tavli

annotate src/mesh.cc @ 12:ae1c60726c41

better pieces
author John Tsiombikas <nuclear@member.fsf.org>
date Sat, 27 Jun 2015 13:53:43 +0300
parents f1ecc2439802
children b1a195c3ee16
rev   line source
nuclear@0 1 #include <stdio.h>
nuclear@0 2 #include <stdlib.h>
nuclear@0 3 #include <float.h>
nuclear@0 4 #include <assert.h>
nuclear@0 5 #include "opengl.h"
nuclear@0 6 #include "mesh.h"
nuclear@0 7 //#include "xform_node.h"
nuclear@0 8
nuclear@11 9 #define USE_OLDGL
nuclear@11 10
nuclear@1 11 int Mesh::global_sdr_loc[NUM_MESH_ATTR] = { 0, 1, 2, 3, 4, 5, 6 };
nuclear@1 12 /*
nuclear@0 13 (int)SDR_ATTR_VERTEX,
nuclear@0 14 (int)SDR_ATTR_NORMAL,
nuclear@0 15 (int)SDR_ATTR_TANGENT,
nuclear@0 16 (int)SDR_ATTR_TEXCOORD,
nuclear@0 17 (int)SDR_ATTR_COLOR,
nuclear@0 18 -1, -1};
nuclear@1 19 */
nuclear@0 20 unsigned int Mesh::intersect_mode = ISECT_DEFAULT;
nuclear@0 21 float Mesh::vertex_sel_dist = 0.01;
nuclear@0 22 float Mesh::vis_vecsize = 1.0;
nuclear@0 23
nuclear@0 24 Mesh::Mesh()
nuclear@0 25 {
nuclear@0 26 clear();
nuclear@0 27
nuclear@0 28 glGenBuffers(NUM_MESH_ATTR + 1, buffer_objects);
nuclear@0 29
nuclear@0 30 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 31 vattr[i].vbo = buffer_objects[i];
nuclear@0 32 }
nuclear@0 33 ibo = buffer_objects[NUM_MESH_ATTR];
nuclear@0 34 wire_ibo = 0;
nuclear@0 35 }
nuclear@0 36
nuclear@0 37 Mesh::~Mesh()
nuclear@0 38 {
nuclear@0 39 glDeleteBuffers(NUM_MESH_ATTR + 1, buffer_objects);
nuclear@0 40
nuclear@0 41 if(wire_ibo) {
nuclear@0 42 glDeleteBuffers(1, &wire_ibo);
nuclear@0 43 }
nuclear@0 44 }
nuclear@0 45
nuclear@0 46 Mesh::Mesh(const Mesh &rhs)
nuclear@0 47 {
nuclear@0 48 clear();
nuclear@0 49
nuclear@0 50 glGenBuffers(NUM_MESH_ATTR + 1, buffer_objects);
nuclear@0 51
nuclear@0 52 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 53 vattr[i].vbo = buffer_objects[i];
nuclear@0 54 }
nuclear@0 55 ibo = buffer_objects[NUM_MESH_ATTR];
nuclear@0 56 wire_ibo = 0;
nuclear@0 57
nuclear@0 58 clone(rhs);
nuclear@0 59 }
nuclear@0 60
nuclear@0 61 Mesh &Mesh::operator =(const Mesh &rhs)
nuclear@0 62 {
nuclear@0 63 if(&rhs != this) {
nuclear@0 64 clone(rhs);
nuclear@0 65 }
nuclear@0 66 return *this;
nuclear@0 67 }
nuclear@0 68
nuclear@0 69 bool Mesh::clone(const Mesh &m)
nuclear@0 70 {
nuclear@0 71 clear();
nuclear@0 72
nuclear@0 73 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 74 if(m.has_attrib(i)) {
nuclear@0 75 m.get_attrib_data(i); // force validation of the actual data on the source mesh
nuclear@0 76
nuclear@0 77 vattr[i].nelem = m.vattr[i].nelem;
nuclear@0 78 vattr[i].data = m.vattr[i].data; // copy the actual data
nuclear@0 79 vattr[i].data_valid = true;
nuclear@0 80 }
nuclear@0 81 }
nuclear@0 82
nuclear@0 83 if(m.is_indexed()) {
nuclear@0 84 m.get_index_data(); // again, force validation
nuclear@0 85
nuclear@0 86 // copy the index data
nuclear@0 87 idata = m.idata;
nuclear@0 88 idata_valid = true;
nuclear@0 89 }
nuclear@0 90
nuclear@0 91 name = m.name;
nuclear@0 92 nverts = m.nverts;
nuclear@0 93 nfaces = m.nfaces;
nuclear@0 94
nuclear@0 95 //bones = m.bones;
nuclear@0 96
nuclear@0 97 memcpy(cur_val, m.cur_val, sizeof cur_val);
nuclear@0 98
nuclear@0 99 aabb = m.aabb;
nuclear@0 100 aabb_valid = m.aabb_valid;
nuclear@0 101 bsph = m.bsph;
nuclear@0 102 bsph_valid = m.bsph_valid;
nuclear@0 103
nuclear@0 104 hitface = m.hitface;
nuclear@0 105 hitvert = m.hitvert;
nuclear@0 106
nuclear@0 107 intersect_mode = m.intersect_mode;
nuclear@0 108 vertex_sel_dist = m.vertex_sel_dist;
nuclear@0 109 vis_vecsize = m.vis_vecsize;
nuclear@0 110
nuclear@0 111 return true;
nuclear@0 112 }
nuclear@0 113
nuclear@0 114 void Mesh::set_name(const char *name)
nuclear@0 115 {
nuclear@0 116 this->name = name;
nuclear@0 117 }
nuclear@0 118
nuclear@0 119 const char *Mesh::get_name() const
nuclear@0 120 {
nuclear@0 121 return name.c_str();
nuclear@0 122 }
nuclear@0 123
nuclear@0 124 bool Mesh::has_attrib(int attr) const
nuclear@0 125 {
nuclear@0 126 if(attr < 0 || attr >= NUM_MESH_ATTR) {
nuclear@0 127 return false;
nuclear@0 128 }
nuclear@0 129
nuclear@0 130 // if neither of these is valid, then nobody has set this attribute
nuclear@0 131 return vattr[attr].vbo_valid || vattr[attr].data_valid;
nuclear@0 132 }
nuclear@0 133
nuclear@0 134 bool Mesh::is_indexed() const
nuclear@0 135 {
nuclear@0 136 return ibo_valid || idata_valid;
nuclear@0 137 }
nuclear@0 138
nuclear@0 139 void Mesh::clear()
nuclear@0 140 {
nuclear@0 141 //bones.clear();
nuclear@0 142
nuclear@0 143 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 144 vattr[i].nelem = 0;
nuclear@0 145 vattr[i].vbo_valid = false;
nuclear@0 146 vattr[i].data_valid = false;
nuclear@0 147 //vattr[i].sdr_loc = -1;
nuclear@0 148 vattr[i].data.clear();
nuclear@0 149 }
nuclear@0 150 ibo_valid = idata_valid = false;
nuclear@0 151 idata.clear();
nuclear@0 152
nuclear@0 153 wire_ibo_valid = false;
nuclear@0 154
nuclear@0 155 nverts = nfaces = 0;
nuclear@0 156
nuclear@0 157 bsph_valid = false;
nuclear@0 158 aabb_valid = false;
nuclear@0 159 }
nuclear@0 160
nuclear@0 161 float *Mesh::set_attrib_data(int attrib, int nelem, unsigned int num, const float *data)
nuclear@0 162 {
nuclear@0 163 if(attrib < 0 || attrib >= NUM_MESH_ATTR) {
nuclear@0 164 fprintf(stderr, "%s: invalid attrib: %d\n", __FUNCTION__, attrib);
nuclear@0 165 return 0;
nuclear@0 166 }
nuclear@0 167
nuclear@0 168 if(nverts && num != nverts) {
nuclear@0 169 fprintf(stderr, "%s: attribute count missmatch (%d instead of %d)\n", __FUNCTION__, num, nverts);
nuclear@0 170 return 0;
nuclear@0 171 }
nuclear@0 172 nverts = num;
nuclear@0 173
nuclear@0 174 vattr[attrib].data.clear();
nuclear@0 175 vattr[attrib].nelem = nelem;
