv(node->aabb.min);
|
nuclear@27
|
238
|
nuclear@27
|
239 glVertex3f(node->aabb.min[0], node->aabb.min[1], node->aabb.max[2]);
|
nuclear@27
|
240 glVertex3f(node->aabb.max[0], node->aabb.min[1], node->aabb.max[2]);
|
nuclear@27
|
241 glVertex3f(node->aabb.max[0], node->aabb.min[1], node->aabb.max[2]);
|
nuclear@27
|
242 glVertex3fv(node->aabb.max);
|
nuclear@27
|
243 glVertex3fv(node->aabb.max);
|
nuclear@27
|
244 glVertex3f(node->aabb.min[0], node->aabb.max[1], node->aabb.max[2]);
|
nuclear@27
|
245 glVertex3f(node->aabb.min[0], node->aabb.max[1], node->aabb.max[2]);
|
nuclear@27
|
246 glVertex3f(node->aabb.min[0], node->aabb.min[1], node->aabb.max[2]);
|
nuclear@27
|
247
|
nuclear@27
|
248 glVertex3fv(node->aabb.min);
|
nuclear@27
|
249 glVertex3f(node->aabb.min[0], node->aabb.min[1], node->aabb.max[2]);
|
nuclear@27
|
250 glVertex3f(node->aabb.max[0], node->aabb.min[1], node->aabb.min[2]);
|
nuclear@27
|
251 glVertex3f(node->aabb.max[0], node->aabb.min[1], node->aabb.max[2]);
|
nuclear@27
|
252 glVertex3f(node->aabb.max[0], node->aabb.max[1], node->aabb.min[2]);
|
nuclear@27
|
253 glVertex3fv(node->aabb.max);
|
nuclear@27
|
254 glVertex3f(node->aabb.min[0], node->aabb.max[1], node->aabb.min[2]);
|
nuclear@27
|
255 glVertex3f(node->aabb.min[0], node->aabb.max[1], node->aabb.max[2]);
|
nuclear@27
|
256 }
|
nuclear@27
|
257
|
nuclear@27
|
258 bool Scene::build_kdtree()
|
nuclear@24
|
259 {
|
nuclear@29
|
260 assert(kdtree == 0);
|
nuclear@29
|
261
|
nuclear@24
|
262 const Face *faces = get_face_buffer();
|
nuclear@24
|
263 int num_faces = get_num_faces();
|
nuclear@24
|
264
|
nuclear@25
|
265 printf("Constructing kd-tree out of %d faces ...\n", num_faces);
|
nuclear@25
|
266
|
nuclear@27
|
267 int icost = accel_param[ACCEL_PARAM_COST_INTERSECT];
|
nuclear@27
|
268 int tcost = accel_param[ACCEL_PARAM_COST_TRAVERSE];
|
nuclear@27
|
269 printf(" max items per leaf: %d\n", accel_param[ACCEL_PARAM_MAX_NODE_ITEMS]);
|
nuclear@27
|
270 printf(" SAH parameters - tcost: %d - icost: %d\n", tcost, icost);
|
nuclear@27
|
271
|
nuclear@25
|
272 free_kdtree(kdtree);
|
nuclear@25
|
273 kdtree = new KDNode;
|
nuclear@25
|
274
|
nuclear@25
|
275 /* Start the construction of the kdtree by adding all faces of the scene
|
nuclear@25
|
276 * to the new root node. At the same time calculate the root's AABB.
|
nuclear@25
|
277 */
|
nuclear@25
|
278 kdtree->aabb.min[0] = kdtree->aabb.min[1] = kdtree->aabb.min[2] = FLT_MAX;
|
nuclear@25
|
279 kdtree->aabb.max[0] = kdtree->aabb.max[1] = kdtree->aabb.max[2] = -FLT_MAX;
|
nuclear@25
|
280
|
nuclear@24
|
281 for(int i=0; i<num_faces; i++) {
|
nuclear@25
|
282 const Face *face = faces + i;
|
nuclear@25
|
283
|
nuclear@25
|
284 // for each vertex of the face ...
|
nuclear@25
|
285 for(int j=0; j<3; j++) {
|
nuclear@25
|
286 const float *pos = face->v[j].pos;
|
nuclear@25
|
287
|
nuclear@25
|
288 // for each element (xyz) of the position vector ...
