clray

annotate src/rt.cc @ 27:8b2f2ad14ae7

semi-fixed the kdtree construction
author John Tsiombikas <nuclear@member.fsf.org>
date Tue, 17 Aug 2010 20:35:00 +0100
parents 13091c00d7ca
children 97cfd9675310
rev   line source
nuclear@0 1 #include <stdio.h>
nuclear@8 2 #include <string.h>
nuclear@2 3 #include <math.h>
nuclear@0 4 #include <assert.h>
John@14 5 #include "ogl.h"
nuclear@0 6 #include "ocl.h"
nuclear@22 7 #include "scene.h"
nuclear@0 8
nuclear@12 9 // kernel arguments
nuclear@12 10 enum {
nuclear@12 11 KARG_FRAMEBUFFER,
nuclear@12 12 KARG_RENDER_INFO,
nuclear@12 13 KARG_FACES,
nuclear@12 14 KARG_MATLIB,
nuclear@12 15 KARG_LIGHTS,
nuclear@12 16 KARG_PRIM_RAYS,
nuclear@12 17 KARG_XFORM,
John@14 18 KARG_INVTRANS_XFORM,
John@14 19
John@14 20 NUM_KERNEL_ARGS
nuclear@12 21 };
John@11 22
nuclear@2 23 struct RendInfo {
nuclear@22 24 float ambient[4];
nuclear@2 25 int xsz, ysz;
nuclear@9 26 int num_faces, num_lights;
nuclear@2 27 int max_iter;
nuclear@12 28 };
nuclear@2 29
nuclear@1 30 struct Ray {
nuclear@8 31 float origin[4], dir[4];
nuclear@12 32 };
nuclear@1 33
nuclear@3 34 struct Light {
nuclear@8 35 float pos[4], color[4];
nuclear@12 36 };
nuclear@1 37
nuclear@3 38 static Ray get_primary_ray(int x, int y, int w, int h, float vfov_deg);
nuclear@3 39
nuclear@13 40 static Face *faces;
nuclear@3 41 static Ray *prim_rays;
nuclear@3 42 static CLProgram *prog;
nuclear@3 43 static int global_size;
nuclear@3 44
nuclear@4 45 static Light lightlist[] = {
nuclear@22 46 {{-8, 15, 18, 0}, {1, 1, 1, 1}}
nuclear@4 47 };
nuclear@4 48
nuclear@7 49
nuclear@4 50 static RendInfo rinf;
nuclear@4 51
nuclear@4 52
nuclear@13 53 bool init_renderer(int xsz, int ysz, Scene *scn)
nuclear@0 54 {
nuclear@4 55 // render info
nuclear@22 56 rinf.ambient[0] = rinf.ambient[1] = rinf.ambient[2] = 0.0;
nuclear@16 57 rinf.ambient[3] = 0.0;
nuclear@16 58
nuclear@4 59 rinf.xsz = xsz;
nuclear@4 60 rinf.ysz = ysz;
nuclear@13 61 rinf.num_faces = scn->get_num_faces();
nuclear@4 62 rinf.num_lights = sizeof lightlist / sizeof *lightlist;
nuclear@4 63 rinf.max_iter = 6;
nuclear@4 64
nuclear@3 65 /* calculate primary rays */
nuclear@3 66 prim_rays = new Ray[xsz * ysz];
nuclear@2 67
nuclear@2 68 for(int i=0; i<ysz; i++) {
nuclear@2 69 for(int j=0; j<xsz; j++) {
nuclear@2 70 prim_rays[i * xsz + j] = get_primary_ray(j, i, xsz, ysz, 45.0);
nuclear@2 71 }
nuclear@0 72 }
nuclear@0 73
nuclear@2 74 /* setup opencl */
nuclear@3 75 prog = new CLProgram("render");
nuclear@3 76 if(!prog->load("rt.cl")) {
nuclear@8 77 return false;
nuclear@0 78 }
nuclear@0 79
nuclear@24 80 if(!(faces = (Face*)scn->get_face_buffer())) {
nuclear@13 81 fprintf(stderr, "failed to create face buffer\n");
nuclear@13 82 return false;
nuclear@13 83 }
nuclear@13 84
nuclear@3 85 /* setup argument buffers */
nuclear@12 86 prog->set_arg_buffer(KARG_FRAMEBUFFER, ARG_WR, xsz * ysz * 4 * sizeof(float));
nuclear@12 87 prog->set_arg_buffer(KARG_RENDER_INFO, ARG_RD, sizeof rinf, &rinf);