nuclear@0 176 vattr[attrib].data.resize(num * nelem);
nuclear@0 177
nuclear@0 178 if(data) {
nuclear@0 179 memcpy(&vattr[attrib].data[0], data, num * nelem * sizeof *data);
nuclear@0 180 }
nuclear@0 181
nuclear@0 182 vattr[attrib].data_valid = true;
nuclear@0 183 vattr[attrib].vbo_valid = false;
nuclear@0 184 return &vattr[attrib].data[0];
nuclear@0 185 }
nuclear@0 186
nuclear@0 187 float *Mesh::get_attrib_data(int attrib)
nuclear@0 188 {
nuclear@0 189 if(attrib < 0 || attrib >= NUM_MESH_ATTR) {
nuclear@0 190 fprintf(stderr, "%s: invalid attrib: %d\n", __FUNCTION__, attrib);
nuclear@0 191 return 0;
nuclear@0 192 }
nuclear@0 193
nuclear@0 194 vattr[attrib].vbo_valid = false;
nuclear@0 195 return (float*)((const Mesh*)this)->get_attrib_data(attrib);
nuclear@0 196 }
nuclear@0 197
nuclear@0 198 const float *Mesh::get_attrib_data(int attrib) const
nuclear@0 199 {
nuclear@0 200 if(attrib < 0 || attrib >= NUM_MESH_ATTR) {
nuclear@0 201 fprintf(stderr, "%s: invalid attrib: %d\n", __FUNCTION__, attrib);
nuclear@0 202 return 0;
nuclear@0 203 }
nuclear@0 204
nuclear@0 205 if(!vattr[attrib].data_valid) {
nuclear@0 206 #if GL_ES_VERSION_2_0
nuclear@0 207 fprintf(stderr, "%s: can't read back attrib data on CrippledGL ES\n", __FUNCTION__);
nuclear@0 208 return 0;
nuclear@0 209 #else
nuclear@0 210 if(!vattr[attrib].vbo_valid) {
nuclear@0 211 fprintf(stderr, "%s: unavailable attrib: %d\n", __FUNCTION__, attrib);
nuclear@0 212 return 0;
nuclear@0 213 }
nuclear@0 214
nuclear@0 215 // local data copy is unavailable, grab the data from the vbo
nuclear@0 216 Mesh *m = (Mesh*)this;
nuclear@0 217 m->vattr[attrib].data.resize(nverts * vattr[attrib].nelem);
nuclear@0 218
nuclear@0 219 glBindBuffer(GL_ARRAY_BUFFER, vattr[attrib].vbo);
nuclear@0 220 void *data = glMapBuffer(GL_ARRAY_BUFFER, GL_READ_ONLY);
nuclear@0 221 memcpy(&m->vattr[attrib].data[0], data, nverts * vattr[attrib].nelem * sizeof(float));
nuclear@0 222 glUnmapBuffer(GL_ARRAY_BUFFER);
nuclear@0 223
nuclear@0 224 vattr[attrib].data_valid = true;
nuclear@0 225 #endif
nuclear@0 226 }
nuclear@0 227
nuclear@0 228 return &vattr[attrib].data[0];
nuclear@0 229 }
nuclear@0 230
nuclear@0 231 void Mesh::set_attrib(int attrib, int idx, const Vector4 &v)
nuclear@0 232 {
nuclear@0 233 float *data = get_attrib_data(attrib);
nuclear@0 234 if(data) {
nuclear@0 235 data += idx * vattr[attrib].nelem;
nuclear@0 236 for(int i=0; i<vattr[attrib].nelem; i++) {
nuclear@0 237 data[i] = v[i];
nuclear@0 238 }
nuclear@0 239 }
nuclear@0 240 }
nuclear@0 241
nuclear@0 242 Vector4 Mesh::get_attrib(int attrib, int idx) const
nuclear@0 243 {
nuclear@0 244 Vector4 v(0.0, 0.0, 0.0, 1.0);
nuclear@0 245 const float *data = get_attrib_data(attrib);
nuclear@0 246 if(data) {
nuclear@0 247 data += idx * vattr[attrib].nelem;
nuclear@0 248 for(int i=0; i<vattr[attrib].nelem; i++) {
nuclear@0 249 v[i] = data[i];
nuclear@0 250 }
nuclear@0 251 }
nuclear@0 252 return v;
nuclear@0 253 }
nuclear@0 254
nuclear@0 255 int Mesh::get_attrib_count(int attrib) const
nuclear@0 256 {
nuclear@0 257 return has_attrib(attrib) ? nverts : 0;
nuclear@0 258 }
nuclear@0 259
nuclear@0 260
nuclear@0 261 unsigned int *Mesh::set_index_data(int num, const unsigned int *indices)
nuclear@0 262 {
nuclear@0 263 int nidx = nfaces * 3;
nuclear@0 264 if(nidx && num != nidx) {
nuclear@0 265 fprintf(stderr, "%s: index count missmatch (%d instead of %d)\n", __FUNCTION__, num, nidx);
nuclear@0 266 return 0;
nuclear@0 267 }
nuclear@0 268 nfaces = num / 3;
nuclear@0 269
nuclear@0 270 idata.clear();
nuclear@0 271 idata.resize(num);
nuclear@0 272
nuclear@0 273 if(indices) {
nuclear@0 274 memcpy(&idata[0], indices, num * sizeof *indices);
nuclear@0 275 }
nuclear@0 276
nuclear@0 277 idata_valid = true;
nuclear@0 278 ibo_valid = false;
nuclear@0 279
nuclear@0 280 return &idata[0];
nuclear@0 281 }
nuclear@0 282
nuclear@0 283 unsigned int *Mesh::get_index_data()
nuclear@0 284 {
nuclear@0 285 ibo_valid = false;
nuclear@0 286 return (unsigned int*)((const Mesh*)this)->get_index_data();
nuclear@0 287 }
nuclear@0 288
nuclear@0 289 const unsigned int *Mesh::get_index_data() const
nuclear@0 290 {
nuclear@0 291 if(!idata_valid) {
nuclear@0 292 #if GL_ES_VERSION_2_0
nuclear@0 293 fprintf(stderr, "%s: can't read back index data in CrippledGL ES\n", __FUNCTION__);
nuclear@0 294 return 0;
nuclear@0 295 #else
nuclear@0 296 if(!ibo_valid) {
nuclear@0 297 fprintf(stderr, "%s: indices unavailable\n", __FUNCTION__);
nuclear@0 298 return 0;
nuclear@0 299 }
nuclear@0 300
nuclear@0 301 // local data copy is unavailable, gram the data from the ibo
nuclear@0 302 Mesh *m = (Mesh*)this;
nuclear@0 303 int nidx = nfaces * 3;
nuclear@0 304 m->idata.resize(nidx);
nuclear@0 305
nuclear@0 306 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo);
nuclear@0 307 void *data = glMapBuffer(GL_ELEMENT_ARRAY_BUFFER, GL_READ_ONLY);
nuclear@0 308 memcpy(&m->idata[0], data, nidx * sizeof(unsigned int));
nuclear@0 309 glUnmapBuffer(GL_ELEMENT_ARRAY_BUFFER);
nuclear@0 310
nuclear@0 311 idata_valid = true;
nuclear@0 312 #endif
nuclear@0 313 }
nuclear@0 314
nuclear@0 315 return &idata[0];
nuclear@0 316 }
nuclear@0 317
nuclear@0 318 int Mesh::get_index_count() const
nuclear@0 319 {
nuclear@0 320 return nfaces * 3;
nuclear@0 321 }
nuclear@0 322
nuclear@0 323 void Mesh::append(const Mesh &mesh)
nuclear@0 324 {
nuclear@0 325 unsigned int idxoffs = nverts;
nuclear@0 326
nuclear@7 327 if(!nverts) {
nuclear@7 328 clone(mesh);
nuclear@7 329 return;
nuclear@7 330 }
nuclear@7 331
nuclear@0 332 nverts += mesh.nverts;
nuclear@0 333 nfaces += mesh.nfaces;
nuclear@0 334
nuclear@0 335 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 336 if(has_attrib(i) && mesh.has_attrib(i)) {