|
nuclear@25
|
289 for(int k=0; k<3; k++) {
|
nuclear@25
|
290 if(pos[k] < kdtree->aabb.min[k]) {
|
nuclear@25
|
291 kdtree->aabb.min[k] = pos[k];
|
nuclear@25
|
292 }
|
nuclear@25
|
293 if(pos[k] > kdtree->aabb.max[k]) {
|
nuclear@25
|
294 kdtree->aabb.max[k] = pos[k];
|
nuclear@25
|
295 }
|
nuclear@25
|
296 }
|
nuclear@25
|
297 }
|
nuclear@25
|
298
|
nuclear@32
|
299 kdtree->face_idx.push_back(i); // add the face
|
nuclear@24
|
300 }
|
nuclear@24
|
301
|
nuclear@26
|
302 // calculate the heuristic for the root
|
nuclear@32
|
303 kdtree->cost = eval_cost(faces, &kdtree->face_idx[0], kdtree->face_idx.size(), kdtree->aabb, 0);
|
nuclear@26
|
304
|
nuclear@25
|
305 // now proceed splitting the root recursively
|
nuclear@32
|
306 if(!::build_kdtree(kdtree, faces)) {
|
nuclear@27
|
307 fprintf(stderr, "failed to build kdtree\n");
|
nuclear@27
|
308 return false;
|
nuclear@27
|
309 }
|
nuclear@27
|
310
|
nuclear@27
|
311 printf(" tree depth: %d\n", kdtree_depth(kdtree));
|
nuclear@27
|
312 print_item_counts(kdtree, 0);
|
nuclear@27
|
313 return true;
|
nuclear@24
|
314 }
|
nuclear@24
|
315
|
nuclear@32
|
316 static bool build_kdtree(KDNode *kd, const Face *faces, int level)
|
nuclear@24
|
317 {
|
nuclear@28
|
318 int opt_max_depth = accel_param[ACCEL_PARAM_MAX_TREE_DEPTH];
|
nuclear@26
|
319 int opt_max_items = accel_param[ACCEL_PARAM_MAX_NODE_ITEMS];
|
nuclear@27
|
320 int tcost = accel_param[ACCEL_PARAM_COST_TRAVERSE];
|
nuclear@27
|
321
|
nuclear@32
|
322 if(kd->face_idx.empty() || level >= opt_max_depth) {
|
nuclear@27
|
323 return true;
|
nuclear@25
|
324 }
|
nuclear@25
|
325
|
nuclear@27
|
326 int axis = level % 3;
|
nuclear@26
|
327
|
nuclear@26
|
328 float best_cost[2], best_sum_cost = FLT_MAX;
|
nuclear@26
|
329 float best_split;
|
nuclear@26
|
330
|
nuclear@32
|
331 for(size_t i=0; i<kd->face_idx.size(); i++) {
|
nuclear@32
|
332 const Face *face = faces + kd->face_idx[i];
|
nuclear@26
|
333
|
nuclear@32
|
334 for(int j=0; j<3; j++) {
|
nuclear@26
|
335 AABBox aabb_left, aabb_right;
|
nuclear@32
|
336 const float *split = face->v[j].pos;
|
nuclear@26
|
337
|
nuclear@26
|
338 aabb_left = aabb_right = kd->aabb;
|
nuclear@26
|
339 aabb_left.max[axis] = split[axis];
|
nuclear@26
|
340 aabb_right.min[axis] = split[axis];
|
nuclear@26
|
341
|
nuclear@32
|
342 float left_cost = eval_cost(faces, &kd->face_idx[0], kd->face_idx.size(), aabb_left, axis);
|
nuclear@32
|
343 float right_cost = eval_cost(faces, &kd->face_idx[0], kd->face_idx.size(), aabb_right, axis);
|
nuclear@27
|
344 float sum_cost = left_cost + right_cost - tcost; // tcost is added twice
|
nuclear@26
|
345
|
nuclear@26
|
346 if(sum_cost < best_sum_cost) {
|
nuclear@26
|
347 best_cost[0] = left_cost;
|
nuclear@26
|
348 best_cost[1] = right_cost;
|
nuclear@26
|
349 best_sum_cost = sum_cost;
|
nuclear@26
|
