rev |
line source |
nuclear@0
|
1 #include <stdio.h>
|
nuclear@8
|
2 #include <string.h>
|
nuclear@2
|
3 #include <math.h>
|
nuclear@0
|
4 #include <assert.h>
|
John@14
|
5 #include "ogl.h"
|
nuclear@0
|
6 #include "ocl.h"
|
nuclear@22
|
7 #include "scene.h"
|
nuclear@32
|
8 #include "timer.h"
|
nuclear@0
|
9
|
nuclear@12
|
10 // kernel arguments
|
nuclear@12
|
11 enum {
|
nuclear@12
|
12 KARG_FRAMEBUFFER,
|
nuclear@12
|
13 KARG_RENDER_INFO,
|
nuclear@12
|
14 KARG_FACES,
|
nuclear@12
|
15 KARG_MATLIB,
|
nuclear@12
|
16 KARG_LIGHTS,
|
nuclear@12
|
17 KARG_PRIM_RAYS,
|
nuclear@12
|
18 KARG_XFORM,
|
John@14
|
19 KARG_INVTRANS_XFORM,
|
nuclear@28
|
20 KARG_KDTREE,
|
John@14
|
21
|
John@14
|
22 NUM_KERNEL_ARGS
|
nuclear@12
|
23 };
|
John@11
|
24
|
nuclear@2
|
25 struct RendInfo {
|
nuclear@22
|
26 float ambient[4];
|
nuclear@2
|
27 int xsz, ysz;
|
nuclear@9
|
28 int num_faces, num_lights;
|
nuclear@2
|
29 int max_iter;
|
nuclear@28
|
30 int kd_depth;
|
nuclear@12
|
31 };
|
nuclear@2
|
32
|
nuclear@1
|
33 struct Ray {
|
nuclear@8
|
34 float origin[4], dir[4];
|
nuclear@12
|
35 };
|
nuclear@1
|
36
|
nuclear@3
|
37 struct Light {
|
nuclear@8
|
38 float pos[4], color[4];
|
nuclear@12
|
39 };
|
nuclear@1
|
40
|
nuclear@3
|
41 static Ray get_primary_ray(int x, int y, int w, int h, float vfov_deg);
|
nuclear@3
|
42
|
nuclear@13
|
43 static Face *faces;
|
nuclear@3
|
44 static Ray *prim_rays;
|
nuclear@3
|
45 static CLProgram *prog;
|
nuclear@3
|
46 static int global_size;
|
nuclear@3
|
47
|
nuclear@4
|
48 static Light lightlist[] = {
|
nuclear@22
|
49 {{-8, 15, 18, 0}, {1, 1, 1, 1}}
|
nuclear@4
|
50 };
|
nuclear@4
|
51
|
nuclear@7
|
52
|
nuclear@4
|
53 static RendInfo rinf;
|
nuclear@4
|
54
|
nuclear@4
|
55
|
nuclear@39
|
56 bool init_renderer(int xsz, int ysz, Scene *scn, unsigned int tex)
|
nuclear@0
|
57 {
|
nuclear@4
|
58 // render info
|
nuclear@22
|
59 rinf.ambient[0] = rinf.ambient[1] = rinf.ambient[2] = 0.0;
|
nuclear@16
|
60 rinf.ambient[3] = 0.0;
|
nuclear@16
|
61
|
nuclear@4
|
62 rinf.xsz = xsz;
|
nuclear@4
|
63 rinf.ysz = ysz;
|
nuclear@13
|
64 rinf.num_faces = scn->get_num_faces();
|
nuclear@4
|
65 rinf.num_lights = sizeof lightlist / sizeof *lightlist;
|
nuclear@4
|
66 rinf.max_iter = 6;
|
nuclear@28
|
67 rinf.kd_depth = kdtree_depth(scn->kdtree);
|
nuclear@4
|
68
|
nuclear@3
|
69 /* calculate primary rays */
|
nuclear@3
|
70 prim_rays = new Ray[xsz * ysz];
|
nuclear@2
|
71
|
nuclear@2
|
72 for(int i=0; i<ysz; i++) {
|
nuclear@2
|
