tavli

annotate src/mesh.cc @ 6:a0d30f6f20d4

- texture coordinate generation in class Mesh - wood texture
author John Tsiombikas <nuclear@member.fsf.org>
date Fri, 26 Jun 2015 04:22:06 +0300
parents 3fcd7b4d631f
children f1ecc2439802
rev   line source
nuclear@0 1 #include <stdio.h>
nuclear@0 2 #include <stdlib.h>
nuclear@0 3 #include <float.h>
nuclear@0 4 #include <assert.h>
nuclear@0 5 #include "opengl.h"
nuclear@0 6 #include "mesh.h"
nuclear@0 7 //#include "xform_node.h"
nuclear@0 8
nuclear@1 9 int Mesh::global_sdr_loc[NUM_MESH_ATTR] = { 0, 1, 2, 3, 4, 5, 6 };
nuclear@1 10 /*
nuclear@0 11 (int)SDR_ATTR_VERTEX,
nuclear@0 12 (int)SDR_ATTR_NORMAL,
nuclear@0 13 (int)SDR_ATTR_TANGENT,
nuclear@0 14 (int)SDR_ATTR_TEXCOORD,
nuclear@0 15 (int)SDR_ATTR_COLOR,
nuclear@0 16 -1, -1};
nuclear@1 17 */
nuclear@0 18 unsigned int Mesh::intersect_mode = ISECT_DEFAULT;
nuclear@0 19 float Mesh::vertex_sel_dist = 0.01;
nuclear@0 20 float Mesh::vis_vecsize = 1.0;
nuclear@0 21
nuclear@0 22 Mesh::Mesh()
nuclear@0 23 {
nuclear@0 24 clear();
nuclear@0 25
nuclear@0 26 glGenBuffers(NUM_MESH_ATTR + 1, buffer_objects);
nuclear@0 27
nuclear@0 28 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 29 vattr[i].vbo = buffer_objects[i];
nuclear@0 30 }
nuclear@0 31 ibo = buffer_objects[NUM_MESH_ATTR];
nuclear@0 32 wire_ibo = 0;
nuclear@0 33 }
nuclear@0 34
nuclear@0 35 Mesh::~Mesh()
nuclear@0 36 {
nuclear@0 37 glDeleteBuffers(NUM_MESH_ATTR + 1, buffer_objects);
nuclear@0 38
nuclear@0 39 if(wire_ibo) {
nuclear@0 40 glDeleteBuffers(1, &wire_ibo);
nuclear@0 41 }
nuclear@0 42 }
nuclear@0 43
nuclear@0 44 Mesh::Mesh(const Mesh &rhs)
nuclear@0 45 {
nuclear@0 46 clear();
nuclear@0 47
nuclear@0 48 glGenBuffers(NUM_MESH_ATTR + 1, buffer_objects);
nuclear@0 49
nuclear@0 50 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 51 vattr[i].vbo = buffer_objects[i];
nuclear@0 52 }
nuclear@0 53 ibo = buffer_objects[NUM_MESH_ATTR];
nuclear@0 54 wire_ibo = 0;
nuclear@0 55
nuclear@0 56 clone(rhs);
nuclear@0 57 }
nuclear@0 58
nuclear@0 59 Mesh &Mesh::operator =(const Mesh &rhs)
nuclear@0 60 {
nuclear@0 61 if(&rhs != this) {
nuclear@0 62 clone(rhs);
nuclear@0 63 }
nuclear@0 64 return *this;
nuclear@0 65 }
nuclear@0 66
nuclear@0 67 bool Mesh::clone(const Mesh &m)
nuclear@0 68 {
nuclear@0 69 clear();
nuclear@0 70
nuclear@0 71 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 72 if(m.has_attrib(i)) {
nuclear@0 73 m.get_attrib_data(i); // force validation of the actual data on the source mesh
nuclear@0 74
nuclear@0 75 vattr[i].nelem = m.vattr[i].nelem;
nuclear@0 76 vattr[i].data = m.vattr[i].data; // copy the actual data
nuclear@0 77 vattr[i].data_valid = true;
nuclear@0 78 }
nuclear@0 79 }
nuclear@0 80
nuclear@0 81 if(m.is_indexed()) {
nuclear@0 82 m.get_index_data(); // again, force validation
nuclear@0 83
nuclear@0 84 // copy the index data
nuclear@0 85 idata = m.idata;
nuclear@0 86 idata_valid = true;
nuclear@0 87 }
nuclear@0 88
nuclear@0 89 name = m.name;
nuclear@0 90 nverts = m.nverts;
nuclear@0 91 nfaces = m.nfaces;
nuclear@0 92
nuclear@0 93 //bones = m.bones;
nuclear@0 94
nuclear@0 95 memcpy(cur_val, m.cur_val, sizeof cur_val);
nuclear@0 96
nuclear@0 97 aabb = m.aabb;
nuclear@0 98 aabb_valid = m.aabb_valid;
nuclear@0 99 bsph = m.bsph;
nuclear@0 100 bsph_valid = m.bsph_valid;
nuclear@0 101
nuclear@0 102 hitface = m.hitface;
nuclear@0 103 hitvert = m.hitvert;
nuclear@0 104
nuclear@0 105 intersect_mode = m.intersect_mode;
nuclear@0 106 vertex_sel_dist = m.vertex_sel_dist;
nuclear@0 107 vis_vecsize = m.vis_vecsize;
nuclear@0 108
nuclear@0 109 return true;
nuclear@0 110 }
nuclear@0 111
nuclear@0 112 void Mesh::set_name(const char *name)
nuclear@0 113 {
nuclear@0 114 this->name = name;
nuclear@0 115 }
nuclear@0 116
nuclear@0 117 const char *Mesh::get_name() const
nuclear@0 118 {
nuclear@0 119 return name.c_str();
nuclear@0 120 }
nuclear@0 121
nuclear@0 122 bool Mesh::has_attrib(int attr) const
nuclear@0 123 {
nuclear@0 124 if(attr < 0 || attr >= NUM_MESH_ATTR) {
nuclear@0 125 return false;
nuclear@0 126 }
nuclear@0 127
nuclear@0 128 // if neither of these is valid, then nobody has set this attribute
nuclear@0 129 return vattr[attr].vbo_valid || vattr[attr].data_valid;
nuclear@0 130 }
nuclear@0 131
nuclear@0 132 bool Mesh::is_indexed() const
nuclear@0 133 {
nuclear@0 134 return ibo_valid || idata_valid;
nuclear@0 135 }
nuclear@0 136
nuclear@0 137 void Mesh::clear()
nuclear@0 138 {
nuclear@0 139 //bones.clear();
nuclear@0 140
nuclear@0 141 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 142 vattr[i].nelem = 0;
nuclear@0 143 vattr[i].vbo_valid = false;
nuclear@0 144 vattr[i].data_valid = false;
nuclear@0 145 //vattr[i].sdr_loc = -1;
nuclear@0 146 vattr[i].data.clear();
nuclear@0 147 }
nuclear@0 148 ibo_valid = idata_valid = false;
nuclear@0 149 idata.clear();
nuclear@0 150
nuclear@0 151 wire_ibo_valid = false;
nuclear@0 152
nuclear@0 153 nverts = nfaces = 0;
nuclear@0 154
nuclear@0 155 bsph_valid = false;
nuclear@0 156 aabb_valid = false;
nuclear@0 157 }
nuclear@0 158
nuclear@0 159 float *Mesh::set_attrib_data(int attrib, int nelem, unsigned int num, const float *data)
nuclear@0 160 {
nuclear@0 161 if(attrib < 0 || attrib >= NUM_MESH_ATTR) {
nuclear@0 162 fprintf(stderr, "%s: invalid attrib: %d\n", __FUNCTION__, attrib);
nuclear@0 163 return 0;
nuclear@0 164 }
nuclear@0 165
nuclear@0 166 if(nverts && num != nverts) {
nuclear@0 167 fprintf(stderr, "%s: attribute count missmatch (%d instead of %d)\n", __FUNCTION__, num, nverts);
nuclear@0 168 return 0;
nuclear@0 169 }
nuclear@0 170 nverts = num;
nuclear@0 171
nuclear@0 172 vattr[attrib].data.clear();