nuclear@0 337 // force validating the data arrays
nuclear@0 338 get_attrib_data(i);
nuclear@0 339 mesh.get_attrib_data(i);
nuclear@0 340
nuclear@0 341 // append the mesh data
nuclear@0 342 vattr[i].data.insert(vattr[i].data.end(), mesh.vattr[i].data.begin(), mesh.vattr[i].data.end());
nuclear@0 343 }
nuclear@0 344 }
nuclear@0 345
nuclear@0 346 if(ibo_valid || idata_valid) {
nuclear@0 347 // make index arrays valid
nuclear@0 348 get_index_data();
nuclear@0 349 mesh.get_index_data();
nuclear@0 350
nuclear@0 351 size_t orig_sz = idata.size();
nuclear@0 352
nuclear@0 353 idata.insert(idata.end(), mesh.idata.begin(), mesh.idata.end());
nuclear@0 354
nuclear@0 355 // fixup all the new indices
nuclear@0 356 for(size_t i=orig_sz; i<idata.size(); i++) {
nuclear@0 357 idata[i] += idxoffs;
nuclear@0 358 }
nuclear@0 359 }
nuclear@0 360
nuclear@0 361 // fuck everything
nuclear@0 362 wire_ibo_valid = false;
nuclear@0 363 aabb_valid = false;
nuclear@0 364 bsph_valid = false;
nuclear@0 365 }
nuclear@0 366
nuclear@0 367 // assemble a complete vertex by adding all the useful attributes
nuclear@0 368 void Mesh::vertex(float x, float y, float z)
nuclear@0 369 {
nuclear@0 370 cur_val[MESH_ATTR_VERTEX] = Vector4(x, y, z, 1.0f);
nuclear@0 371 vattr[MESH_ATTR_VERTEX].data_valid = true;
nuclear@0 372 vattr[MESH_ATTR_VERTEX].nelem = 3;
nuclear@0 373
nuclear@0 374 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 375 if(vattr[i].data_valid) {
nuclear@0 376 for(int j=0; j<vattr[MESH_ATTR_VERTEX].nelem; j++) {
nuclear@0 377 vattr[i].data.push_back(cur_val[i][j]);
nuclear@0 378 }
nuclear@0 379 }
nuclear@0 380 vattr[i].vbo_valid = false;
nuclear@0 381 }
nuclear@0 382
nuclear@0 383 if(idata_valid) {
nuclear@0 384 idata.clear();
nuclear@0 385 }
nuclear@0 386 ibo_valid = idata_valid = false;
nuclear@0 387 }
nuclear@0 388
nuclear@0 389 void Mesh::normal(float nx, float ny, float nz)
nuclear@0 390 {
nuclear@0 391 cur_val[MESH_ATTR_NORMAL] = Vector4(nx, ny, nz, 1.0f);
nuclear@0 392 vattr[MESH_ATTR_NORMAL].data_valid = true;
nuclear@0 393 vattr[MESH_ATTR_NORMAL].nelem = 3;
nuclear@0 394 }
nuclear@0 395
nuclear@0 396 void Mesh::tangent(float tx, float ty, float tz)
nuclear@0 397 {
nuclear@0 398 cur_val[MESH_ATTR_TANGENT] = Vector4(tx, ty, tz, 1.0f);
nuclear@0 399 vattr[MESH_ATTR_TANGENT].data_valid = true;
nuclear@0 400 vattr[MESH_ATTR_TANGENT].nelem = 3;
nuclear@0 401 }
nuclear@0 402
nuclear@0 403 void Mesh::texcoord(float u, float v, float w)
nuclear@0 404 {
nuclear@0 405 cur_val[MESH_ATTR_TEXCOORD] = Vector4(u, v, w, 1.0f);
nuclear@0 406 vattr[MESH_ATTR_TEXCOORD].data_valid = true;
nuclear@0 407 vattr[MESH_ATTR_TEXCOORD].nelem = 3;
nuclear@0 408 }
nuclear@0 409
nuclear@0 410 void Mesh::boneweights(float w1, float w2, float w3, float w4)
nuclear@0 411 {
nuclear@0 412 cur_val[MESH_ATTR_BONEWEIGHTS] = Vector4(w1, w2, w3, w4);
nuclear@0 413 vattr[MESH_ATTR_BONEWEIGHTS].data_valid = true;
nuclear@0 414 vattr[MESH_ATTR_BONEWEIGHTS].nelem = 4;
nuclear@0 415 }
nuclear@0 416
nuclear@0 417 void Mesh::boneidx(int idx1, int idx2, int idx3, int idx4)
nuclear@0 418 {
nuclear@0 419 cur_val[MESH_ATTR_BONEIDX] = Vector4(idx1, idx2, idx3, idx4);
nuclear@0 420 vattr[MESH_ATTR_BONEIDX].data_valid = true;
nuclear@0 421 vattr[MESH_ATTR_BONEIDX].nelem = 4;
nuclear@0 422 }
nuclear@0 423
nuclear@0 424 int Mesh::get_poly_count() const
nuclear@0 425 {
nuclear@0 426 if(nfaces) {
nuclear@0 427 return nfaces;
nuclear@0 428 }
nuclear@0 429 if(nverts) {
nuclear@0 430 return nverts / 3;
nuclear@0 431 }
nuclear@0 432 return 0;
nuclear@0 433 }
nuclear@0 434
nuclear@0 435 /// static function
nuclear@0 436 void Mesh::set_attrib_location(int attr, int loc)
nuclear@0 437 {
nuclear@0 438 if(attr < 0 || attr >= NUM_MESH_ATTR) {
nuclear@0 439 return;
nuclear@0 440 }
nuclear@0 441 Mesh::global_sdr_loc[attr] = loc;
nuclear@0 442 }
nuclear@0 443
nuclear@0 444 /// static function
nuclear@0 445 int Mesh::get_attrib_location(int attr)
nuclear@0 446 {
nuclear@0 447 if(attr < 0 || attr >= NUM_MESH_ATTR) {
nuclear@0 448 return -1;
nuclear@0 449 }
nuclear@0 450 return Mesh::global_sdr_loc[attr];
nuclear@0 451 }
nuclear@0 452
nuclear@0 453 /// static function
nuclear@0 454 void Mesh::clear_attrib_locations()
nuclear@0 455 {
nuclear@0 456 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 457 Mesh::global_sdr_loc[i] = -1;
nuclear@0 458 }
nuclear@0 459 }
nuclear@0 460
nuclear@0 461 /// static function
nuclear@0 462 void Mesh::set_vis_vecsize(float sz)
nuclear@0 463 {
nuclear@0 464 Mesh::vis_vecsize = sz;
nuclear@0 465 }
nuclear@0 466
nuclear@0 467 float Mesh::get_vis_vecsize()
nuclear@0 468 {
nuclear@0 469 return Mesh::vis_vecsize;
nuclear@0 470 }
nuclear@0 471
nuclear@0 472 void Mesh::apply_xform(const Matrix4x4 &xform)
nuclear@0 473 {
nuclear@0 474 Matrix4x4 dir_xform = xform;
nuclear@0 475 dir_xform[0][3] = dir_xform[1][3] = dir_xform[2][3] = 0.0f;
nuclear@0 476 dir_xform[3][0] = dir_xform[3][1] = dir_xform[3][2] = 0.0f;
nuclear@0 477 dir_xform[3][3] = 1.0f;
nuclear@0 478
nuclear@0 479 apply_xform(xform, dir_xform);
nuclear@0 480 }
nuclear@0 481
nuclear@0 482 void Mesh::apply_xform(const Matrix4x4 &xform, const Matrix4x4 &dir_xform)
nuclear@0 483 {
nuclear@0 484 for(unsigned int i=0; i<nverts; i++) {
nuclear@0 485 Vector4 v = get_attrib(MESH_ATTR_VERTEX, i);
nuclear@0 486 set_attrib(MESH_ATTR_VERTEX, i, v.transformed(xform));
nuclear@0 487
nuclear@0 488 if(has_attrib(MESH_ATTR_NORMAL)) {
nuclear@0 489 Vector3 n = get_attrib(MESH_ATTR_NORMAL, i);
nuclear@0 490 set_attrib(MESH_ATTR_NORMAL, i, n.transformed(dir_xform));
nuclear@0 491 }
nuclear@0 492 if(has_attrib(MESH_ATTR_TANGENT)) {
