tavli

annotate src/mesh.cc @ 7:f1ecc2439802

hinges
author John Tsiombikas <nuclear@member.fsf.org>
date Fri, 26 Jun 2015 05:23:46 +0300
parents a0d30f6f20d4
children a8e26f163f99
rev   line source
nuclear@0 1 #include <stdio.h>
nuclear@0 2 #include <stdlib.h>
nuclear@0 3 #include <float.h>
nuclear@0 4 #include <assert.h>
nuclear@0 5 #include "opengl.h"
nuclear@0 6 #include "mesh.h"
nuclear@0 7 //#include "xform_node.h"
nuclear@0 8
nuclear@1 9 int Mesh::global_sdr_loc[NUM_MESH_ATTR] = { 0, 1, 2, 3, 4, 5, 6 };
nuclear@1 10 /*
nuclear@0 11 (int)SDR_ATTR_VERTEX,
nuclear@0 12 (int)SDR_ATTR_NORMAL,
nuclear@0 13 (int)SDR_ATTR_TANGENT,
nuclear@0 14 (int)SDR_ATTR_TEXCOORD,
nuclear@0 15 (int)SDR_ATTR_COLOR,
nuclear@0 16 -1, -1};
nuclear@1 17 */
nuclear@0 18 unsigned int Mesh::intersect_mode = ISECT_DEFAULT;
nuclear@0 19 float Mesh::vertex_sel_dist = 0.01;
nuclear@0 20 float Mesh::vis_vecsize = 1.0;
nuclear@0 21
nuclear@0 22 Mesh::Mesh()
nuclear@0 23 {
nuclear@0 24 clear();
nuclear@0 25
nuclear@0 26 glGenBuffers(NUM_MESH_ATTR + 1, buffer_objects);
nuclear@0 27
nuclear@0 28 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 29 vattr[i].vbo = buffer_objects[i];
nuclear@0 30 }
nuclear@0 31 ibo = buffer_objects[NUM_MESH_ATTR];
nuclear@0 32 wire_ibo = 0;
nuclear@0 33 }
nuclear@0 34
nuclear@0 35 Mesh::~Mesh()
nuclear@0 36 {
nuclear@0 37 glDeleteBuffers(NUM_MESH_ATTR + 1, buffer_objects);
nuclear@0 38
nuclear@0 39 if(wire_ibo) {
nuclear@0 40 glDeleteBuffers(1, &wire_ibo);
nuclear@0 41 }
nuclear@0 42 }
nuclear@0 43
nuclear@0 44 Mesh::Mesh(const Mesh &rhs)
nuclear@0 45 {
nuclear@0 46 clear();
nuclear@0 47
nuclear@0 48 glGenBuffers(NUM_MESH_ATTR + 1, buffer_objects);
nuclear@0 49
nuclear@0 50 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 51 vattr[i].vbo = buffer_objects[i];
nuclear@0 52 }
nuclear@0 53 ibo = buffer_objects[NUM_MESH_ATTR];
nuclear@0 54 wire_ibo = 0;
nuclear@0 55
nuclear@0 56 clone(rhs);
nuclear@0 57 }
nuclear@0 58
nuclear@0 59 Mesh &Mesh::operator =(const Mesh &rhs)
nuclear@0 60 {
nuclear@0 61 if(&rhs != this) {
nuclear@0 62 clone(rhs);
nuclear@0 63 }
nuclear@0 64 return *this;
nuclear@0 65 }
nuclear@0 66
nuclear@0 67 bool Mesh::clone(const Mesh &m)
nuclear@0 68 {
nuclear@0 69 clear();
nuclear@0 70
nuclear@0 71 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 72 if(m.has_attrib(i)) {
nuclear@0 73 m.get_attrib_data(i); // force validation of the actual data on the source mesh
nuclear@0 74
nuclear@0 75 vattr[i].nelem = m.vattr[i].nelem;
nuclear@0 76 vattr[i].data = m.vattr[i].data; // copy the actual data
nuclear@0 77 vattr[i].data_valid = true;
nuclear@0 78 }
nuclear@0 79 }
nuclear@0 80
nuclear@0 81 if(m.is_indexed()) {
nuclear@0 82 m.get_index_data(); // again, force validation