nuclear@0 173 vattr[attrib].nelem = nelem;
nuclear@0 174 vattr[attrib].data.resize(num * nelem);
nuclear@0 175
nuclear@0 176 if(data) {
nuclear@0 177 memcpy(&vattr[attrib].data[0], data, num * nelem * sizeof *data);
nuclear@0 178 }
nuclear@0 179
nuclear@0 180 vattr[attrib].data_valid = true;
nuclear@0 181 vattr[attrib].vbo_valid = false;
nuclear@0 182 return &vattr[attrib].data[0];
nuclear@0 183 }
nuclear@0 184
nuclear@0 185 float *Mesh::get_attrib_data(int attrib)
nuclear@0 186 {
nuclear@0 187 if(attrib < 0 || attrib >= NUM_MESH_ATTR) {
nuclear@0 188 fprintf(stderr, "%s: invalid attrib: %d\n", __FUNCTION__, attrib);
nuclear@0 189 return 0;
nuclear@0 190 }
nuclear@0 191
nuclear@0 192 vattr[attrib].vbo_valid = false;
nuclear@0 193 return (float*)((const Mesh*)this)->get_attrib_data(attrib);
nuclear@0 194 }
nuclear@0 195
nuclear@0 196 const float *Mesh::get_attrib_data(int attrib) const
nuclear@0 197 {
nuclear@0 198 if(attrib < 0 || attrib >= NUM_MESH_ATTR) {
nuclear@0 199 fprintf(stderr, "%s: invalid attrib: %d\n", __FUNCTION__, attrib);
nuclear@0 200 return 0;
nuclear@0 201 }
nuclear@0 202
nuclear@0 203 if(!vattr[attrib].data_valid) {
nuclear@0 204 #if GL_ES_VERSION_2_0
nuclear@0 205 fprintf(stderr, "%s: can't read back attrib data on CrippledGL ES\n", __FUNCTION__);
nuclear@0 206 return 0;
nuclear@0 207 #else
nuclear@0 208 if(!vattr[attrib].vbo_valid) {
nuclear@0 209 fprintf(stderr, "%s: unavailable attrib: %d\n", __FUNCTION__, attrib);
nuclear@0 210 return 0;
nuclear@0 211 }
nuclear@0 212
nuclear@0 213 // local data copy is unavailable, grab the data from the vbo
nuclear@0 214 Mesh *m = (Mesh*)this;
nuclear@0 215 m->vattr[attrib].data.resize(nverts * vattr[attrib].nelem);
nuclear@0 216
nuclear@0 217 glBindBuffer(GL_ARRAY_BUFFER, vattr[attrib].vbo);
nuclear@0 218 void *data = glMapBuffer(GL_ARRAY_BUFFER, GL_READ_ONLY);
nuclear@0 219 memcpy(&m->vattr[attrib].data[0], data, nverts * vattr[attrib].nelem * sizeof(float));
nuclear@0 220 glUnmapBuffer(GL_ARRAY_BUFFER);
nuclear@0 221
nuclear@0 222 vattr[attrib].data_valid = true;
nuclear@0 223 #endif
nuclear@0 224 }
nuclear@0 225
nuclear@0 226 return &vattr[attrib].data[0];
nuclear@0 227 }
nuclear@0 228
nuclear@0 229 void Mesh::set_attrib(int attrib, int idx, const Vector4 &v)
nuclear@0 230 {
nuclear@0 231 float *data = get_attrib_data(attrib);
nuclear@0 232 if(data) {
nuclear@0 233 data += idx * vattr[attrib].nelem;
nuclear@0 234 for(int i=0; i<vattr[attrib].nelem; i++) {
nuclear@0 235 data[i] = v[i];
nuclear@0 236 }
nuclear@0 237 }
nuclear@0 238 }
nuclear@0 239
nuclear@0 240 Vector4 Mesh::get_attrib(int attrib, int idx) const
nuclear@0 241 {
nuclear@0 242 Vector4 v(0.0, 0.0, 0.0, 1.0);
nuclear@0 243 const float *data = get_attrib_data(attrib);
nuclear@0 244 if(data) {
nuclear@0 245 data += idx * vattr[attrib].nelem;
nuclear@0 246 for(int i=0; i<vattr[attrib].nelem; i++) {
nuclear@0 247 v[i] = data[i];
nuclear@0 248 }
nuclear@0 249 }
nuclear@0 250 return v;
nuclear@0 251 }
nuclear@0 252
nuclear@0 253 int Mesh::get_attrib_count(int attrib) const
nuclear@0 254 {
nuclear@0 255 return has_attrib(attrib) ? nverts : 0;
nuclear@0 256 }
nuclear@0 257
nuclear@0 258
nuclear@0 259 unsigned int *Mesh::set_index_data(int num, const unsigned int *indices)
nuclear@0 260 {
nuclear@0 261 int nidx = nfaces * 3;
nuclear@0 262 if(nidx && num != nidx) {
nuclear@0 263 fprintf(stderr, "%s: index count missmatch (%d instead of %d)\n", __FUNCTION__, num, nidx);
nuclear@0 264 return 0;
nuclear@0 265 }
nuclear@0 266 nfaces = num / 3;
nuclear@0 267
nuclear@0 268 idata.clear();
nuclear@0 269 idata.resize(num);
nuclear@0 270
nuclear@0 271 if(indices) {
nuclear@0 272 memcpy(&idata[0], indices, num * sizeof *indices);
nuclear@0 273 }
nuclear@0 274
nuclear@0 275 idata_valid = true;
nuclear@0 276 ibo_valid = false;
nuclear@0 277
nuclear@0 278 return &idata[0];
nuclear@0 279 }
nuclear@0 280
nuclear@0 281 unsigned int *Mesh::get_index_data()
nuclear@0 282 {
nuclear@0 283 ibo_valid = false;
nuclear@0 284 return (unsigned int*)((const Mesh*)this)->get_index_data();
nuclear@0 285 }
nuclear@0 286
nuclear@0 287 const unsigned int *Mesh::get_index_data() const
nuclear@0 288 {
nuclear@0 289 if(!idata_valid) {
nuclear@0 290 #if GL_ES_VERSION_2_0
nuclear@0 291 fprintf(stderr, "%s: can't read back index data in CrippledGL ES\n", __FUNCTION__);
nuclear@0 292 return 0;
nuclear@0 293 #else
nuclear@0 294 if(!ibo_valid) {
nuclear@0 295 fprintf(stderr, "%s: indices unavailable\n", __FUNCTION__);
nuclear@0 296 return 0;
nuclear@0 297 }
nuclear@0 298
nuclear@0 299 // local data copy is unavailable, gram the data from the ibo
nuclear@0 300 Mesh *m = (Mesh*)this;
nuclear@0 301 int nidx = nfaces * 3;
nuclear@0 302 m->idata.resize(nidx);
nuclear@0 303
nuclear@0 304 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo);
nuclear@0 305 void *data = glMapBuffer(GL_ELEMENT_ARRAY_BUFFER, GL_READ_ONLY);
nuclear@0 306 memcpy(&m->idata[0], data, nidx * sizeof(unsigned int));
nuclear@0 307 glUnmapBuffer(GL_ELEMENT_ARRAY_BUFFER);
nuclear@0 308
nuclear@0 309 idata_valid = true;
nuclear@0 310 #endif
nuclear@0 311 }
nuclear@0 312
nuclear@0 313 return &idata[0];
nuclear@0 314 }
nuclear@0 315
nuclear@0 316 int Mesh::get_index_count() const
nuclear@0 317 {
nuclear@0 318 return nfaces * 3;
nuclear@0 319 }
nuclear@0 320
nuclear@0 321 void Mesh::append(const Mesh &mesh)
nuclear@0 322 {
nuclear@0 323 unsigned int idxoffs = nverts;
nuclear@0 324
nuclear@0 325 nverts += mesh.nverts;
nuclear@0 326 nfaces += mesh.nfaces;
nuclear@0 327
nuclear@0 328 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 329 if(has_attrib(i) && mesh.has_attrib(i)) {