350 best_split = split[axis];
|
nuclear@26
|
351 }
|
nuclear@26
|
352 }
|
nuclear@26
|
353 }
|
nuclear@26
|
354
|
nuclear@29
|
355 //printf("current cost: %f, best_cost: %f\n", kd->cost, best_sum_cost);
|
nuclear@32
|
356 if(best_sum_cost > kd->cost && (opt_max_items == 0 || (int)kd->face_idx.size() <= opt_max_items)) {
|
nuclear@27
|
357 return true; // stop splitting if it doesn't reduce the cost
|
nuclear@26
|
358 }
|
nuclear@26
|
359
|
nuclear@26
|
360 // create the two children
|
nuclear@26
|
361 KDNode *kdleft, *kdright;
|
nuclear@26
|
362 kdleft = new KDNode;
|
nuclear@26
|
363 kdright = new KDNode;
|
nuclear@26
|
364
|
nuclear@26
|
365 kdleft->aabb = kdright->aabb = kd->aabb;
|
nuclear@26
|
366
|
nuclear@26
|
367 kdleft->aabb.max[axis] = best_split;
|
nuclear@26
|
368 kdright->aabb.min[axis] = best_split;
|
nuclear@26
|
369
|
nuclear@26
|
370 kdleft->cost = best_cost[0];
|
nuclear@26
|
371 kdright->cost = best_cost[1];
|
nuclear@26
|
372
|
nuclear@32
|
373 for(size_t i=0; i<kd->face_idx.size(); i++) {
|
nuclear@32
|
374 int fidx = kd->face_idx[i];
|
nuclear@32
|
375 const Face *face = faces + fidx;
|
nuclear@26
|
376
|
nuclear@26
|
377 if(face->v[0].pos[axis] < best_split ||
|
nuclear@26
|
378 face->v[1].pos[axis] < best_split ||
|
nuclear@26
|
379 face->v[2].pos[axis] < best_split) {
|
nuclear@32
|
380 kdleft->face_idx.push_back(fidx);
|
nuclear@26
|
381 }
|
nuclear@26
|
382 if(face->v[0].pos[axis] >= best_split ||
|
nuclear@26
|
383 face->v[1].pos[axis] >= best_split ||
|
nuclear@26
|
384 face->v[2].pos[axis] >= best_split) {
|
nuclear@32
|
385 kdright->face_idx.push_back(fidx);
|
nuclear@26
|
386 }
|
nuclear@26
|
387 }
|
nuclear@32
|
388 kd->face_idx.clear(); // only leaves have faces
|
nuclear@26
|
389
|
nuclear@26
|
390 kd->left = kdleft;
|
nuclear@26
|
391 kd->right = kdright;
|
nuclear@27
|
392
|
nuclear@32
|
393 return build_kdtree(kd->left, faces, level + 1) && build_kdtree(kd->right, faces, level + 1);
|
nuclear@26
|
394 }
|
nuclear@26
|
395
|
nuclear@32
|
396 static float eval_cost(const Face *faces, const int *face_idx, int num_faces, const AABBox &aabb, int axis)
|
nuclear@26
|
397 {
|
nuclear@26
|
398 int num_inside = 0;
|
nuclear@26
|
399 int tcost = accel_param[ACCEL_PARAM_COST_TRAVERSE];
|
nuclear@26
|
400 int icost = accel_param[ACCEL_PARAM_COST_INTERSECT];
|
nuclear@26
|
401
|
nuclear@32
|
402 for(int i=0; i<num_faces; i++) {
|
nuclear@32
|
403 const Face *face = faces + face_idx[i];
|
nuclear@26
|
404
|
nuclear@32
|
405 for(int j=0; j<3; j++) {
|
nuclear@32
|
406 if(face->v[j].pos[axis] >= aabb.min[axis] && face->v[j].pos[axis] < aabb.max[axis]) {
|
nuclear@26
|
407 num_inside++;
|
nuclear@26
|
408 break;
|
nuclear@26
|
409 }
|
nuclear@26
|
410 }
|
nuclear@26
|
411 }
|
nuclear@26
|
412
|
nuclear@27
|
413 float sarea = aabb.calc_surface_area();
|
nuclear@27