John@14 88 prog->set_arg_buffer(KARG_FACES, ARG_RD, rinf.num_faces * sizeof(Face), faces);
John@14 89 prog->set_arg_buffer(KARG_MATLIB, ARG_RD, scn->get_num_materials() * sizeof(Material), scn->get_materials());
nuclear@12 90 prog->set_arg_buffer(KARG_LIGHTS, ARG_RD, sizeof lightlist, lightlist);
nuclear@12 91 prog->set_arg_buffer(KARG_PRIM_RAYS, ARG_RD, xsz * ysz * sizeof *prim_rays, prim_rays);
nuclear@12 92 prog->set_arg_buffer(KARG_XFORM, ARG_RD, 16 * sizeof(float));
nuclear@12 93 prog->set_arg_buffer(KARG_INVTRANS_XFORM, ARG_RD, 16 * sizeof(float));
nuclear@12 94
John@14 95 if(prog->get_num_args() < NUM_KERNEL_ARGS) {
John@14 96 return false;
John@14 97 }
John@14 98
nuclear@16 99 if(!prog->build()) {
nuclear@16 100 return false;
nuclear@16 101 }
nuclear@16 102
nuclear@12 103 delete [] prim_rays;
nuclear@2 104
nuclear@3 105 global_size = xsz * ysz;
nuclear@3 106 return true;
nuclear@3 107 }
nuclear@3 108
nuclear@3 109 void destroy_renderer()
nuclear@3 110 {
nuclear@3 111 delete prog;
nuclear@3 112 }
nuclear@3 113
nuclear@3 114 bool render()
nuclear@3 115 {
nuclear@3 116 if(!prog->run(1, global_size)) {
nuclear@3 117 return false;
nuclear@0 118 }
John@15 119
nuclear@13 120 CLMemBuffer *mbuf = prog->get_arg_buffer(KARG_FRAMEBUFFER);
nuclear@12 121 void *fb = map_mem_buffer(mbuf, MAP_RD);
nuclear@13 122 if(!fb) {
nuclear@13 123 fprintf(stderr, "FAILED\n");
nuclear@13 124 return false;
nuclear@13 125 }
nuclear@13 126
nuclear@22 127 static int foo = 0;
nuclear@22 128 if(!foo++) {
nuclear@22 129 bool write_ppm(const char *fname, float *fb, int xsz, int ysz);
nuclear@22 130 write_ppm("foo.ppm", (float*)fb, rinf.xsz, rinf.ysz);
nuclear@22 131 }
nuclear@22 132
nuclear@12 133 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, rinf.xsz, rinf.ysz, GL_RGBA, GL_FLOAT, fb);
nuclear@2 134 unmap_mem_buffer(mbuf);
nuclear@3 135 return true;
nuclear@0 136 }
nuclear@2 137
nuclear@27 138 #define MIN(a, b) ((a) < (b) ? (a) : (b))
nuclear@21 139 static void dbg_set_gl_material(Material *mat)
nuclear@21 140 {
nuclear@21 141 static Material def_mat = {{0.7, 0.7, 0.7, 1}, {0, 0, 0, 0}, 0, 0, 0};
nuclear@21 142
nuclear@21 143 if(!mat) mat = &def_mat;
nuclear@21 144
nuclear@21 145 glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, mat->kd);
nuclear@21 146 glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, mat->ks);
nuclear@27 147 glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, MIN(mat->spow, 128.0f));
nuclear@21 148 }
nuclear@21 149
nuclear@27 150 void dbg_render_gl(Scene *scn, bool show_tree, bool show_obj)
nuclear@8 151 {
nuclear@22 152 glPushAttrib(GL_ENABLE_BIT | GL_TRANSFORM_BIT | GL_LIGHTING_BIT);
nuclear@8 153
nuclear@21 154 for(int i=0; i<rinf.num_lights; i++) {
nuclear@21 155 float lpos[4];
nuclear@21 156
nuclear@21 157 memcpy(lpos, lightlist[i].pos, sizeof lpos);
nuclear@21 158 lpos[3] = 1.0;
nuclear@21 159
nuclear@21 160 glLightfv(GL_LIGHT0 + i, GL_POSITION, lpos);