nuclear@0 330 // force validating the data arrays
nuclear@0 331 get_attrib_data(i);
nuclear@0 332 mesh.get_attrib_data(i);
nuclear@0 333
nuclear@0 334 // append the mesh data
nuclear@0 335 vattr[i].data.insert(vattr[i].data.end(), mesh.vattr[i].data.begin(), mesh.vattr[i].data.end());
nuclear@0 336 }
nuclear@0 337 }
nuclear@0 338
nuclear@0 339 if(ibo_valid || idata_valid) {
nuclear@0 340 // make index arrays valid
nuclear@0 341 get_index_data();
nuclear@0 342 mesh.get_index_data();
nuclear@0 343
nuclear@0 344 size_t orig_sz = idata.size();
nuclear@0 345
nuclear@0 346 idata.insert(idata.end(), mesh.idata.begin(), mesh.idata.end());
nuclear@0 347
nuclear@0 348 // fixup all the new indices
nuclear@0 349 for(size_t i=orig_sz; i<idata.size(); i++) {
nuclear@0 350 idata[i] += idxoffs;
nuclear@0 351 }
nuclear@0 352 }
nuclear@0 353
nuclear@0 354 // fuck everything
nuclear@0 355 wire_ibo_valid = false;
nuclear@0 356 aabb_valid = false;
nuclear@0 357 bsph_valid = false;
nuclear@0 358 }
nuclear@0 359
nuclear@0 360 // assemble a complete vertex by adding all the useful attributes
nuclear@0 361 void Mesh::vertex(float x, float y, float z)
nuclear@0 362 {
nuclear@0 363 cur_val[MESH_ATTR_VERTEX] = Vector4(x, y, z, 1.0f);
nuclear@0 364 vattr[MESH_ATTR_VERTEX].data_valid = true;
nuclear@0 365 vattr[MESH_ATTR_VERTEX].nelem = 3;
nuclear@0 366
nuclear@0 367 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 368 if(vattr[i].data_valid) {
nuclear@0 369 for(int j=0; j<vattr[MESH_ATTR_VERTEX].nelem; j++) {
nuclear@0 370 vattr[i].data.push_back(cur_val[i][j]);
nuclear@0 371 }
nuclear@0 372 }
nuclear@0 373 vattr[i].vbo_valid = false;
nuclear@0 374 }
nuclear@0 375
nuclear@0 376 if(idata_valid) {
nuclear@0 377 idata.clear();
nuclear@0 378 }
nuclear@0 379 ibo_valid = idata_valid = false;
nuclear@0 380 }
nuclear@0 381
nuclear@0 382 void Mesh::normal(float nx, float ny, float nz)
nuclear@0 383 {
nuclear@0 384 cur_val[MESH_ATTR_NORMAL] = Vector4(nx, ny, nz, 1.0f);
nuclear@0 385 vattr[MESH_ATTR_NORMAL].data_valid = true;
nuclear@0 386 vattr[MESH_ATTR_NORMAL].nelem = 3;
nuclear@0 387 }
nuclear@0 388
nuclear@0 389 void Mesh::tangent(float tx, float ty, float tz)
nuclear@0 390 {
nuclear@0 391 cur_val[MESH_ATTR_TANGENT] = Vector4(tx, ty, tz, 1.0f);
nuclear@0 392 vattr[MESH_ATTR_TANGENT].data_valid = true;
nuclear@0 393 vattr[MESH_ATTR_TANGENT].nelem = 3;
nuclear@0 394 }
nuclear@0 395
nuclear@0 396 void Mesh::texcoord(float u, float v, float w)
nuclear@0 397 {
nuclear@0 398 cur_val[MESH_ATTR_TEXCOORD] = Vector4(u, v, w, 1.0f);
nuclear@0 399 vattr[MESH_ATTR_TEXCOORD].data_valid = true;
nuclear@0 400 vattr[MESH_ATTR_TEXCOORD].nelem = 3;
nuclear@0 401 }
nuclear@0 402
nuclear@0 403 void Mesh::boneweights(float w1, float w2, float w3, float w4)
nuclear@0 404 {
nuclear@0 405 cur_val[MESH_ATTR_BONEWEIGHTS] = Vector4(w1, w2, w3, w4);
nuclear@0 406 vattr[MESH_ATTR_BONEWEIGHTS].data_valid = true;
nuclear@0 407 vattr[MESH_ATTR_BONEWEIGHTS].nelem = 4;
nuclear@0 408 }
nuclear@0 409
nuclear@0 410 void Mesh::boneidx(int idx1, int idx2, int idx3, int idx4)
nuclear@0 411 {
nuclear@0 412 cur_val[MESH_ATTR_BONEIDX] = Vector4(idx1, idx2, idx3, idx4);
nuclear@0 413 vattr[MESH_ATTR_BONEIDX].data_valid = true;
nuclear@0 414 vattr[MESH_ATTR_BONEIDX].nelem = 4;
nuclear@0 415 }
nuclear@0 416
nuclear@0 417 int Mesh::get_poly_count() const
nuclear@0 418 {
nuclear@0 419 if(nfaces) {
nuclear@0 420 return nfaces;
nuclear@0 421 }
nuclear@0 422 if(nverts) {
nuclear@0 423 return nverts / 3;
nuclear@0 424 }
nuclear@0 425 return 0;
nuclear@0 426 }
nuclear@0 427
nuclear@0 428 /// static function
nuclear@0 429 void Mesh::set_attrib_location(int attr, int loc)
nuclear@0 430 {
nuclear@0 431 if(attr < 0 || attr >= NUM_MESH_ATTR) {
nuclear@0 432 return;
nuclear@0 433 }
nuclear@0 434 Mesh::global_sdr_loc[attr] = loc;
nuclear@0 435 }
nuclear@0 436
nuclear@0 437 /// static function
nuclear@0 438 int Mesh::get_attrib_location(int attr)
nuclear@0 439 {
nuclear@0 440 if(attr < 0 || attr >= NUM_MESH_ATTR) {
nuclear@0 441 return -1;
nuclear@0 442 }
nuclear@0 443 return Mesh::global_sdr_loc[attr];
nuclear@0 444 }
nuclear@0 445
nuclear@0 446 /// static function
nuclear@0 447 void Mesh::clear_attrib_locations()
nuclear@0 448 {
nuclear@0 449 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 450 Mesh::global_sdr_loc[i] = -1;
nuclear@0 451 }
nuclear@0 452 }
nuclear@0 453
nuclear@0 454 /// static function
nuclear@0 455 void Mesh::set_vis_vecsize(float sz)
nuclear@0 456 {
nuclear@0 457 Mesh::vis_vecsize = sz;
nuclear@0 458 }
nuclear@0 459
nuclear@0 460 float Mesh::get_vis_vecsize()
nuclear@0 461 {
nuclear@0 462 return Mesh::vis_vecsize;
nuclear@0 463 }
nuclear@0 464
nuclear@0 465 void Mesh::apply_xform(const Matrix4x4 &xform)
nuclear@0 466 {
nuclear@0 467 Matrix4x4 dir_xform = xform;
nuclear@0 468 dir_xform[0][3] = dir_xform[1][3] = dir_xform[2][3] = 0.0f;
nuclear@0 469 dir_xform[3][0] = dir_xform[3][1] = dir_xform[3][2] = 0.0f;
nuclear@0 470 dir_xform[3][3] = 1.0f;
nuclear@0 471
nuclear@0 472 apply_xform(xform, dir_xform);
nuclear@0 473 }
nuclear@0 474
nuclear@0 475 void Mesh::apply_xform(const Matrix4x4 &xform, const Matrix4x4 &dir_xform)
nuclear@0 476 {
nuclear@0 477 for(unsigned int i=0; i<nverts; i++) {
nuclear@0 478 Vector4 v = get_attrib(MESH_ATTR_VERTEX, i);
nuclear@0 479 set_attrib(MESH_ATTR_VERTEX, i, v.transformed(xform));
nuclear@0 480
nuclear@0 481 if(has_attrib(MESH_ATTR_NORMAL)) {
nuclear@0 482 Vector3 n = get_attrib(MESH_ATTR_NORMAL, i);
nuclear@0 483 set_attrib(MESH_ATTR_NORMAL, i, n.transformed(dir_xform));
nuclear@0 484 }
nuclear@0 485 if(has_attrib(MESH_ATTR_TANGENT)) {