nuclear@0 493 Vector3 t = get_attrib(MESH_ATTR_TANGENT, i);
nuclear@0 494 set_attrib(MESH_ATTR_TANGENT, i, t.transformed(dir_xform));
nuclear@0 495 }
nuclear@0 496 }
nuclear@0 497 }
nuclear@0 498
nuclear@0 499 void Mesh::flip()
nuclear@0 500 {
nuclear@0 501 flip_faces();
nuclear@0 502 flip_normals();
nuclear@0 503 }
nuclear@0 504
nuclear@0 505 void Mesh::flip_faces()
nuclear@0 506 {
nuclear@0 507 if(is_indexed()) {
nuclear@0 508 unsigned int *indices = get_index_data();
nuclear@0 509 if(!indices) return;
nuclear@0 510
nuclear@0 511 int idxnum = get_index_count();
nuclear@0 512 for(int i=0; i<idxnum; i+=3) {
nuclear@0 513 unsigned int tmp = indices[i + 2];
nuclear@0 514 indices[i + 2] = indices[i + 1];
nuclear@0 515 indices[i + 1] = tmp;
nuclear@0 516 }
nuclear@0 517
nuclear@0 518 } else {
nuclear@0 519 Vector3 *verts = (Vector3*)get_attrib_data(MESH_ATTR_VERTEX);
nuclear@0 520 if(!verts) return;
nuclear@0 521
nuclear@0 522 int vnum = get_attrib_count(MESH_ATTR_VERTEX);
nuclear@0 523 for(int i=0; i<vnum; i+=3) {
nuclear@0 524 Vector3 tmp = verts[i + 2];
nuclear@0 525 verts[i + 2] = verts[i + 1];
nuclear@0 526 verts[i + 1] = tmp;
nuclear@0 527 }
nuclear@0 528 }
nuclear@0 529 }
nuclear@0 530
nuclear@0 531 void Mesh::flip_normals()
nuclear@0 532 {
nuclear@0 533 Vector3 *normals = (Vector3*)get_attrib_data(MESH_ATTR_NORMAL);
nuclear@0 534 if(!normals) return;
nuclear@0 535
nuclear@0 536 int num = get_attrib_count(MESH_ATTR_NORMAL);
nuclear@0 537 for(int i=0; i<num; i++) {
nuclear@0 538 normals[i] = -normals[i];
nuclear@0 539 }
nuclear@0 540 }
nuclear@0 541
nuclear@0 542 /*
nuclear@0 543 int Mesh::add_bone(XFormNode *bone)
nuclear@0 544 {
nuclear@0 545 int idx = bones.size();
nuclear@0 546 bones.push_back(bone);
nuclear@0 547 return idx;
nuclear@0 548 }
nuclear@0 549
nuclear@0 550 const XFormNode *Mesh::get_bone(int idx) const
nuclear@0 551 {
nuclear@0 552 if(idx < 0 || idx >= (int)bones.size()) {
nuclear@0 553 return 0;
nuclear@0 554 }
nuclear@0 555 return bones[idx];
nuclear@0 556 }
nuclear@0 557
nuclear@0 558 int Mesh::get_bones_count() const
nuclear@0 559 {
nuclear@0 560 return (int)bones.size();
nuclear@0 561 }
nuclear@0 562 */
nuclear@0 563
nuclear@0 564 void Mesh::draw() const
nuclear@0 565 {
nuclear@1 566 int cur_sdr;
nuclear@1 567 glGetIntegerv(GL_CURRENT_PROGRAM, &cur_sdr);
nuclear@1 568
nuclear@0 569
nuclear@0 570 ((Mesh*)this)->update_buffers();
nuclear@0 571
nuclear@0 572 if(!vattr[MESH_ATTR_VERTEX].vbo_valid) {
nuclear@0 573 fprintf(stderr, "%s: invalid vertex buffer\n", __FUNCTION__);
nuclear@0 574 return;
nuclear@0 575 }
nuclear@0 576
nuclear@1 577 if(cur_sdr) {
nuclear@0 578 // rendering with shaders
nuclear@0 579 if(global_sdr_loc[MESH_ATTR_VERTEX] == -1) {
nuclear@0 580 fprintf(stderr, "%s: shader attribute location for vertices unset\n", __FUNCTION__);
nuclear@0 581 return;
nuclear@0 582 }
nuclear@0 583
nuclear@0 584 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 585 int loc = global_sdr_loc[i];
nuclear@0 586 if(loc >= 0 && vattr[i].vbo_valid) {
nuclear@0 587 glBindBuffer(GL_ARRAY_BUFFER, vattr[i].vbo);
nuclear@0 588 glVertexAttribPointer(loc, vattr[i].nelem, GL_FLOAT, GL_FALSE, 0, 0);
nuclear@0 589 glEnableVertexAttribArray(loc);
nuclear@0 590 }
nuclear@0 591 }
nuclear@0 592 } else {
nuclear@0 593 #ifndef GL_ES_VERSION_2_0
nuclear@0 594 // rendering with fixed-function (not available in GLES2)
nuclear@0 595 glBindBuffer(GL_ARRAY_BUFFER, vattr[MESH_ATTR_VERTEX].vbo);
nuclear@0 596 glVertexPointer(vattr[MESH_ATTR_VERTEX].nelem, GL_FLOAT, 0, 0);
nuclear@0 597 glEnableClientState(GL_VERTEX_ARRAY);
nuclear@0 598
nuclear@0 599 if(vattr[MESH_ATTR_NORMAL].vbo_valid) {
nuclear@0 600 glBindBuffer(GL_ARRAY_BUFFER, vattr[MESH_ATTR_NORMAL].vbo);
nuclear@0 601 glNormalPointer(GL_FLOAT, 0, 0);
nuclear@0 602 glEnableClientState(GL_NORMAL_ARRAY);
nuclear@0 603 }
nuclear@0 604 if(vattr[MESH_ATTR_TEXCOORD].vbo_valid) {
nuclear@0 605 glBindBuffer(GL_ARRAY_BUFFER, vattr[MESH_ATTR_TEXCOORD].vbo);
nuclear@0 606 glTexCoordPointer(vattr[MESH_ATTR_TEXCOORD].nelem, GL_FLOAT, 0, 0);
nuclear@0 607 glEnableClientState(GL_TEXTURE_COORD_ARRAY);
nuclear@0 608 }
nuclear@0 609 if(vattr[MESH_ATTR_COLOR].vbo_valid) {
nuclear@0 610 glBindBuffer(GL_ARRAY_BUFFER, vattr[MESH_ATTR_COLOR].vbo);
nuclear@0 611 glColorPointer(vattr[MESH_ATTR_COLOR].nelem, GL_FLOAT, 0, 0);
nuclear@0 612 glEnableClientState(GL_COLOR_ARRAY);
nuclear@0 613 }
nuclear@0 614 #endif
nuclear@0 615 }
nuclear@0 616 glBindBuffer(GL_ARRAY_BUFFER, 0);
nuclear@0 617
nuclear@0 618 if(ibo_valid) {
nuclear@0 619 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo);
nuclear@0 620 glDrawElements(GL_TRIANGLES, nfaces * 3, GL_UNSIGNED_INT, 0);
nuclear@0 621 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
nuclear@0 622 } else {
nuclear@0 623 glDrawArrays(GL_TRIANGLES, 0, nverts);
nuclear@0 624 }
nuclear@0 625
nuclear@1 626 if(cur_sdr) {
nuclear@0 627 // rendered with shaders
nuclear@0 628 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 629 int loc = global_sdr_loc[i];
nuclear@0 630 if(loc >= 0 && vattr[i].vbo_valid) {
nuclear@0 631 glDisableVertexAttribArray(loc);
nuclear@0 632 }
nuclear@0 633 }
nuclear@0 634 } else {
nuclear@0 635 #ifndef GL_ES_VERSION_2_0
nuclear@0 636 // rendered with fixed-function
nuclear@0 637 glDisableClientState(GL_VERTEX_ARRAY);
nuclear@0 638 if(vattr[MESH_ATTR_NORMAL].vbo_valid) {
nuclear@0 639 glDisableClientState(GL_NORMAL_ARRAY);
nuclear@0 640 }
nuclear@0 641 if(vattr[MESH_ATTR_TEXCOORD].vbo_valid) {
nuclear@0 642 glDisableClientState(GL_TEXTURE_COORD_ARRAY);
nuclear@0 643 }
nuclear@0 644 if(vattr[MESH_ATTR_COLOR].vbo_valid) {
nuclear@0 645 glDisableClientState(GL_COLOR_ARRAY);
nuclear@0 646 }