nuclear@0 83
nuclear@0 84 // copy the index data
nuclear@0 85 idata = m.idata;
nuclear@0 86 idata_valid = true;
nuclear@0 87 }
nuclear@0 88
nuclear@0 89 name = m.name;
nuclear@0 90 nverts = m.nverts;
nuclear@0 91 nfaces = m.nfaces;
nuclear@0 92
nuclear@0 93 //bones = m.bones;
nuclear@0 94
nuclear@0 95 memcpy(cur_val, m.cur_val, sizeof cur_val);
nuclear@0 96
nuclear@0 97 aabb = m.aabb;
nuclear@0 98 aabb_valid = m.aabb_valid;
nuclear@0 99 bsph = m.bsph;
nuclear@0 100 bsph_valid = m.bsph_valid;
nuclear@0 101
nuclear@0 102 hitface = m.hitface;
nuclear@0 103 hitvert = m.hitvert;
nuclear@0 104
nuclear@0 105 intersect_mode = m.intersect_mode;
nuclear@0 106 vertex_sel_dist = m.vertex_sel_dist;
nuclear@0 107 vis_vecsize = m.vis_vecsize;
nuclear@0 108
nuclear@0 109 return true;
nuclear@0 110 }
nuclear@0 111
nuclear@0 112 void Mesh::set_name(const char *name)
nuclear@0 113 {
nuclear@0 114 this->name = name;
nuclear@0 115 }
nuclear@0 116
nuclear@0 117 const char *Mesh::get_name() const
nuclear@0 118 {
nuclear@0 119 return name.c_str();
nuclear@0 120 }
nuclear@0 121
nuclear@0 122 bool Mesh::has_attrib(int attr) const
nuclear@0 123 {
nuclear@0 124 if(attr < 0 || attr >= NUM_MESH_ATTR) {
nuclear@0 125 return false;
nuclear@0 126 }
nuclear@0 127
nuclear@0 128 // if neither of these is valid, then nobody has set this attribute
nuclear@0 129 return vattr[attr].vbo_valid || vattr[attr].data_valid;
nuclear@0 130 }
nuclear@0 131
nuclear@0 132 bool Mesh::is_indexed() const
nuclear@0 133 {
nuclear@0 134 return ibo_valid || idata_valid;
nuclear@0 135 }
nuclear@0 136
nuclear@0 137 void Mesh::clear()
nuclear@0 138 {
nuclear@0 139 //bones.clear();
nuclear@0 140
nuclear@0 141 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 142 vattr[i].nelem = 0;
nuclear@0 143 vattr[i].vbo_valid = false;
nuclear@0 144 vattr[i].data_valid = false;
nuclear@0 145 //vattr[i].sdr_loc = -1;
nuclear@0 146 vattr[i].data.clear();
nuclear@0 147 }
nuclear@0 148 ibo_valid = idata_valid = false;
nuclear@0 149 idata.clear();
nuclear@0 150
nuclear@0 151 wire_ibo_valid = false;
nuclear@0 152
nuclear@0 153 nverts = nfaces = 0;
nuclear@0 154
nuclear@0 155 bsph_valid = false;
nuclear@0 156 aabb_valid = false;
nuclear@0 157 }
nuclear@0 158
nuclear@0 159 float *Mesh::set_attrib_data(int attrib, int nelem, unsigned int num, const float *data)
nuclear@0 160 {
nuclear@0 161 if(attrib < 0 || attrib >= NUM_MESH_ATTR) {
nuclear@0 162 fprintf(stderr, "%s: invalid attrib: %d\n", __FUNCTION__, attrib);
nuclear@0 163 return 0;
nuclear@0 164 }
nuclear@0 165
nuclear@0 166 if(nverts && num != nverts) {
nuclear@0 167 fprintf(stderr, "%s: attribute count missmatch (%d instead of %d)\n", __FUNCTION__, num, nverts);
nuclear@0 168 return 0;
nuclear@0 169 }