nuclear@0 486 Vector3 t = get_attrib(MESH_ATTR_TANGENT, i);
nuclear@0 487 set_attrib(MESH_ATTR_TANGENT, i, t.transformed(dir_xform));
nuclear@0 488 }
nuclear@0 489 }
nuclear@0 490 }
nuclear@0 491
nuclear@0 492 void Mesh::flip()
nuclear@0 493 {
nuclear@0 494 flip_faces();
nuclear@0 495 flip_normals();
nuclear@0 496 }
nuclear@0 497
nuclear@0 498 void Mesh::flip_faces()
nuclear@0 499 {
nuclear@0 500 if(is_indexed()) {
nuclear@0 501 unsigned int *indices = get_index_data();
nuclear@0 502 if(!indices) return;
nuclear@0 503
nuclear@0 504 int idxnum = get_index_count();
nuclear@0 505 for(int i=0; i<idxnum; i+=3) {
nuclear@0 506 unsigned int tmp = indices[i + 2];
nuclear@0 507 indices[i + 2] = indices[i + 1];
nuclear@0 508 indices[i + 1] = tmp;
nuclear@0 509 }
nuclear@0 510
nuclear@0 511 } else {
nuclear@0 512 Vector3 *verts = (Vector3*)get_attrib_data(MESH_ATTR_VERTEX);
nuclear@0 513 if(!verts) return;
nuclear@0 514
nuclear@0 515 int vnum = get_attrib_count(MESH_ATTR_VERTEX);
nuclear@0 516 for(int i=0; i<vnum; i+=3) {
nuclear@0 517 Vector3 tmp = verts[i + 2];
nuclear@0 518 verts[i + 2] = verts[i + 1];
nuclear@0 519 verts[i + 1] = tmp;
nuclear@0 520 }
nuclear@0 521 }
nuclear@0 522 }
nuclear@0 523
nuclear@0 524 void Mesh::flip_normals()
nuclear@0 525 {
nuclear@0 526 Vector3 *normals = (Vector3*)get_attrib_data(MESH_ATTR_NORMAL);
nuclear@0 527 if(!normals) return;
nuclear@0 528
nuclear@0 529 int num = get_attrib_count(MESH_ATTR_NORMAL);
nuclear@0 530 for(int i=0; i<num; i++) {
nuclear@0 531 normals[i] = -normals[i];
nuclear@0 532 }
nuclear@0 533 }
nuclear@0 534
nuclear@0 535 /*
nuclear@0 536 int Mesh::add_bone(XFormNode *bone)
nuclear@0 537 {
nuclear@0 538 int idx = bones.size();
nuclear@0 539 bones.push_back(bone);
nuclear@0 540 return idx;
nuclear@0 541 }
nuclear@0 542
nuclear@0 543 const XFormNode *Mesh::get_bone(int idx) const
nuclear@0 544 {
nuclear@0 545 if(idx < 0 || idx >= (int)bones.size()) {
nuclear@0 546 return 0;
nuclear@0 547 }
nuclear@0 548 return bones[idx];
nuclear@0 549 }
nuclear@0 550
nuclear@0 551 int Mesh::get_bones_count() const
nuclear@0 552 {
nuclear@0 553 return (int)bones.size();
nuclear@0 554 }
nuclear@0 555 */
nuclear@0 556
nuclear@0 557 void Mesh::draw() const
nuclear@0 558 {
nuclear@1 559 int cur_sdr;
nuclear@1 560 glGetIntegerv(GL_CURRENT_PROGRAM, &cur_sdr);
nuclear@1 561
nuclear@0 562
nuclear@0 563 ((Mesh*)this)->update_buffers();
nuclear@0 564
nuclear@0 565 if(!vattr[MESH_ATTR_VERTEX].vbo_valid) {
nuclear@0 566 fprintf(stderr, "%s: invalid vertex buffer\n", __FUNCTION__);
nuclear@0 567 return;
nuclear@0 568 }
nuclear@0 569
nuclear@1 570 if(cur_sdr) {
nuclear@0 571 // rendering with shaders
nuclear@0 572 if(global_sdr_loc[MESH_ATTR_VERTEX] == -1) {
nuclear@0 573 fprintf(stderr, "%s: shader attribute location for vertices unset\n", __FUNCTION__);
nuclear@0 574 return;
nuclear@0 575 }
nuclear@0 576
nuclear@0 577 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 578 int loc = global_sdr_loc[i];
nuclear@0 579 if(loc >= 0 && vattr[i].vbo_valid) {
nuclear@0 580 glBindBuffer(GL_ARRAY_BUFFER, vattr[i].vbo);
nuclear@0 581 glVertexAttribPointer(loc, vattr[i].nelem, GL_FLOAT, GL_FALSE, 0, 0);
nuclear@0 582 glEnableVertexAttribArray(loc);
nuclear@0 583 }
nuclear@0 584 }
nuclear@0 585 } else {
nuclear@0 586 #ifndef GL_ES_VERSION_2_0
nuclear@0 587 // rendering with fixed-function (not available in GLES2)
nuclear@0 588 glBindBuffer(GL_ARRAY_BUFFER, vattr[MESH_ATTR_VERTEX].vbo);
nuclear@0 589 glVertexPointer(vattr[MESH_ATTR_VERTEX].nelem, GL_FLOAT, 0, 0);
nuclear@0 590 glEnableClientState(GL_VERTEX_ARRAY);
nuclear@0 591
nuclear@0 592 if(vattr[MESH_ATTR_NORMAL].vbo_valid) {
nuclear@0 593 glBindBuffer(GL_ARRAY_BUFFER, vattr[MESH_ATTR_NORMAL].vbo);
nuclear@0 594 glNormalPointer(GL_FLOAT, 0, 0);
nuclear@0 595 glEnableClientState(GL_NORMAL_ARRAY);
nuclear@0 596 }
nuclear@0 597 if(vattr[MESH_ATTR_TEXCOORD].vbo_valid) {
nuclear@0 598 glBindBuffer(GL_ARRAY_BUFFER, vattr[MESH_ATTR_TEXCOORD].vbo);
nuclear@0 599 glTexCoordPointer(vattr[MESH_ATTR_TEXCOORD].nelem, GL_FLOAT, 0, 0);
nuclear@0 600 glEnableClientState(GL_TEXTURE_COORD_ARRAY);
nuclear@0 601 }
nuclear@0 602 if(vattr[MESH_ATTR_COLOR].vbo_valid) {
nuclear@0 603 glBindBuffer(GL_ARRAY_BUFFER, vattr[MESH_ATTR_COLOR].vbo);
nuclear@0 604 glColorPointer(vattr[MESH_ATTR_COLOR].nelem, GL_FLOAT, 0, 0);
nuclear@0 605 glEnableClientState(GL_COLOR_ARRAY);
nuclear@0 606 }
nuclear@0 607 #endif
nuclear@0 608 }
nuclear@0 609 glBindBuffer(GL_ARRAY_BUFFER, 0);
nuclear@0 610
nuclear@0 611 if(ibo_valid) {
nuclear@0 612 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo);
nuclear@0 613 glDrawElements(GL_TRIANGLES, nfaces * 3, GL_UNSIGNED_INT, 0);
nuclear@0 614 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
nuclear@0 615 } else {
nuclear@0 616 glDrawArrays(GL_TRIANGLES, 0, nverts);
nuclear@0 617 }
nuclear@0 618
nuclear@1 619 if(cur_sdr) {
nuclear@0 620 // rendered with shaders
nuclear@0 621 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 622 int loc = global_sdr_loc[i];
nuclear@0 623 if(loc >= 0 && vattr[i].vbo_valid) {
nuclear@0 624 glDisableVertexAttribArray(loc);
nuclear@0 625 }
nuclear@0 626 }
nuclear@0 627 } else {
nuclear@0 628 #ifndef GL_ES_VERSION_2_0
nuclear@0 629 // rendered with fixed-function
nuclear@0 630 glDisableClientState(GL_VERTEX_ARRAY);
nuclear@0 631 if(vattr[MESH_ATTR_NORMAL].vbo_valid) {
nuclear@0 632 glDisableClientState(GL_NORMAL_ARRAY);
nuclear@0 633 }
nuclear@0 634 if(vattr[MESH_ATTR_TEXCOORD].vbo_valid) {
nuclear@0 635 glDisableClientState(GL_TEXTURE_COORD_ARRAY);
nuclear@0 636 }
nuclear@0 637 if(vattr[MESH_ATTR_COLOR].vbo_valid) {