73 for(int j=0; j<xsz; j++) {
|
nuclear@2
|
74 prim_rays[i * xsz + j] = get_primary_ray(j, i, xsz, ysz, 45.0);
|
nuclear@2
|
75 }
|
nuclear@0
|
76 }
|
nuclear@0
|
77
|
nuclear@2
|
78 /* setup opencl */
|
nuclear@3
|
79 prog = new CLProgram("render");
|
nuclear@3
|
80 if(!prog->load("rt.cl")) {
|
nuclear@8
|
81 return false;
|
nuclear@0
|
82 }
|
nuclear@0
|
83
|
nuclear@24
|
84 if(!(faces = (Face*)scn->get_face_buffer())) {
|
nuclear@13
|
85 fprintf(stderr, "failed to create face buffer\n");
|
nuclear@13
|
86 return false;
|
nuclear@13
|
87 }
|
nuclear@13
|
88
|
nuclear@28
|
89 const KDNodeGPU *kdbuf = scn->get_kdtree_buffer();
|
nuclear@28
|
90 if(!kdbuf) {
|
nuclear@28
|
91 fprintf(stderr, "failed to create kdtree buffer\n");
|
nuclear@28
|
92 return false;
|
nuclear@28
|
93 }
|
nuclear@32
|
94 // XXX now we can actually destroy the original kdtree and keep only the GPU version
|
nuclear@28
|
95
|
nuclear@3
|
96 /* setup argument buffers */
|
nuclear@39
|
97 prog->set_arg_texture(KARG_FRAMEBUFFER, ARG_WR, tex);
|
nuclear@12
|
98 prog->set_arg_buffer(KARG_RENDER_INFO, ARG_RD, sizeof rinf, &rinf);
|
John@14
|
99 prog->set_arg_buffer(KARG_FACES, ARG_RD, rinf.num_faces * sizeof(Face), faces);
|
John@14
|
100 prog->set_arg_buffer(KARG_MATLIB, ARG_RD, scn->get_num_materials() * sizeof(Material), scn->get_materials());
|
nuclear@12
|
101 prog->set_arg_buffer(KARG_LIGHTS, ARG_RD, sizeof lightlist, lightlist);
|
nuclear@12
|
102 prog->set_arg_buffer(KARG_PRIM_RAYS, ARG_RD, xsz * ysz * sizeof *prim_rays, prim_rays);
|
nuclear@12
|
103 prog->set_arg_buffer(KARG_XFORM, ARG_RD, 16 * sizeof(float));
|
nuclear@12
|
104 prog->set_arg_buffer(KARG_INVTRANS_XFORM, ARG_RD, 16 * sizeof(float));
|
nuclear@35
|
105 prog->set_arg_buffer(KARG_KDTREE, ARG_RD, scn->get_num_kdnodes() * sizeof *kdbuf, kdbuf);
|
nuclear@12
|
106
|
John@14
|
107 if(prog->get_num_args() < NUM_KERNEL_ARGS) {
|
John@14
|
108 return false;
|
John@14
|
109 }
|
John@14
|
110
|
nuclear@16
|
111 if(!prog->build()) {
|
nuclear@16
|
112 return false;
|
nuclear@16
|
113 }
|
nuclear@16
|
114
|
nuclear@12
|
115 delete [] prim_rays;
|
nuclear@2
|
116
|
nuclear@3
|
117 global_size = xsz * ysz;
|
nuclear@3
|
118 return true;
|
nuclear@3
|
119 }
|
nuclear@3
|
120
|
nuclear@3
|
121 void destroy_renderer()
|
nuclear@3
|
122 {
|
nuclear@3
|
123 delete prog;
|
nuclear@3
|
124 }
|
nuclear@3
|
125
|
nuclear@3
|
126 bool render()
|
nuclear@3
|
127 {
|
nuclear@39
|
128 // XXX do we need to call glFinish ?