nuclear@0 647 #endif
nuclear@0 648 }
nuclear@0 649 }
nuclear@0 650
nuclear@0 651 void Mesh::draw_wire() const
nuclear@0 652 {
nuclear@0 653 ((Mesh*)this)->update_wire_ibo();
nuclear@0 654
nuclear@0 655 if(!vattr[MESH_ATTR_VERTEX].vbo_valid || !wire_ibo_valid) {
nuclear@0 656 fprintf(stderr, "%s: invalid vertex buffer\n", __FUNCTION__);
nuclear@0 657 return;
nuclear@0 658 }
nuclear@0 659 if(global_sdr_loc[MESH_ATTR_VERTEX] == -1) {
nuclear@0 660 fprintf(stderr, "%s: shader attribute location for vertices unset\n", __FUNCTION__);
nuclear@0 661 return;
nuclear@0 662 }
nuclear@0 663
nuclear@0 664 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 665 int loc = global_sdr_loc[i];
nuclear@0 666 if(loc >= 0 && vattr[i].vbo_valid) {
nuclear@0 667 glBindBuffer(GL_ARRAY_BUFFER, vattr[i].vbo);
nuclear@0 668 glVertexAttribPointer(loc, vattr[i].nelem, GL_FLOAT, GL_FALSE, 0, 0);
nuclear@0 669 glEnableVertexAttribArray(loc);
nuclear@0 670 }
nuclear@0 671 }
nuclear@0 672 glBindBuffer(GL_ARRAY_BUFFER, 0);
nuclear@0 673
nuclear@0 674 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, wire_ibo);
nuclear@0 675 glDrawElements(GL_LINES, nfaces * 6, GL_UNSIGNED_INT, 0);
nuclear@0 676 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
nuclear@0 677
nuclear@0 678 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 679 int loc = global_sdr_loc[i];
nuclear@0 680 if(loc >= 0 && vattr[i].vbo_valid) {
nuclear@0 681 glDisableVertexAttribArray(loc);
nuclear@0 682 }
nuclear@0 683 }
nuclear@0 684 }
nuclear@0 685
nuclear@0 686 void Mesh::draw_vertices() const
nuclear@0 687 {
nuclear@0 688 ((Mesh*)this)->update_buffers();
nuclear@0 689
nuclear@0 690 if(!vattr[MESH_ATTR_VERTEX].vbo_valid) {
nuclear@0 691 fprintf(stderr, "%s: invalid vertex buffer\n", __FUNCTION__);
nuclear@0 692 return;
nuclear@0 693 }
nuclear@0 694 if(global_sdr_loc[MESH_ATTR_VERTEX] == -1) {
nuclear@0 695 fprintf(stderr, "%s: shader attribute location for vertices unset\n", __FUNCTION__);
nuclear@0 696 return;
nuclear@0 697 }
nuclear@0 698
nuclear@0 699 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 700 int loc = global_sdr_loc[i];
nuclear@0 701 if(loc >= 0 && vattr[i].vbo_valid) {
nuclear@0 702 glBindBuffer(GL_ARRAY_BUFFER, vattr[i].vbo);
nuclear@0 703 glVertexAttribPointer(loc, vattr[i].nelem, GL_FLOAT, GL_FALSE, 0, 0);
nuclear@0 704 glEnableVertexAttribArray(loc);
nuclear@0 705 }
nuclear@0 706 }
nuclear@0 707 glBindBuffer(GL_ARRAY_BUFFER, 0);
nuclear@0 708
nuclear@0 709 glDrawArrays(GL_POINTS, 0, nverts);
nuclear@0 710
nuclear@0 711 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 712 int loc = global_sdr_loc[i];
nuclear@0 713 if(loc >= 0 && vattr[i].vbo_valid) {
nuclear@0 714 glDisableVertexAttribArray(loc);
nuclear@0 715 }
nuclear@0 716 }
nuclear@0 717 }
nuclear@0 718
nuclear@0 719 void Mesh::draw_normals() const
nuclear@0 720 {
nuclear@0 721 #ifdef USE_OLDGL
nuclear@11 722 int cur_sdr;
nuclear@11 723 glGetIntegerv(GL_CURRENT_PROGRAM, &cur_sdr);
nuclear@11 724
nuclear@0 725 Vector3 *varr = (Vector3*)get_attrib_data(MESH_ATTR_VERTEX);
nuclear@0 726 Vector3 *norm = (Vector3*)get_attrib_data(MESH_ATTR_NORMAL);
nuclear@0 727 if(!varr || !norm) {
nuclear@0 728 return;
nuclear@0 729 }
nuclear@0 730
nuclear@0 731 glBegin(GL_LINES);
nuclear@11 732 if(cur_sdr) {
nuclear@0 733 int vert_loc = global_sdr_loc[MESH_ATTR_VERTEX];
nuclear@0 734 if(vert_loc < 0) {
nuclear@0 735 glEnd();
nuclear@0 736 return;
nuclear@0 737 }
nuclear@0 738
nuclear@0 739 for(size_t i=0; i<nverts; i++) {
nuclear@0 740 glVertexAttrib3f(vert_loc, varr[i].x, varr[i].y, varr[i].z);
nuclear@0 741 Vector3 end = varr[i] + norm[i] * vis_vecsize;
nuclear@0 742 glVertexAttrib3f(vert_loc, end.x, end.y, end.z);
nuclear@0 743 }
nuclear@0 744 } else {
nuclear@0 745 for(size_t i=0; i<nverts; i++) {
nuclear@0 746 glVertex3f(varr[i].x, varr[i].y, varr[i].z);
nuclear@0 747 Vector3 end = varr[i] + norm[i] * vis_vecsize;
nuclear@0 748 glVertex3f(end.x, end.y, end.z);
nuclear@0 749 }
nuclear@0 750 }
nuclear@0 751 glEnd();
nuclear@0 752 #endif // USE_OLDGL
nuclear@0 753 }
nuclear@0 754
nuclear@0 755 void Mesh::draw_tangents() const
nuclear@0 756 {
nuclear@0 757 #ifdef USE_OLDGL
nuclear@11 758 int cur_sdr;
nuclear@11 759 glGetIntegerv(GL_CURRENT_PROGRAM, &cur_sdr);
nuclear@11 760
nuclear@0 761 Vector3 *varr = (Vector3*)get_attrib_data(MESH_ATTR_VERTEX);
nuclear@0 762 Vector3 *tang = (Vector3*)get_attrib_data(MESH_ATTR_TANGENT);
nuclear@0 763 if(!varr || !tang) {
nuclear@0 764 return;
nuclear@0 765 }
nuclear@0 766
nuclear@0 767 glBegin(GL_LINES);
nuclear@11 768 if(cur_sdr) {
nuclear@0 769 int vert_loc = global_sdr_loc[MESH_ATTR_VERTEX];
nuclear@0 770 if(vert_loc < 0) {
nuclear@0 771 glEnd();
nuclear@0 772 return;
nuclear@0 773 }
nuclear@0 774
nuclear@0 775 for(size_t i=0; i<nverts; i++) {
nuclear@0 776 glVertexAttrib3f(vert_loc, varr[i].x, varr[i].y, varr[i].z);
nuclear@0 777 Vector3 end = varr[i] + tang[i] * vis_vecsize;
nuclear@0 778 glVertexAttrib3f(vert_loc, end.x, end.y, end.z);
nuclear@0 779 }
nuclear@0 780 } else {
nuclear@0 781 for(size_t i=0; i<nverts; i++) {
nuclear@0 782 glVertex3f(varr[i].x, varr[i].y, varr[i].z);
nuclear@0 783 Vector3 end = varr[i] + tang[i] * vis_vecsize;
nuclear@0 784 glVertex3f(end.x, end.y, end.z);
nuclear@0 785 }
nuclear@0 786 }
nuclear@0 787 glEnd();
nuclear@0 788 #endif // USE_OLDGL
nuclear@0 789 }
nuclear@0 790
nuclear@0 791 void Mesh::get_aabbox(Vector3 *vmin, Vector3 *vmax) const
nuclear@0 792 {
nuclear@0 793 if(!aabb_valid) {
nuclear@0 794 ((Mesh*)this)->calc_aabb();
nuclear@0 795 }
nuclear@0 796 *vmin = aabb.min;
nuclear@0 797 *vmax = aabb.max;
nuclear@0 798 }
nuclear@0 799
nuclear@0 800 const AABox &Mesh::get_aabbox() const