nuclear@0 638 glDisableClientState(GL_COLOR_ARRAY);
nuclear@0 639 }
nuclear@0 640 #endif
nuclear@0 641 }
nuclear@0 642 }
nuclear@0 643
nuclear@0 644 void Mesh::draw_wire() const
nuclear@0 645 {
nuclear@0 646 ((Mesh*)this)->update_wire_ibo();
nuclear@0 647
nuclear@0 648 if(!vattr[MESH_ATTR_VERTEX].vbo_valid || !wire_ibo_valid) {
nuclear@0 649 fprintf(stderr, "%s: invalid vertex buffer\n", __FUNCTION__);
nuclear@0 650 return;
nuclear@0 651 }
nuclear@0 652 if(global_sdr_loc[MESH_ATTR_VERTEX] == -1) {
nuclear@0 653 fprintf(stderr, "%s: shader attribute location for vertices unset\n", __FUNCTION__);
nuclear@0 654 return;
nuclear@0 655 }
nuclear@0 656
nuclear@0 657 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 658 int loc = global_sdr_loc[i];
nuclear@0 659 if(loc >= 0 && vattr[i].vbo_valid) {
nuclear@0 660 glBindBuffer(GL_ARRAY_BUFFER, vattr[i].vbo);
nuclear@0 661 glVertexAttribPointer(loc, vattr[i].nelem, GL_FLOAT, GL_FALSE, 0, 0);
nuclear@0 662 glEnableVertexAttribArray(loc);
nuclear@0 663 }
nuclear@0 664 }
nuclear@0 665 glBindBuffer(GL_ARRAY_BUFFER, 0);
nuclear@0 666
nuclear@0 667 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, wire_ibo);
nuclear@0 668 glDrawElements(GL_LINES, nfaces * 6, GL_UNSIGNED_INT, 0);
nuclear@0 669 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
nuclear@0 670
nuclear@0 671 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 672 int loc = global_sdr_loc[i];
nuclear@0 673 if(loc >= 0 && vattr[i].vbo_valid) {
nuclear@0 674 glDisableVertexAttribArray(loc);
nuclear@0 675 }
nuclear@0 676 }
nuclear@0 677 }
nuclear@0 678
nuclear@0 679 void Mesh::draw_vertices() const
nuclear@0 680 {
nuclear@0 681 ((Mesh*)this)->update_buffers();
nuclear@0 682
nuclear@0 683 if(!vattr[MESH_ATTR_VERTEX].vbo_valid) {
nuclear@0 684 fprintf(stderr, "%s: invalid vertex buffer\n", __FUNCTION__);
nuclear@0 685 return;
nuclear@0 686 }
nuclear@0 687 if(global_sdr_loc[MESH_ATTR_VERTEX] == -1) {
nuclear@0 688 fprintf(stderr, "%s: shader attribute location for vertices unset\n", __FUNCTION__);
nuclear@0 689 return;
nuclear@0 690 }
nuclear@0 691
nuclear@0 692 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 693 int loc = global_sdr_loc[i];
nuclear@0 694 if(loc >= 0 && vattr[i].vbo_valid) {
nuclear@0 695 glBindBuffer(GL_ARRAY_BUFFER, vattr[i].vbo);
nuclear@0 696 glVertexAttribPointer(loc, vattr[i].nelem, GL_FLOAT, GL_FALSE, 0, 0);
nuclear@0 697 glEnableVertexAttribArray(loc);
nuclear@0 698 }
nuclear@0 699 }
nuclear@0 700 glBindBuffer(GL_ARRAY_BUFFER, 0);
nuclear@0 701
nuclear@0 702 glDrawArrays(GL_POINTS, 0, nverts);
nuclear@0 703
nuclear@0 704 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 705 int loc = global_sdr_loc[i];
nuclear@0 706 if(loc >= 0 && vattr[i].vbo_valid) {
nuclear@0 707 glDisableVertexAttribArray(loc);
nuclear@0 708 }
nuclear@0 709 }
nuclear@0 710 }
nuclear@0 711
nuclear@0 712 void Mesh::draw_normals() const
nuclear@0 713 {
nuclear@0 714 #ifdef USE_OLDGL
nuclear@0 715 Vector3 *varr = (Vector3*)get_attrib_data(MESH_ATTR_VERTEX);
nuclear@0 716 Vector3 *norm = (Vector3*)get_attrib_data(MESH_ATTR_NORMAL);
nuclear@0 717 if(!varr || !norm) {
nuclear@0 718 return;
nuclear@0 719 }
nuclear@0 720
nuclear@0 721 glBegin(GL_LINES);
nuclear@0 722 if(get_current_shader()) {
nuclear@0 723 int vert_loc = global_sdr_loc[MESH_ATTR_VERTEX];
nuclear@0 724 if(vert_loc < 0) {
nuclear@0 725 glEnd();
nuclear@0 726 return;
nuclear@0 727 }
nuclear@0 728
nuclear@0 729 for(size_t i=0; i<nverts; i++) {
nuclear@0 730 glVertexAttrib3f(vert_loc, varr[i].x, varr[i].y, varr[i].z);
nuclear@0 731 Vector3 end = varr[i] + norm[i] * vis_vecsize;
nuclear@0 732 glVertexAttrib3f(vert_loc, end.x, end.y, end.z);
nuclear@0 733 }
nuclear@0 734 } else {
nuclear@0 735 for(size_t i=0; i<nverts; i++) {
nuclear@0 736 glVertex3f(varr[i].x, varr[i].y, varr[i].z);
nuclear@0 737 Vector3 end = varr[i] + norm[i] * vis_vecsize;
nuclear@0 738 glVertex3f(end.x, end.y, end.z);
nuclear@0 739 }
nuclear@0 740 }
nuclear@0 741 glEnd();
nuclear@0 742 #endif // USE_OLDGL
nuclear@0 743 }
nuclear@0 744
nuclear@0 745 void Mesh::draw_tangents() const
nuclear@0 746 {
nuclear@0 747 #ifdef USE_OLDGL
nuclear@0 748 Vector3 *varr = (Vector3*)get_attrib_data(MESH_ATTR_VERTEX);
nuclear@0 749 Vector3 *tang = (Vector3*)get_attrib_data(MESH_ATTR_TANGENT);
nuclear@0 750 if(!varr || !tang) {
nuclear@0 751 return;
nuclear@0 752 }
nuclear@0 753
nuclear@0 754 glBegin(GL_LINES);
nuclear@0 755 if(get_current_shader()) {
nuclear@0 756 int vert_loc = global_sdr_loc[MESH_ATTR_VERTEX];
nuclear@0 757 if(vert_loc < 0) {
nuclear@0 758 glEnd();
nuclear@0 759 return;
nuclear@0 760 }
nuclear@0 761
nuclear@0 762 for(size_t i=0; i<nverts; i++) {
nuclear@0 763 glVertexAttrib3f(vert_loc, varr[i].x, varr[i].y, varr[i].z);
nuclear@0 764 Vector3 end = varr[i] + tang[i] * vis_vecsize;
nuclear@0 765 glVertexAttrib3f(vert_loc, end.x, end.y, end.z);
nuclear@0 766 }
nuclear@0 767 } else {
nuclear@0 768 for(size_t i=0; i<nverts; i++) {
nuclear@0 769 glVertex3f(varr[i].x, varr[i].y, varr[i].z);
nuclear@0 770 Vector3 end = varr[i] + tang[i] * vis_vecsize;
nuclear@0 771 glVertex3f(end.x, end.y, end.z);
nuclear@0 772 }
nuclear@0 773 }
nuclear@0 774 glEnd();
nuclear@0 775 #endif // USE_OLDGL
nuclear@0 776 }
nuclear@0 777
nuclear@0 778 void Mesh::get_aabbox(Vector3 *vmin, Vector3 *vmax) const
nuclear@0 779 {
nuclear@0 780 if(!aabb_valid) {
nuclear@0 781 ((Mesh*)this)->calc_aabb();
nuclear@0 782 }
nuclear@0 783 *vmin = aabb.min;
nuclear@0 784 *vmax = aabb.max;
nuclear@0 785 }
nuclear@0 786
nuclear@0 787 const AABox &Mesh::get_aabbox() const
nuclear@0 788 {
nuclear@0 789 if(!aabb_valid) {