|
nuclear@39
|
129
|
nuclear@32
|
130 long tm0 = get_msec();
|
nuclear@32
|
131
|
nuclear@39
|
132 cl_event ev;
|
nuclear@39
|
133 CLMemBuffer *texbuf = prog->get_arg_buffer(KARG_FRAMEBUFFER);
|
nuclear@39
|
134
|
nuclear@39
|
135 if(!acquire_gl_object(texbuf, &ev)) {
|
nuclear@39
|
136 return false;
|
nuclear@39
|
137 }
|
nuclear@39
|
138
|
nuclear@39
|
139 // make sure that we will wait for the acquire to finish before running
|
nuclear@39
|
140 prog->set_wait_event(ev);
|
nuclear@39
|
141
|
nuclear@3
|
142 if(!prog->run(1, global_size)) {
|
nuclear@3
|
143 return false;
|
nuclear@0
|
144 }
|
John@15
|
145
|
nuclear@39
|
146 if(!release_gl_object(texbuf, &ev)) {
|
nuclear@39
|
147 return false;
|
nuclear@39
|
148 }
|
nuclear@39
|
149 clWaitForEvents(1, &ev);
|
nuclear@39
|
150
|
nuclear@39
|
151 printf("rendered in %ld msec\n", get_msec() - tm0);
|
nuclear@39
|
152
|
nuclear@39
|
153 /*long tm_run = get_msec() - tm0;
|
nuclear@32
|
154
|
nuclear@13
|
155 CLMemBuffer *mbuf = prog->get_arg_buffer(KARG_FRAMEBUFFER);
|
nuclear@12
|
156 void *fb = map_mem_buffer(mbuf, MAP_RD);
|
nuclear@13
|
157 if(!fb) {
|
nuclear@13
|
158 fprintf(stderr, "FAILED\n");
|
nuclear@13
|
159 return false;
|
nuclear@13
|
160 }
|
nuclear@13
|
161
|
nuclear@12
|
162 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, rinf.xsz, rinf.ysz, GL_RGBA, GL_FLOAT, fb);
|
nuclear@2
|
163 unmap_mem_buffer(mbuf);
|
nuclear@32
|
164
|
nuclear@32
|
165 long tm_upd = get_msec() - tm0 - tm_run;
|
nuclear@32
|
166
|
nuclear@32
|
167 printf("render %ld msec (%ld run, %ld upd)\n", tm_run + tm_upd, tm_run, tm_upd);
|
nuclear@39
|
168 */
|
nuclear@3
|
169 return true;
|
nuclear@0
|
170 }
|
nuclear@2
|
171
|
nuclear@27
|
172 #define MIN(a, b) ((a) < (b) ? (a) : (b))
|
nuclear@21
|
173 static void dbg_set_gl_material(Material *mat)
|
nuclear@21
|
174 {
|
nuclear@21
|
175 static Material def_mat = {{0.7, 0.7, 0.7, 1}, {0, 0, 0, 0}, 0, 0, 0};
|
nuclear@21
|
176
|
nuclear@21
|
177 if(!mat) mat = &def_mat;
|
nuclear@21
|
178
|
nuclear@21
|
179 glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, mat->kd);
|
nuclear@21
|
180 glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, mat->ks);
|
nuclear@27
|
181 glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, MIN(mat->spow, 128.0f));
|
nuclear@21
|
182 }
|
nuclear@21
|
183
|
nuclear@27
|
184 void dbg_render_gl(Scene *scn, bool show_tree, bool show_obj)
|
nuclear@8
|
185 {
|
nuclear@22
|
186 glPushAttrib(GL_ENABLE_BIT | GL_TRANSFORM_BIT | GL_LIGHTING_BIT);
|
nuclear@8
|
187
|
nuclear@21
|
188 for(int i=0; i<rinf.num_lights; i++) {
|
nuclear@21
|
189 float lpos[4];
|
nuclear@21
|
190
|
nuclear@21
|
191 memcpy(lpos, lightlist[i].pos, sizeof lpos);
|
nuclear@21
|
192 lpos[3] = 1.0;
|
nuclear@21
|
193
|
nuclear@21
|
194 glLightfv(GL_LIGHT0 + i, GL_POSITION, lpos);
|
nuclear@21
|
195 glLightfv(GL_LIGHT0 + i, GL_DIFFUSE, lightlist[i].color);
|
nuclear@22
|
196 glEnable(GL_LIGHT0 + i);
|
nuclear@21
|
197 }
|
nuclear@21
|
198
|
nuclear@12
|
199 glDisable(GL_TEXTURE_2D);
|