nuclear@0 801 {
nuclear@0 802 if(!aabb_valid) {
nuclear@0 803 ((Mesh*)this)->calc_aabb();
nuclear@0 804 }
nuclear@0 805 return aabb;
nuclear@0 806 }
nuclear@0 807
nuclear@0 808 float Mesh::get_bsphere(Vector3 *center, float *rad) const
nuclear@0 809 {
nuclear@0 810 if(!bsph_valid) {
nuclear@0 811 ((Mesh*)this)->calc_bsph();
nuclear@0 812 }
nuclear@0 813 *center = bsph.center;
nuclear@0 814 *rad = bsph.radius;
nuclear@0 815 return bsph.radius;
nuclear@0 816 }
nuclear@0 817
nuclear@0 818 const Sphere &Mesh::get_bsphere() const
nuclear@0 819 {
nuclear@0 820 if(!bsph_valid) {
nuclear@0 821 ((Mesh*)this)->calc_bsph();
nuclear@0 822 }
nuclear@0 823 return bsph;
nuclear@0 824 }
nuclear@0 825
nuclear@0 826 /// static function
nuclear@0 827 void Mesh::set_intersect_mode(unsigned int mode)
nuclear@0 828 {
nuclear@0 829 Mesh::intersect_mode = mode;
nuclear@0 830 }
nuclear@0 831
nuclear@0 832 /// static function
nuclear@0 833 unsigned int Mesh::get_intersect_mode()
nuclear@0 834 {
nuclear@0 835 return Mesh::intersect_mode;
nuclear@0 836 }
nuclear@0 837
nuclear@0 838 /// static function
nuclear@0 839 void Mesh::set_vertex_select_distance(float dist)
nuclear@0 840 {
nuclear@0 841 Mesh::vertex_sel_dist = dist;
nuclear@0 842 }
nuclear@0 843
nuclear@0 844 /// static function
nuclear@0 845 float Mesh::get_vertex_select_distance()
nuclear@0 846 {
nuclear@0 847 return Mesh::vertex_sel_dist;
nuclear@0 848 }
nuclear@0 849
nuclear@0 850 bool Mesh::intersect(const Ray &ray, HitPoint *hit) const
nuclear@0 851 {
nuclear@0 852 assert((Mesh::intersect_mode & (ISECT_VERTICES | ISECT_FACE)) != (ISECT_VERTICES | ISECT_FACE));
nuclear@0 853
nuclear@0 854 const Vector3 *varr = (Vector3*)get_attrib_data(MESH_ATTR_VERTEX);
nuclear@0 855 const Vector3 *narr = (Vector3*)get_attrib_data(MESH_ATTR_NORMAL);
nuclear@0 856 if(!varr) {
nuclear@0 857 return false;
nuclear@0 858 }
nuclear@0 859 const unsigned int *idxarr = get_index_data();
nuclear@0 860
nuclear@0 861 // first test with the bounding box
nuclear@0 862 AABox box;
nuclear@0 863 get_aabbox(&box.min, &box.max);
nuclear@0 864 if(!box.intersect(ray)) {
nuclear@0 865 return false;
nuclear@0 866 }
nuclear@0 867
nuclear@0 868 HitPoint nearest_hit;
nuclear@0 869 nearest_hit.dist = FLT_MAX;
nuclear@0 870 nearest_hit.obj = 0;
nuclear@0 871
nuclear@0 872 if(Mesh::intersect_mode & ISECT_VERTICES) {
nuclear@0 873 // we asked for "intersections" with the vertices of the mesh
nuclear@0 874 long nearest_vidx = -1;
nuclear@0 875 float thres_sq = Mesh::vertex_sel_dist * Mesh::vertex_sel_dist;
nuclear@0 876
nuclear@0 877 for(unsigned int i=0; i<nverts; i++) {
nuclear@0 878
nuclear@0 879 if((Mesh::intersect_mode & ISECT_FRONT) && dot_product(narr[i], ray.dir) > 0) {
nuclear@0 880 continue;
nuclear@0 881 }
nuclear@0 882
nuclear@0 883 // project the vertex onto the ray line
nuclear@0 884 float t = dot_product(varr[i] - ray.origin, ray.dir);
nuclear@0 885 Vector3 vproj = ray.origin + ray.dir * t;
nuclear@0 886
nuclear@0 887 float dist_sq = (vproj - varr[i]).length_sq();
nuclear@0 888 if(dist_sq < thres_sq) {
nuclear@0 889 if(!hit) {
nuclear@0 890 return true;
nuclear@0 891 }
nuclear@0 892 if(t < nearest_hit.dist) {
nuclear@0 893 nearest_hit.dist = t;
nuclear@0 894 nearest_vidx = i;
nuclear@0 895 }
nuclear@0 896 }
nuclear@0 897 }
nuclear@0 898
nuclear@0 899 if(nearest_vidx != -1) {
nuclear@0 900 hitvert = varr[nearest_vidx];
nuclear@0 901 nearest_hit.obj = &hitvert;
nuclear@0 902 }
nuclear@0 903
nuclear@0 904 } else {
nuclear@0 905 // regular intersection test with polygons
nuclear@0 906
nuclear@0 907 for(unsigned int i=0; i<nfaces; i++) {
nuclear@0 908 Triangle face(i, varr, idxarr);
nuclear@0 909
nuclear@0 910 // ignore back-facing polygons if the mode flags include ISECT_FRONT
nuclear@0 911 if((Mesh::intersect_mode & ISECT_FRONT) && dot_product(face.get_normal(), ray.dir) > 0) {
nuclear@0 912 continue;
nuclear@0 913 }
nuclear@0 914
nuclear@0 915 HitPoint fhit;
nuclear@0 916 if(face.intersect(ray, hit ? &fhit : 0)) {
nuclear@0 917 if(!hit) {
nuclear@0 918 return true;
nuclear@0 919 }
nuclear@0 920 if(fhit.dist < nearest_hit.dist) {
nuclear@0 921 nearest_hit = fhit;
nuclear@0 922 hitface = face;
nuclear@0 923 }
nuclear@0 924 }
nuclear@0 925 }
nuclear@0 926 }
nuclear@0 927
nuclear@0 928 if(nearest_hit.obj) {
nuclear@0 929 if(hit) {
nuclear@0 930 *hit = nearest_hit;
nuclear@0 931
nuclear@0 932 // if we are interested in the mesh and not the faces set obj to this
nuclear@0 933 if(Mesh::intersect_mode & ISECT_FACE) {
nuclear@0 934 hit->obj = &hitface;
nuclear@0 935 } else if(Mesh::intersect_mode & ISECT_VERTICES) {
nuclear@0 936 hit->obj = &hitvert;
nuclear@0 937 } else {
nuclear@0 938 hit->obj = this;
nuclear@0 939 }
nuclear@0 940 }
nuclear@0 941 return true;
nuclear@0 942 }
nuclear@0 943 return false;
nuclear@0 944 }
nuclear@0 945
nuclear@0 946
nuclear@6 947 // texture coordinate manipulation
nuclear@6 948 void Mesh::texcoord_apply_xform(const Matrix4x4 &xform)
nuclear@6 949 {
nuclear@6 950 if(!has_attrib(MESH_ATTR_TEXCOORD)) {
nuclear@6 951 return;
nuclear@6 952 }
nuclear@6 953
nuclear@6 954 for(unsigned int i=0; i<nverts; i++) {
nuclear@6 955 Vector4 tc = get_attrib(MESH_ATTR_TEXCOORD, i);
nuclear@6 956 set_attrib(MESH_ATTR_TEXCOORD, i, tc.transformed(xform));
nuclear@6 957 }
nuclear@6 958 }
nuclear@6 959
nuclear@6 960 void Mesh::texcoord_gen_plane(const Vector3 &norm, const Vector3 &tang)
nuclear@6 961 {
nuclear@6 962 if(!nverts) return;
nuclear@6 963
nuclear@6 964 if(!has_attrib(MESH_ATTR_TEXCOORD)) {
nuclear@6 965 // allocate texture coordinate attribute array
nuclear@6 966 set_attrib_data(MESH_ATTR_TEXCOORD, 2, nverts);
nuclear@6 967 }