nuclear@0 790 ((Mesh*)this)->calc_aabb();
nuclear@0 791 }
nuclear@0 792 return aabb;
nuclear@0 793 }
nuclear@0 794
nuclear@0 795 float Mesh::get_bsphere(Vector3 *center, float *rad) const
nuclear@0 796 {
nuclear@0 797 if(!bsph_valid) {
nuclear@0 798 ((Mesh*)this)->calc_bsph();
nuclear@0 799 }
nuclear@0 800 *center = bsph.center;
nuclear@0 801 *rad = bsph.radius;
nuclear@0 802 return bsph.radius;
nuclear@0 803 }
nuclear@0 804
nuclear@0 805 const Sphere &Mesh::get_bsphere() const
nuclear@0 806 {
nuclear@0 807 if(!bsph_valid) {
nuclear@0 808 ((Mesh*)this)->calc_bsph();
nuclear@0 809 }
nuclear@0 810 return bsph;
nuclear@0 811 }
nuclear@0 812
nuclear@0 813 /// static function
nuclear@0 814 void Mesh::set_intersect_mode(unsigned int mode)
nuclear@0 815 {
nuclear@0 816 Mesh::intersect_mode = mode;
nuclear@0 817 }
nuclear@0 818
nuclear@0 819 /// static function
nuclear@0 820 unsigned int Mesh::get_intersect_mode()
nuclear@0 821 {
nuclear@0 822 return Mesh::intersect_mode;
nuclear@0 823 }
nuclear@0 824
nuclear@0 825 /// static function
nuclear@0 826 void Mesh::set_vertex_select_distance(float dist)
nuclear@0 827 {
nuclear@0 828 Mesh::vertex_sel_dist = dist;
nuclear@0 829 }
nuclear@0 830
nuclear@0 831 /// static function
nuclear@0 832 float Mesh::get_vertex_select_distance()
nuclear@0 833 {
nuclear@0 834 return Mesh::vertex_sel_dist;
nuclear@0 835 }
nuclear@0 836
nuclear@0 837 bool Mesh::intersect(const Ray &ray, HitPoint *hit) const
nuclear@0 838 {
nuclear@0 839 assert((Mesh::intersect_mode & (ISECT_VERTICES | ISECT_FACE)) != (ISECT_VERTICES | ISECT_FACE));
nuclear@0 840
nuclear@0 841 const Vector3 *varr = (Vector3*)get_attrib_data(MESH_ATTR_VERTEX);
nuclear@0 842 const Vector3 *narr = (Vector3*)get_attrib_data(MESH_ATTR_NORMAL);
nuclear@0 843 if(!varr) {
nuclear@0 844 return false;
nuclear@0 845 }
nuclear@0 846 const unsigned int *idxarr = get_index_data();
nuclear@0 847
nuclear@0 848 // first test with the bounding box
nuclear@0 849 AABox box;
nuclear@0 850 get_aabbox(&box.min, &box.max);
nuclear@0 851 if(!box.intersect(ray)) {
nuclear@0 852 return false;
nuclear@0 853 }
nuclear@0 854
nuclear@0 855 HitPoint nearest_hit;
nuclear@0 856 nearest_hit.dist = FLT_MAX;
nuclear@0 857 nearest_hit.obj = 0;
nuclear@0 858
nuclear@0 859 if(Mesh::intersect_mode & ISECT_VERTICES) {
nuclear@0 860 // we asked for "intersections" with the vertices of the mesh
nuclear@0 861 long nearest_vidx = -1;
nuclear@0 862 float thres_sq = Mesh::vertex_sel_dist * Mesh::vertex_sel_dist;
nuclear@0 863
nuclear@0 864 for(unsigned int i=0; i<nverts; i++) {
nuclear@0 865
nuclear@0 866 if((Mesh::intersect_mode & ISECT_FRONT) && dot_product(narr[i], ray.dir) > 0) {
nuclear@0 867 continue;
nuclear@0 868 }
nuclear@0 869
nuclear@0 870 // project the vertex onto the ray line
nuclear@0 871 float t = dot_product(varr[i] - ray.origin, ray.dir);
nuclear@0 872 Vector3 vproj = ray.origin + ray.dir * t;
nuclear@0 873
nuclear@0 874 float dist_sq = (vproj - varr[i]).length_sq();
nuclear@0 875 if(dist_sq < thres_sq) {
nuclear@0 876 if(!hit) {
nuclear@0 877 return true;
nuclear@0 878 }
nuclear@0 879 if(t < nearest_hit.dist) {
nuclear@0 880 nearest_hit.dist = t;
nuclear@0 881 nearest_vidx = i;
nuclear@0 882 }
nuclear@0 883 }
nuclear@0 884 }
nuclear@0 885
nuclear@0 886 if(nearest_vidx != -1) {
nuclear@0 887 hitvert = varr[nearest_vidx];
nuclear@0 888 nearest_hit.obj = &hitvert;
nuclear@0 889 }
nuclear@0 890
nuclear@0 891 } else {
nuclear@0 892 // regular intersection test with polygons
nuclear@0 893
nuclear@0 894 for(unsigned int i=0; i<nfaces; i++) {
nuclear@0 895 Triangle face(i, varr, idxarr);
nuclear@0 896
nuclear@0 897 // ignore back-facing polygons if the mode flags include ISECT_FRONT
nuclear@0 898 if((Mesh::intersect_mode & ISECT_FRONT) && dot_product(face.get_normal(), ray.dir) > 0) {
nuclear@0 899 continue;
nuclear@0 900 }
nuclear@0 901
nuclear@0 902 HitPoint fhit;
nuclear@0 903 if(face.intersect(ray, hit ? &fhit : 0)) {
nuclear@0 904 if(!hit) {
nuclear@0 905 return true;
nuclear@0 906 }
nuclear@0 907 if(fhit.dist < nearest_hit.dist) {
nuclear@0 908 nearest_hit = fhit;
nuclear@0 909 hitface = face;
nuclear@0 910 }
nuclear@0 911 }
nuclear@0 912 }
nuclear@0 913 }
nuclear@0 914
nuclear@0 915 if(nearest_hit.obj) {
nuclear@0 916 if(hit) {
nuclear@0 917 *hit = nearest_hit;
nuclear@0 918
nuclear@0 919 // if we are interested in the mesh and not the faces set obj to this
nuclear@0 920 if(Mesh::intersect_mode & ISECT_FACE) {
nuclear@0 921 hit->obj = &hitface;
nuclear@0 922 } else if(Mesh::intersect_mode & ISECT_VERTICES) {
nuclear@0 923 hit->obj = &hitvert;
nuclear@0 924 } else {
nuclear@0 925 hit->obj = this;
nuclear@0 926 }
nuclear@0 927 }
nuclear@0 928 return true;
nuclear@0 929 }
nuclear@0 930 return false;
nuclear@0 931 }
nuclear@0 932
nuclear@0 933
nuclear@6 934 // texture coordinate manipulation
nuclear@6 935 void Mesh::texcoord_apply_xform(const Matrix4x4 &xform)
nuclear@6 936 {
nuclear@6 937 if(!has_attrib(MESH_ATTR_TEXCOORD)) {
nuclear@6 938 return;
nuclear@6 939 }
nuclear@6 940
nuclear@6 941 for(unsigned int i=0; i<nverts; i++) {
nuclear@6 942 Vector4 tc = get_attrib(MESH_ATTR_TEXCOORD, i);
nuclear@6 943 set_attrib(MESH_ATTR_TEXCOORD, i, tc.transformed(xform));
nuclear@6 944 }
nuclear@6 945 }
nuclear@6 946
nuclear@6 947 void Mesh::texcoord_gen_plane(const Vector3 &norm, const Vector3 &tang)
nuclear@6 948 {
nuclear@6 949 if(!nverts) return;
nuclear@6 950
nuclear@6 951 if(!has_attrib(MESH_ATTR_TEXCOORD)) {
nuclear@6 952 // allocate texture coordinate attribute array
nuclear@6 953 set_attrib_data(MESH_ATTR_TEXCOORD, 2, nverts);
nuclear@6 954 }
nuclear@6 955