nuclear@12
|
200 glEnable(GL_DEPTH_TEST);
|
John@15
|
201 glEnable(GL_LIGHTING);
|
nuclear@12
|
202
|
nuclear@12
|
203 glMatrixMode(GL_PROJECTION);
|
nuclear@12
|
204 glPushMatrix();
|
nuclear@12
|
205 glLoadIdentity();
|
nuclear@12
|
206 gluPerspective(45.0, (float)rinf.xsz / (float)rinf.ysz, 0.5, 1000.0);
|
nuclear@12
|
207
|
nuclear@27
|
208 if(show_obj) {
|
nuclear@27
|
209 Material *materials = scn->get_materials();
|
John@14
|
210
|
nuclear@27
|
211 int num_faces = scn->get_num_faces();
|
nuclear@27
|
212 int cur_mat = -1;
|
nuclear@21
|
213
|
nuclear@27
|
214 for(int i=0; i<num_faces; i++) {
|
nuclear@27
|
215 if(faces[i].matid != cur_mat) {
|
nuclear@27
|
216 if(cur_mat != -1) {
|
nuclear@27
|
217 glEnd();
|
nuclear@27
|
218 }
|
nuclear@27
|
219 dbg_set_gl_material(materials ? materials + faces[i].matid : 0);
|
nuclear@27
|
220 cur_mat = faces[i].matid;
|
nuclear@27
|
221 glBegin(GL_TRIANGLES);
|
nuclear@21
|
222 }
|
nuclear@27
|
223
|
nuclear@27
|
224 for(int j=0; j<3; j++) {
|
nuclear@27
|
225 glNormal3fv(faces[i].v[j].normal);
|
nuclear@27
|
226 glVertex3fv(faces[i].v[j].pos);
|
nuclear@27
|
227 }
|
John@14
|
228 }
|
nuclear@27
|
229 glEnd();
|
nuclear@27
|
230 }
|
nuclear@12
|
231
|
nuclear@27
|
232 if(show_tree) {
|
nuclear@27
|
233 scn->draw_kdtree();
|
nuclear@12
|
234 }
|
nuclear@12
|
235
|
nuclear@12
|
236 glPopMatrix();
|
nuclear@12
|
237 glPopAttrib();
|
nuclear@22
|
238
|
nuclear@22
|
239 assert(glGetError() == GL_NO_ERROR);
|
nuclear@12
|
240 }
|
nuclear@12
|
241
|
nuclear@12
|
242 void set_xform(float *matrix, float *invtrans)
|
nuclear@12
|
243 {
|
nuclear@12
|
244 CLMemBuffer *mbuf_xform = prog->get_arg_buffer(KARG_XFORM);
|
nuclear@12
|
245 CLMemBuffer *mbuf_invtrans = prog->get_arg_buffer(KARG_INVTRANS_XFORM);
|
nuclear@12
|
246 assert(mbuf_xform && mbuf_invtrans);
|
nuclear@12
|
247
|
nuclear@12
|
248 float *mem = (float*)map_mem_buffer(mbuf_xform, MAP_WR);
|
nuclear@12
|
249 memcpy(mem, matrix, 16 * sizeof *mem);
|
nuclear@12
|
250 unmap_mem_buffer(mbuf_xform);
|
nuclear@12
|
251
|
nuclear@12
|
252 mem = (float*)map_mem_buffer(mbuf_invtrans, MAP_WR);
|
nuclear@12
|
253 memcpy(mem, invtrans, 16 * sizeof *mem);
|
nuclear@12
|
254 unmap_mem_buffer(mbuf_invtrans);
|
nuclear@8
|
255 }
|
nuclear@8
|
256
|
nuclear@3
|
257 static Ray get_primary_ray(int x, int y, int w, int h, float vfov_deg)
|
nuclear@2
|
258 {
|
nuclear@2
|
259 float vfov = M_PI * vfov_deg / 180.0;
|
nuclear@2
|
260 float aspect = (float)w / (float)h;
|
nuclear@2
|
261
|
nuclear@2
|
262 float ysz = 2.0;
|
nuclear@2
|
263 float xsz = aspect * ysz;
|
nuclear@2
|
264
|
nuclear@2
|
265 float px = ((float)x / (float)w) * xsz - xsz / 2.0;
|
nuclear@2
|
266 float py = 1.0 - ((float)y / (float)h) * ysz;
|
nuclear@2
|
267 float pz = 1.0 / tan(0.5 * vfov);
|
nuclear@2
|
268
|
nuclear@4
|
269 px *= 100.0;
|
nuclear@4
|
270 py *= 100.0;
|
nuclear@4
|
271 pz *= 100.0;
|
nuclear@2
|
272
|
nuclear@18
|
273 Ray ray = {{0, 0, 0, 1}, {px, py, -pz, 1}};
|
nuclear@2
|
274 return ray;
|
nuclear@2
|
275 }
|