nuclear@6 968
nuclear@6 969 Vector3 n = norm.normalized();
nuclear@6 970 Vector3 b = cross_product(n, tang).normalized();
nuclear@6 971 Vector3 t = cross_product(b, n);
nuclear@6 972
nuclear@6 973 for(unsigned int i=0; i<nverts; i++) {
nuclear@6 974 Vector3 pos = get_attrib(MESH_ATTR_VERTEX, i);
nuclear@6 975
nuclear@6 976 // distance along the tangent direction
nuclear@6 977 float u = dot_product(pos, t);
nuclear@6 978 // distance along the bitangent direction
nuclear@6 979 float v = dot_product(pos, b);
nuclear@6 980
nuclear@6 981 set_attrib(MESH_ATTR_TEXCOORD, i, Vector4(u, v, 0, 1));
nuclear@6 982 }
nuclear@6 983 }
nuclear@6 984
nuclear@6 985 void Mesh::texcoord_gen_box()
nuclear@6 986 {
nuclear@6 987 if(!nverts || !has_attrib(MESH_ATTR_NORMAL)) return;
nuclear@6 988
nuclear@6 989 if(!has_attrib(MESH_ATTR_TEXCOORD)) {
nuclear@6 990 // allocate texture coordinate attribute array
nuclear@6 991 set_attrib_data(MESH_ATTR_TEXCOORD, 2, nverts);
nuclear@6 992 }
nuclear@6 993
nuclear@6 994 for(unsigned int i=0; i<nverts; i++) {
nuclear@6 995 Vector3 pos = Vector3(get_attrib(MESH_ATTR_VERTEX, i)) * 0.5 + Vector3(0.5, 0.5, 0.5);
nuclear@6 996 Vector3 norm = get_attrib(MESH_ATTR_NORMAL, i);
nuclear@6 997
nuclear@6 998 float abs_nx = fabs(norm.x);
nuclear@6 999 float abs_ny = fabs(norm.y);
nuclear@6 1000 float abs_nz = fabs(norm.z);
nuclear@6 1001 int dom = abs_nx > abs_ny && abs_nx > abs_nz ? 0 : (abs_ny > abs_nz ? 1 : 2);
nuclear@6 1002
nuclear@6 1003 float uv[2], *uvptr = uv;
nuclear@6 1004 for(int j=0; j<3; j++) {
nuclear@6 1005 if(j == dom) continue; // skip dominant axis
nuclear@6 1006
nuclear@6 1007 *uvptr++ = pos[j];
nuclear@6 1008 }
nuclear@6 1009 set_attrib(MESH_ATTR_TEXCOORD, i, Vector4(uv[0], uv[1], 0, 1));
nuclear@6 1010 }
nuclear@6 1011 }
nuclear@6 1012
nuclear@0 1013 // ------ private member functions ------
nuclear@0 1014
nuclear@0 1015 void Mesh::calc_aabb()
nuclear@0 1016 {
nuclear@0 1017 // the cast is to force calling the const version which doesn't invalidate
nuclear@0 1018 if(!((const Mesh*)this)->get_attrib_data(MESH_ATTR_VERTEX)) {
nuclear@0 1019 return;
nuclear@0 1020 }
nuclear@0 1021
nuclear@0 1022 aabb.min = Vector3(FLT_MAX, FLT_MAX, FLT_MAX);
nuclear@0 1023 aabb.max = -aabb.min;
nuclear@0 1024
nuclear@0 1025 for(unsigned int i=0; i<nverts; i++) {
nuclear@0 1026 Vector4 v = get_attrib(MESH_ATTR_VERTEX, i);
nuclear@0 1027 for(int j=0; j<3; j++) {
nuclear@0 1028 if(v[j] < aabb.min[j]) {
nuclear@0 1029 aabb.min[j] = v[j];
nuclear@0 1030 }
nuclear@0 1031 if(v[j] > aabb.max[j]) {
nuclear@0 1032 aabb.max[j] = v[j];
nuclear@0 1033 }
nuclear@0 1034 }
nuclear@0 1035 }
nuclear@0 1036 aabb_valid = true;
nuclear@0 1037 }
nuclear@0 1038
nuclear@0 1039 void Mesh::calc_bsph()
nuclear@0 1040 {
nuclear@0 1041 // the cast is to force calling the const version which doesn't invalidate
nuclear@0 1042 if(!((const Mesh*)this)->get_attrib_data(MESH_ATTR_VERTEX)) {
nuclear@0 1043 return;
nuclear@0 1044 }
nuclear@0 1045
nuclear@0 1046 Vector3 v;
nuclear@0 1047 bsph.center = Vector3(0, 0, 0);
nuclear@0 1048
nuclear@0 1049 // first find the center
nuclear@0 1050 for(unsigned int i=0; i<nverts; i++) {
nuclear@0 1051 v = get_attrib(MESH_ATTR_VERTEX, i);
nuclear@0 1052 bsph.center += v;
nuclear@0 1053 }
nuclear@0 1054 bsph.center /= (float)nverts;
nuclear@0 1055
nuclear@0 1056 bsph.radius = 0.0f;
nuclear@0 1057 for(unsigned int i=0; i<nverts; i++) {
nuclear@0 1058 v = get_attrib(MESH_ATTR_VERTEX, i);
nuclear@0 1059 float dist_sq = (v - bsph.center).length_sq();
nuclear@0 1060 if(dist_sq > bsph.radius) {
nuclear@0 1061 bsph.radius = dist_sq;
nuclear@0 1062 }
nuclear@0 1063 }
nuclear@0 1064 bsph.radius = sqrt(bsph.radius);
nuclear@0 1065
nuclear@0 1066 bsph_valid = true;
nuclear@0 1067 }
nuclear@0 1068
nuclear@0 1069 void Mesh::update_buffers()
nuclear@0 1070 {
nuclear@0 1071 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 1072 if(has_attrib(i) && !vattr[i].vbo_valid) {
nuclear@0 1073 glBindBuffer(GL_ARRAY_BUFFER, vattr[i].vbo);
nuclear@0 1074 glBufferData(GL_ARRAY_BUFFER, nverts * vattr[i].nelem * sizeof(float), &vattr[i].data[0], GL_STATIC_DRAW);
nuclear@0 1075 vattr[i].vbo_valid = true;
nuclear@0 1076 }
nuclear@0 1077 }
nuclear@0 1078 glBindBuffer(GL_ARRAY_BUFFER, 0);
nuclear@0 1079
nuclear@0 1080 if(idata_valid && !ibo_valid) {
nuclear@0 1081 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo);
nuclear@0 1082 glBufferData(GL_ELEMENT_ARRAY_BUFFER, nfaces * 3 * sizeof(unsigned int), &idata[0], GL_STATIC_DRAW);
nuclear@0 1083 ibo_valid = true;
nuclear@0 1084 }
nuclear@0 1085 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
nuclear@0 1086 }
nuclear@0 1087
nuclear@0 1088 void Mesh::update_wire_ibo()
nuclear@0 1089 {
nuclear@0 1090 update_buffers();
nuclear@0 1091
nuclear@0 1092 if(wire_ibo_valid) {
nuclear@0 1093 return;
nuclear@0 1094 }
nuclear@0 1095
nuclear@0 1096 if(!wire_ibo) {
nuclear@0 1097 glGenBuffers(1, &wire_ibo);
nuclear@0 1098 }
nuclear@0 1099
nuclear@0 1100 unsigned int *wire_idxarr = new unsigned int[nfaces * 6];
nuclear@0 1101 unsigned int *dest = wire_idxarr;
nuclear@0 1102
nuclear@0 1103 if(ibo_valid) {
nuclear@0 1104 // we're dealing with an indexed mesh
nuclear@0 1105 const unsigned int *idxarr = ((const Mesh*)this)->get_index_data();
nuclear@0 1106
nuclear@0 1107 for(unsigned int i=0; i<nfaces; i++) {
nuclear@0 1108 *dest++ = idxarr[0];
nuclear@0 1109 *dest++ = idxarr[1];
nuclear@0 1110 *dest++ = idxarr[1];
nuclear@0 1111 *dest++ = idxarr[2];
nuclear@0 1112 *dest++ = idxarr[2];
nuclear@0 1113 *dest++ = idxarr[0];
nuclear@0 1114 idxarr += 3;
nuclear@0 1115 }
nuclear@0 1116 } else {
nuclear@0 1117 // not an indexed mesh ...