nuclear@6 956 Vector3 n = norm.normalized();
nuclear@6 957 Vector3 b = cross_product(n, tang).normalized();
nuclear@6 958 Vector3 t = cross_product(b, n);
nuclear@6 959
nuclear@6 960 for(unsigned int i=0; i<nverts; i++) {
nuclear@6 961 Vector3 pos = get_attrib(MESH_ATTR_VERTEX, i);
nuclear@6 962
nuclear@6 963 // distance along the tangent direction
nuclear@6 964 float u = dot_product(pos, t);
nuclear@6 965 // distance along the bitangent direction
nuclear@6 966 float v = dot_product(pos, b);
nuclear@6 967
nuclear@6 968 set_attrib(MESH_ATTR_TEXCOORD, i, Vector4(u, v, 0, 1));
nuclear@6 969 }
nuclear@6 970 }
nuclear@6 971
nuclear@6 972 void Mesh::texcoord_gen_box()
nuclear@6 973 {
nuclear@6 974 if(!nverts || !has_attrib(MESH_ATTR_NORMAL)) return;
nuclear@6 975
nuclear@6 976 if(!has_attrib(MESH_ATTR_TEXCOORD)) {
nuclear@6 977 // allocate texture coordinate attribute array
nuclear@6 978 set_attrib_data(MESH_ATTR_TEXCOORD, 2, nverts);
nuclear@6 979 }
nuclear@6 980
nuclear@6 981 for(unsigned int i=0; i<nverts; i++) {
nuclear@6 982 Vector3 pos = Vector3(get_attrib(MESH_ATTR_VERTEX, i)) * 0.5 + Vector3(0.5, 0.5, 0.5);
nuclear@6 983 Vector3 norm = get_attrib(MESH_ATTR_NORMAL, i);
nuclear@6 984
nuclear@6 985 float abs_nx = fabs(norm.x);
nuclear@6 986 float abs_ny = fabs(norm.y);
nuclear@6 987 float abs_nz = fabs(norm.z);
nuclear@6 988 int dom = abs_nx > abs_ny && abs_nx > abs_nz ? 0 : (abs_ny > abs_nz ? 1 : 2);
nuclear@6 989
nuclear@6 990 float uv[2], *uvptr = uv;
nuclear@6 991 for(int j=0; j<3; j++) {
nuclear@6 992 if(j == dom) continue; // skip dominant axis
nuclear@6 993
nuclear@6 994 *uvptr++ = pos[j];
nuclear@6 995 }
nuclear@6 996 set_attrib(MESH_ATTR_TEXCOORD, i, Vector4(uv[0], uv[1], 0, 1));
nuclear@6 997 }
nuclear@6 998 }
nuclear@6 999
nuclear@0 1000 // ------ private member functions ------
nuclear@0 1001
nuclear@0 1002 void Mesh::calc_aabb()
nuclear@0 1003 {
nuclear@0 1004 // the cast is to force calling the const version which doesn't invalidate
nuclear@0 1005 if(!((const Mesh*)this)->get_attrib_data(MESH_ATTR_VERTEX)) {
nuclear@0 1006 return;
nuclear@0 1007 }
nuclear@0 1008
nuclear@0 1009 aabb.min = Vector3(FLT_MAX, FLT_MAX, FLT_MAX);
nuclear@0 1010 aabb.max = -aabb.min;
nuclear@0 1011
nuclear@0 1012 for(unsigned int i=0; i<nverts; i++) {
nuclear@0 1013 Vector4 v = get_attrib(MESH_ATTR_VERTEX, i);
nuclear@0 1014 for(int j=0; j<3; j++) {
nuclear@0 1015 if(v[j] < aabb.min[j]) {
nuclear@0 1016 aabb.min[j] = v[j];
nuclear@0 1017 }
nuclear@0 1018 if(v[j] > aabb.max[j]) {
nuclear@0 1019 aabb.max[j] = v[j];
nuclear@0 1020 }
nuclear@0 1021 }
nuclear@0 1022 }
nuclear@0 1023 aabb_valid = true;
nuclear@0 1024 }
nuclear@0 1025
nuclear@0 1026 void Mesh::calc_bsph()
nuclear@0 1027 {
nuclear@0 1028 // the cast is to force calling the const version which doesn't invalidate
nuclear@0 1029 if(!((const Mesh*)this)->get_attrib_data(MESH_ATTR_VERTEX)) {
nuclear@0 1030 return;
nuclear@0 1031 }
nuclear@0 1032
nuclear@0 1033 Vector3 v;
nuclear@0 1034 bsph.center = Vector3(0, 0, 0);
nuclear@0 1035
nuclear@0 1036 // first find the center
nuclear@0 1037 for(unsigned int i=0; i<nverts; i++) {
nuclear@0 1038 v = get_attrib(MESH_ATTR_VERTEX, i);
nuclear@0 1039 bsph.center += v;
nuclear@0 1040 }
nuclear@0 1041 bsph.center /= (float)nverts;
nuclear@0 1042
nuclear@0 1043 bsph.radius = 0.0f;
nuclear@0 1044 for(unsigned int i=0; i<nverts; i++) {
nuclear@0 1045 v = get_attrib(MESH_ATTR_VERTEX, i);
nuclear@0 1046 float dist_sq = (v - bsph.center).length_sq();
nuclear@0 1047 if(dist_sq > bsph.radius) {
nuclear@0 1048 bsph.radius = dist_sq;
nuclear@0 1049 }
nuclear@0 1050 }
nuclear@0 1051 bsph.radius = sqrt(bsph.radius);
nuclear@0 1052
nuclear@0 1053 bsph_valid = true;
nuclear@0 1054 }
nuclear@0 1055
nuclear@0 1056 void Mesh::update_buffers()
nuclear@0 1057 {
nuclear@0 1058 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 1059 if(has_attrib(i) && !vattr[i].vbo_valid) {
nuclear@0 1060 glBindBuffer(GL_ARRAY_BUFFER, vattr[i].vbo);
nuclear@0 1061 glBufferData(GL_ARRAY_BUFFER, nverts * vattr[i].nelem * sizeof(float), &vattr[i].data[0], GL_STATIC_DRAW);
nuclear@0 1062 vattr[i].vbo_valid = true;
nuclear@0 1063 }
nuclear@0 1064 }
nuclear@0 1065 glBindBuffer(GL_ARRAY_BUFFER, 0);
nuclear@0 1066
nuclear@0 1067 if(idata_valid && !ibo_valid) {
nuclear@0 1068 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo);
nuclear@0 1069 glBufferData(GL_ELEMENT_ARRAY_BUFFER, nfaces * 3 * sizeof(unsigned int), &idata[0], GL_STATIC_DRAW);
nuclear@0 1070 ibo_valid = true;
nuclear@0 1071 }
nuclear@0 1072 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
nuclear@0 1073 }
nuclear@0 1074
nuclear@0 1075 void Mesh::update_wire_ibo()
nuclear@0 1076 {
nuclear@0 1077 update_buffers();
nuclear@0 1078
nuclear@0 1079 if(wire_ibo_valid) {
nuclear@0 1080 return;
nuclear@0 1081 }
nuclear@0 1082
nuclear@0 1083 if(!wire_ibo) {
nuclear@0 1084 glGenBuffers(1, &wire_ibo);
nuclear@0 1085 }
nuclear@0 1086
nuclear@0 1087 unsigned int *wire_idxarr = new unsigned int[nfaces * 6];
nuclear@0 1088 unsigned int *dest = wire_idxarr;
nuclear@0 1089
nuclear@0 1090 if(ibo_valid) {
nuclear@0 1091 // we're dealing with an indexed mesh
nuclear@0 1092 const unsigned int *idxarr = ((const Mesh*)this)->get_index_data();
nuclear@0 1093
nuclear@0 1094 for(unsigned int i=0; i<nfaces; i++) {
nuclear@0 1095 *dest++ = idxarr[0];
nuclear@0 1096 *dest++ = idxarr[1];
nuclear@0 1097 *dest++ = idxarr[1];
nuclear@0 1098 *dest++ = idxarr[2];
nuclear@0 1099 *dest++ = idxarr[2];
nuclear@0 1100 *dest++ = idxarr[0];
nuclear@0 1101 idxarr += 3;
nuclear@0 1102 }
nuclear@0 1103 } else {
nuclear@0 1104 // not an indexed mesh ...