|
414 if(sarea < 1e-8) {
|
nuclear@27
|
415 return FLT_MAX; // heavily penalize 0-area voxels
|
nuclear@27
|
416 }
|
nuclear@27
|
417
|
nuclear@32
|
418 return tcost + sarea * num_inside * icost;
|
nuclear@24
|
419 }
|
nuclear@25
|
420
|
nuclear@25
|
421 static void free_kdtree(KDNode *node)
|
nuclear@25
|
422 {
|
nuclear@25
|
423 if(node) {
|
nuclear@25
|
424 free_kdtree(node->left);
|
nuclear@25
|
425 free_kdtree(node->right);
|
nuclear@25
|
426 delete node;
|
nuclear@25
|
427 }
|
nuclear@25
|
428 }
|
nuclear@27
|
429
|
nuclear@28
|
430 int kdtree_depth(const KDNode *node)
|
nuclear@27
|
431 {
|
nuclear@27
|
432 if(!node) return 0;
|
nuclear@27
|
433
|
nuclear@27
|
434 int left = kdtree_depth(node->left);
|
nuclear@27
|
435 int right = kdtree_depth(node->right);
|
nuclear@27
|
436 return (left > right ? left : right) + 1;
|
nuclear@27
|
437 }
|
nuclear@27
|
438
|
nuclear@28
|
439 int kdtree_nodes(const KDNode *node)
|
nuclear@28
|
440 {
|
nuclear@28
|
441 if(!node) return 0;
|
nuclear@28
|
442 return kdtree_nodes(node->left) + kdtree_nodes(node->right) + 1;
|
nuclear@28
|
443 }
|
nuclear@28
|
444
|
nuclear@28
|
445 #define MAX_FACES (sizeof dest->face_idx / sizeof *dest->face_idx)
|
nuclear@32
|
446 static void kdtree_gpu_flatten(KDNodeGPU *kdbuf, int idx, const KDNode *node)
|
nuclear@28
|
447 {
|
nuclear@28
|
448 KDNodeGPU *dest = kdbuf + idx;
|
nuclear@28
|
449
|
nuclear@28
|
450 dest->aabb = node->aabb;
|
nuclear@28
|
451 dest->num_faces = 0;
|
nuclear@28
|
452
|
nuclear@32
|
453 for(size_t i=0; i<node->face_idx.size(); i++) {
|
nuclear@28
|
454 if(dest->num_faces >= (int)MAX_FACES) {
|
nuclear@28
|
455 fprintf(stderr, "kdtree_gpu_flatten WARNING: more than %d faces in node, skipping!\n", (int)MAX_FACES);
|
nuclear@28
|
456 break;
|
nuclear@28
|
457 }
|
nuclear@32
|
458 dest->face_idx[dest->num_faces++] = node->face_idx[i];
|
nuclear@28
|
459 }
|
nuclear@28
|
460
|
nuclear@28
|
461 if(node->left) {
|
nuclear@28
|
462 assert(node->right);
|
nuclear@31
|
463 assert(!dest->num_faces);
|
nuclear@31
|
464
|
nuclear@31
|
465 dest->num_faces = -1;
|
nuclear@31
|
466
|
nuclear@32
|
467 kdtree_gpu_flatten(kdbuf, idx * 2, node->left);
|
nuclear@32
|
468 kdtree_gpu_flatten(kdbuf, idx * 2 + 1, node->right);
|
nuclear@28
|
469 }
|
nuclear@28
|
470 }
|
nuclear@28
|
471
|
nuclear@27
|
472 static void print_item_counts(const KDNode *node, int level)
|
nuclear@27
|
473 {
|
nuclear@27
|
474 if(!node) return;
|
nuclear@27
|
475
|
nuclear@30
|
476 for(int i=0; i<level; i++) {
|
nuclear@27
|
477 fputs(" ", stdout);
|
nuclear@27
|
478 }
|
nuclear@32
|
479 printf("- %d (cost: %f)\n", (int)node->face_idx.size(), node->cost);
|
nuclear@27
|
480
|
nuclear@27
|
481 print_item_counts(node->left, level + 1);
|
nuclear@27
|
482 print_item_counts(node->right, level + 1);
|
nuclear@27
|
483 }
|