nuclear@0 1118 for(unsigned int i=0; i<nfaces; i++) {
nuclear@0 1119 int vidx = i * 3;
nuclear@0 1120 *dest++ = vidx;
nuclear@0 1121 *dest++ = vidx + 1;
nuclear@0 1122 *dest++ = vidx + 1;
nuclear@0 1123 *dest++ = vidx + 2;
nuclear@0 1124 *dest++ = vidx + 2;
nuclear@0 1125 *dest++ = vidx;
nuclear@0 1126 }
nuclear@0 1127 }
nuclear@0 1128
nuclear@0 1129 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, wire_ibo);
nuclear@0 1130 glBufferData(GL_ELEMENT_ARRAY_BUFFER, nfaces * 6 * sizeof(unsigned int), wire_idxarr, GL_STATIC_DRAW);
nuclear@0 1131 delete [] wire_idxarr;
nuclear@0 1132 wire_ibo_valid = true;
nuclear@0 1133 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
nuclear@0 1134 }
nuclear@0 1135
nuclear@0 1136
nuclear@0 1137 // ------ class Triangle ------
nuclear@0 1138 Triangle::Triangle()
nuclear@0 1139 {
nuclear@0 1140 normal_valid = false;
nuclear@0 1141 id = -1;
nuclear@0 1142 }
nuclear@0 1143
nuclear@0 1144 Triangle::Triangle(const Vector3 &v0, const Vector3 &v1, const Vector3 &v2)
nuclear@0 1145 {
nuclear@0 1146 v[0] = v0;
nuclear@0 1147 v[1] = v1;
nuclear@0 1148 v[2] = v2;
nuclear@0 1149 normal_valid = false;
nuclear@0 1150 id = -1;
nuclear@0 1151 }
nuclear@0 1152
nuclear@0 1153 Triangle::Triangle(int n, const Vector3 *varr, const unsigned int *idxarr)
nuclear@0 1154 {
nuclear@0 1155 if(idxarr) {
nuclear@0 1156 v[0] = varr[idxarr[n * 3]];
nuclear@0 1157 v[1] = varr[idxarr[n * 3 + 1]];
nuclear@0 1158 v[2] = varr[idxarr[n * 3 + 2]];
nuclear@0 1159 } else {
nuclear@0 1160 v[0] = varr[n * 3];
nuclear@0 1161 v[1] = varr[n * 3 + 1];
nuclear@0 1162 v[2] = varr[n * 3 + 2];
nuclear@0 1163 }
nuclear@0 1164 normal_valid = false;
nuclear@0 1165 id = n;
nuclear@0 1166 }
nuclear@0 1167
nuclear@0 1168 void Triangle::calc_normal()
nuclear@0 1169 {
nuclear@0 1170 normal = cross_product(v[1] - v[0], v[2] - v[0]).normalized();
nuclear@0 1171 normal_valid = true;
nuclear@0 1172 }
nuclear@0 1173
nuclear@0 1174 const Vector3 &Triangle::get_normal() const
nuclear@0 1175 {
nuclear@0 1176 if(!normal_valid) {
nuclear@0 1177 ((Triangle*)this)->calc_normal();
nuclear@0 1178 }
nuclear@0 1179 return normal;
nuclear@0 1180 }
nuclear@0 1181
nuclear@0 1182 void Triangle::transform(const Matrix4x4 &xform)
nuclear@0 1183 {
nuclear@0 1184 v[0].transform(xform);
nuclear@0 1185 v[1].transform(xform);
nuclear@0 1186 v[2].transform(xform);
nuclear@0 1187 normal_valid = false;
nuclear@0 1188 }
nuclear@0 1189
nuclear@0 1190 void Triangle::draw() const
nuclear@0 1191 {
nuclear@0 1192 Vector3 n[3];
nuclear@0 1193 n[0] = get_normal();
nuclear@0 1194 n[1] = get_normal();
nuclear@0 1195 n[2] = get_normal();
nuclear@0 1196
nuclear@0 1197 int vloc = Mesh::get_attrib_location(MESH_ATTR_VERTEX);
nuclear@0 1198 int nloc = Mesh::get_attrib_location(MESH_ATTR_NORMAL);
nuclear@0 1199
nuclear@0 1200 glEnableVertexAttribArray(vloc);
nuclear@0 1201 glVertexAttribPointer(vloc, 3, GL_FLOAT, GL_FALSE, 0, &v[0].x);
nuclear@0 1202 glVertexAttribPointer(nloc, 3, GL_FLOAT, GL_FALSE, 0, &n[0].x);
nuclear@0 1203
nuclear@0 1204 glDrawArrays(GL_TRIANGLES, 0, 3);
nuclear@0 1205
nuclear@0 1206 glDisableVertexAttribArray(vloc);
nuclear@0 1207 glDisableVertexAttribArray(nloc);
nuclear@0 1208 }
nuclear@0 1209
nuclear@0 1210 void Triangle::draw_wire() const
nuclear@0 1211 {
nuclear@0 1212 static const int idxarr[] = {0, 1, 1, 2, 2, 0};
nuclear@0 1213 int vloc = Mesh::get_attrib_location(MESH_ATTR_VERTEX);
nuclear@0 1214
nuclear@0 1215 glEnableVertexAttribArray(vloc);
nuclear@0 1216 glVertexAttribPointer(vloc, 3, GL_FLOAT, GL_FALSE, 0, &v[0].x);
nuclear@0 1217
nuclear@0 1218 glDrawElements(GL_LINES, 6, GL_UNSIGNED_INT, idxarr);
nuclear@0 1219
nuclear@0 1220 glDisableVertexAttribArray(vloc);
nuclear@0 1221 }
nuclear@0 1222
nuclear@0 1223 Vector3 Triangle::calc_barycentric(const Vector3 &pos) const
nuclear@0 1224 {
nuclear@0 1225 Vector3 norm = get_normal();
nuclear@0 1226
nuclear@0 1227 float area_sq = fabs(dot_product(cross_product(v[1] - v[0], v[2] - v[0]), norm));
nuclear@0 1228 if(area_sq < 1e-5) {
nuclear@0 1229 return Vector3(0, 0, 0);
nuclear@0 1230 }
nuclear@0 1231
nuclear@0 1232 float asq0 = fabs(dot_product(cross_product(v[1] - pos, v[2] - pos), norm));
nuclear@0 1233 float asq1 = fabs(dot_product(cross_product(v[2] - pos, v[0] - pos), norm));
nuclear@0 1234 float asq2 = fabs(dot_product(cross_product(v[0] - pos, v[1] - pos), norm));
nuclear@0 1235
nuclear@0 1236 return Vector3(asq0 / area_sq, asq1 / area_sq, asq2 / area_sq);
nuclear@0 1237 }
nuclear@0 1238
nuclear@0 1239 bool Triangle::intersect(const Ray &ray, HitPoint *hit) const
nuclear@0 1240 {
nuclear@0 1241 Vector3 normal = get_normal();
nuclear@0 1242
nuclear@0 1243 float ndotdir = dot_product(ray.dir, normal);
nuclear@0 1244 if(fabs(ndotdir) < 1e-4) {
nuclear@0 1245 return false;
nuclear@0 1246 }
nuclear@0 1247
nuclear@0 1248 Vector3 vertdir = v[0] - ray.origin;
nuclear@0 1249 float t = dot_product(normal, vertdir) / ndotdir;
nuclear@0 1250
nuclear@0 1251 Vector3 pos = ray.origin + ray.dir * t;
nuclear@0 1252 Vector3 bary = calc_barycentric(pos);
nuclear@0 1253
nuclear@0 1254 if(bary.x + bary.y + bary.z > 1.00001) {
nuclear@0 1255 return false;
nuclear@0 1256 }
nuclear@0 1257
nuclear@0 1258 if(hit) {
nuclear@0 1259 hit->dist = t;
nuclear@0 1260 hit->pos = ray.origin + ray.dir * t;
nuclear@0 1261 hit->normal = normal;
nuclear@0 1262 hit->obj = this;
nuclear@0 1263 }
nuclear@0 1264 return true;
nuclear@0 1265 }