nuclear@0 1105 for(unsigned int i=0; i<nfaces; i++) {
nuclear@0 1106 int vidx = i * 3;
nuclear@0 1107 *dest++ = vidx;
nuclear@0 1108 *dest++ = vidx + 1;
nuclear@0 1109 *dest++ = vidx + 1;
nuclear@0 1110 *dest++ = vidx + 2;
nuclear@0 1111 *dest++ = vidx + 2;
nuclear@0 1112 *dest++ = vidx;
nuclear@0 1113 }
nuclear@0 1114 }
nuclear@0 1115
nuclear@0 1116 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, wire_ibo);
nuclear@0 1117 glBufferData(GL_ELEMENT_ARRAY_BUFFER, nfaces * 6 * sizeof(unsigned int), wire_idxarr, GL_STATIC_DRAW);
nuclear@0 1118 delete [] wire_idxarr;
nuclear@0 1119 wire_ibo_valid = true;
nuclear@0 1120 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
nuclear@0 1121 }
nuclear@0 1122
nuclear@0 1123
nuclear@0 1124 // ------ class Triangle ------
nuclear@0 1125 Triangle::Triangle()
nuclear@0 1126 {
nuclear@0 1127 normal_valid = false;
nuclear@0 1128 id = -1;
nuclear@0 1129 }
nuclear@0 1130
nuclear@0 1131 Triangle::Triangle(const Vector3 &v0, const Vector3 &v1, const Vector3 &v2)
nuclear@0 1132 {
nuclear@0 1133 v[0] = v0;
nuclear@0 1134 v[1] = v1;
nuclear@0 1135 v[2] = v2;
nuclear@0 1136 normal_valid = false;
nuclear@0 1137 id = -1;
nuclear@0 1138 }
nuclear@0 1139
nuclear@0 1140 Triangle::Triangle(int n, const Vector3 *varr, const unsigned int *idxarr)
nuclear@0 1141 {
nuclear@0 1142 if(idxarr) {
nuclear@0 1143 v[0] = varr[idxarr[n * 3]];
nuclear@0 1144 v[1] = varr[idxarr[n * 3 + 1]];
nuclear@0 1145 v[2] = varr[idxarr[n * 3 + 2]];
nuclear@0 1146 } else {
nuclear@0 1147 v[0] = varr[n * 3];
nuclear@0 1148 v[1] = varr[n * 3 + 1];
nuclear@0 1149 v[2] = varr[n * 3 + 2];
nuclear@0 1150 }
nuclear@0 1151 normal_valid = false;
nuclear@0 1152 id = n;
nuclear@0 1153 }
nuclear@0 1154
nuclear@0 1155 void Triangle::calc_normal()
nuclear@0 1156 {
nuclear@0 1157 normal = cross_product(v[1] - v[0], v[2] - v[0]).normalized();
nuclear@0 1158 normal_valid = true;
nuclear@0 1159 }
nuclear@0 1160
nuclear@0 1161 const Vector3 &Triangle::get_normal() const
nuclear@0 1162 {
nuclear@0 1163 if(!normal_valid) {
nuclear@0 1164 ((Triangle*)this)->calc_normal();
nuclear@0 1165 }
nuclear@0 1166 return normal;
nuclear@0 1167 }
nuclear@0 1168
nuclear@0 1169 void Triangle::transform(const Matrix4x4 &xform)
nuclear@0 1170 {
nuclear@0 1171 v[0].transform(xform);
nuclear@0 1172 v[1].transform(xform);
nuclear@0 1173 v[2].transform(xform);
nuclear@0 1174 normal_valid = false;
nuclear@0 1175 }
nuclear@0 1176
nuclear@0 1177 void Triangle::draw() const
nuclear@0 1178 {
nuclear@0 1179 Vector3 n[3];
nuclear@0 1180 n[0] = get_normal();
nuclear@0 1181 n[1] = get_normal();
nuclear@0 1182 n[2] = get_normal();
nuclear@0 1183
nuclear@0 1184 int vloc = Mesh::get_attrib_location(MESH_ATTR_VERTEX);
nuclear@0 1185 int nloc = Mesh::get_attrib_location(MESH_ATTR_NORMAL);
nuclear@0 1186
nuclear@0 1187 glEnableVertexAttribArray(vloc);
nuclear@0 1188 glVertexAttribPointer(vloc, 3, GL_FLOAT, GL_FALSE, 0, &v[0].x);
nuclear@0 1189 glVertexAttribPointer(nloc, 3, GL_FLOAT, GL_FALSE, 0, &n[0].x);
nuclear@0 1190
nuclear@0 1191 glDrawArrays(GL_TRIANGLES, 0, 3);
nuclear@0 1192
nuclear@0 1193 glDisableVertexAttribArray(vloc);
nuclear@0 1194 glDisableVertexAttribArray(nloc);
nuclear@0 1195 }
nuclear@0 1196
nuclear@0 1197 void Triangle::draw_wire() const
nuclear@0 1198 {
nuclear@0 1199 static const int idxarr[] = {0, 1, 1, 2, 2, 0};
nuclear@0 1200 int vloc = Mesh::get_attrib_location(MESH_ATTR_VERTEX);
nuclear@0 1201
nuclear@0 1202 glEnableVertexAttribArray(vloc);
nuclear@0 1203 glVertexAttribPointer(vloc, 3, GL_FLOAT, GL_FALSE, 0, &v[0].x);
nuclear@0 1204
nuclear@0 1205 glDrawElements(GL_LINES, 6, GL_UNSIGNED_INT, idxarr);
nuclear@0 1206
nuclear@0 1207 glDisableVertexAttribArray(vloc);
nuclear@0 1208 }
nuclear@0 1209
nuclear@0 1210 Vector3 Triangle::calc_barycentric(const Vector3 &pos) const
nuclear@0 1211 {
nuclear@0 1212 Vector3 norm = get_normal();
nuclear@0 1213
nuclear@0 1214 float area_sq = fabs(dot_product(cross_product(v[1] - v[0], v[2] - v[0]), norm));
nuclear@0 1215 if(area_sq < 1e-5) {
nuclear@0 1216 return Vector3(0, 0, 0);
nuclear@0 1217 }
nuclear@0 1218
nuclear@0 1219 float asq0 = fabs(dot_product(cross_product(v[1] - pos, v[2] - pos), norm));
nuclear@0 1220 float asq1 = fabs(dot_product(cross_product(v[2] - pos, v[0] - pos), norm));
nuclear@0 1221 float asq2 = fabs(dot_product(cross_product(v[0] - pos, v[1] - pos), norm));
nuclear@0 1222
nuclear@0 1223 return Vector3(asq0 / area_sq, asq1 / area_sq, asq2 / area_sq);
nuclear@0 1224 }
nuclear@0 1225
nuclear@0 1226 bool Triangle::intersect(const Ray &ray, HitPoint *hit) const
nuclear@0 1227 {
nuclear@0 1228 Vector3 normal = get_normal();
nuclear@0 1229
nuclear@0 1230 float ndotdir = dot_product(ray.dir, normal);
nuclear@0 1231 if(fabs(ndotdir) < 1e-4) {
nuclear@0 1232 return false;
nuclear@0 1233 }
nuclear@0 1234
nuclear@0 1235 Vector3 vertdir = v[0] - ray.origin;
nuclear@0 1236 float t = dot_product(normal, vertdir) / ndotdir;
nuclear@0 1237
nuclear@0 1238 Vector3 pos = ray.origin + ray.dir * t;
nuclear@0 1239 Vector3 bary = calc_barycentric(pos);
nuclear@0 1240
nuclear@0 1241 if(bary.x + bary.y + bary.z > 1.00001) {
nuclear@0 1242 return false;
nuclear@0 1243 }
nuclear@0 1244
nuclear@0 1245 if(hit) {
nuclear@0 1246 hit->dist = t;
nuclear@0 1247 hit->pos = ray.origin + ray.dir * t;
nuclear@0 1248 hit->normal = normal;
nuclear@0 1249 hit->obj = this;
nuclear@0 1250 }
nuclear@0 1251 return true;
nuclear@0 1252 }