nuclear@21 161 glLightfv(GL_LIGHT0 + i, GL_DIFFUSE, lightlist[i].color);
nuclear@22 162 glEnable(GL_LIGHT0 + i);
nuclear@21 163 }
nuclear@21 164
nuclear@12 165 glDisable(GL_TEXTURE_2D);
nuclear@12 166 glEnable(GL_DEPTH_TEST);
John@15 167 glEnable(GL_LIGHTING);
nuclear@12 168
nuclear@12 169 glMatrixMode(GL_PROJECTION);
nuclear@12 170 glPushMatrix();
nuclear@12 171 glLoadIdentity();
nuclear@12 172 gluPerspective(45.0, (float)rinf.xsz / (float)rinf.ysz, 0.5, 1000.0);
nuclear@12 173
nuclear@27 174 if(show_obj) {
nuclear@27 175 Material *materials = scn->get_materials();
John@14 176
nuclear@27 177 int num_faces = scn->get_num_faces();
nuclear@27 178 int cur_mat = -1;
nuclear@21 179
nuclear@27 180 for(int i=0; i<num_faces; i++) {
nuclear@27 181 if(faces[i].matid != cur_mat) {
nuclear@27 182 if(cur_mat != -1) {
nuclear@27 183 glEnd();
nuclear@27 184 }
nuclear@27 185 dbg_set_gl_material(materials ? materials + faces[i].matid : 0);
nuclear@27 186 cur_mat = faces[i].matid;
nuclear@27 187 glBegin(GL_TRIANGLES);
nuclear@21 188 }
nuclear@27 189
nuclear@27 190 for(int j=0; j<3; j++) {
nuclear@27 191 glNormal3fv(faces[i].v[j].normal);
nuclear@27 192 glVertex3fv(faces[i].v[j].pos);
nuclear@27 193 }
John@14 194 }
nuclear@27 195 glEnd();
nuclear@27 196 }
nuclear@12 197
nuclear@27 198 if(show_tree) {
nuclear@27 199 scn->draw_kdtree();
nuclear@12 200 }
nuclear@12 201
nuclear@12 202 glPopMatrix();
nuclear@12 203 glPopAttrib();
nuclear@22 204
nuclear@22 205 assert(glGetError() == GL_NO_ERROR);
nuclear@12 206 }
nuclear@12 207
nuclear@12 208 void set_xform(float *matrix, float *invtrans)
nuclear@12 209 {
nuclear@12 210 CLMemBuffer *mbuf_xform = prog->get_arg_buffer(KARG_XFORM);
nuclear@12 211 CLMemBuffer *mbuf_invtrans = prog->get_arg_buffer(KARG_INVTRANS_XFORM);
nuclear@12 212 assert(mbuf_xform && mbuf_invtrans);
nuclear@12 213
nuclear@12 214 float *mem = (float*)map_mem_buffer(mbuf_xform, MAP_WR);
nuclear@12 215 memcpy(mem, matrix, 16 * sizeof *mem);
nuclear@12 216 unmap_mem_buffer(mbuf_xform);
nuclear@12 217
nuclear@12 218 mem = (float*)map_mem_buffer(mbuf_invtrans, MAP_WR);
nuclear@12 219 memcpy(mem, invtrans, 16 * sizeof *mem);
nuclear@12 220 unmap_mem_buffer(mbuf_invtrans);
nuclear@8 221 }
nuclear@8 222
nuclear@3 223 static Ray get_primary_ray(int x, int y, int w, int h, float vfov_deg)
nuclear@2 224 {
nuclear@2 225 float vfov = M_PI * vfov_deg / 180.0;
nuclear@2 226 float aspect = (float)w / (float)h;
nuclear@2 227
nuclear@2 228 float ysz = 2.0;
nuclear@2 229 float xsz = aspect * ysz;
nuclear@2 230
nuclear@2 231 float px = ((float)x / (float)w) * xsz - xsz / 2.0;
nuclear@2 232 float py = 1.0 - ((float)y / (float)h) * ysz;
nuclear@2 233 float pz = 1.0 / tan(0.5 * vfov);
nuclear@2 234
nuclear@4 235 px *= 100.0;
nuclear@4 236 py *= 100.0;
nuclear@4 237 pz *= 100.0;
nuclear@2 238
nuclear@18 239 Ray ray = {{0, 0, 0, 1}, {px, py, -pz, 1}};
nuclear@2 240 return ray;
nuclear@2 241 }