nuclear@0 170 nverts = num;
nuclear@0 171
nuclear@0 172 vattr[attrib].data.clear();
nuclear@0 173 vattr[attrib].nelem = nelem;
nuclear@0 174 vattr[attrib].data.resize(num * nelem);
nuclear@0 175
nuclear@0 176 if(data) {
nuclear@0 177 memcpy(&vattr[attrib].data[0], data, num * nelem * sizeof *data);
nuclear@0 178 }
nuclear@0 179
nuclear@0 180 vattr[attrib].data_valid = true;
nuclear@0 181 vattr[attrib].vbo_valid = false;
nuclear@0 182 return &vattr[attrib].data[0];
nuclear@0 183 }
nuclear@0 184
nuclear@0 185 float *Mesh::get_attrib_data(int attrib)
nuclear@0 186 {
nuclear@0 187 if(attrib < 0 || attrib >= NUM_MESH_ATTR) {
nuclear@0 188 fprintf(stderr, "%s: invalid attrib: %d\n", __FUNCTION__, attrib);
nuclear@0 189 return 0;
nuclear@0 190 }
nuclear@0 191
nuclear@0 192 vattr[attrib].vbo_valid = false;
nuclear@0 193 return (float*)((const Mesh*)this)->get_attrib_data(attrib);
nuclear@0 194 }
nuclear@0 195
nuclear@0 196 const float *Mesh::get_attrib_data(int attrib) const
nuclear@0 197 {
nuclear@0 198 if(attrib < 0 || attrib >= NUM_MESH_ATTR) {
nuclear@0 199 fprintf(stderr, "%s: invalid attrib: %d\n", __FUNCTION__, attrib);
nuclear@0 200 return 0;
nuclear@0 201 }
nuclear@0 202
nuclear@0 203 if(!vattr[attrib].data_valid) {
nuclear@0 204 #if GL_ES_VERSION_2_0
nuclear@0 205 fprintf(stderr, "%s: can't read back attrib data on CrippledGL ES\n", __FUNCTION__);
nuclear@0 206 return 0;
nuclear@0 207 #else
nuclear@0 208 if(!vattr[attrib].vbo_valid) {
nuclear@0 209 fprintf(stderr, "%s: unavailable attrib: %d\n", __FUNCTION__, attrib);
nuclear@0 210 return 0;
nuclear@0 211 }
nuclear@0 212
nuclear@0 213 // local data copy is unavailable, grab the data from the vbo
nuclear@0 214 Mesh *m = (Mesh*)this;
nuclear@0 215 m->vattr[attrib].data.resize(nverts * vattr[attrib].nelem);
nuclear@0 216
nuclear@0 217 glBindBuffer(GL_ARRAY_BUFFER, vattr[attrib].vbo);
nuclear@0 218 void *data = glMapBuffer(GL_ARRAY_BUFFER, GL_READ_ONLY);
nuclear@0 219 memcpy(&m->vattr[attrib].data[0], data, nverts * vattr[attrib].nelem * sizeof(float));
nuclear@0 220 glUnmapBuffer(GL_ARRAY_BUFFER);
nuclear@0 221
nuclear@0 222 vattr[attrib].data_valid = true;
nuclear@0 223 #endif
nuclear@0 224 }
nuclear@0 225
nuclear@0 226 return &vattr[attrib].data[0];
nuclear@0 227 }
nuclear@0 228
nuclear@0 229 void Mesh::set_attrib(int attrib, int idx, const Vector4 &v)
nuclear@0 230 {
nuclear@0 231 float *data = get_attrib_data(attrib);
nuclear@0 232 if(data) {
nuclear@0 233 data += idx * vattr[attrib].nelem;
nuclear@0 234 for(int i=0; i<vattr[attrib].nelem; i++) {
nuclear@0 235 data[i] = v[i];
nuclear@0 236 }
nuclear@0 237 }
nuclear@0 238 }
nuclear@0 239
nuclear@0 240 Vector4 Mesh::get_attrib(int attrib, int idx) const
nuclear@0 241 {
nuclear@0 242 Vector4 v(0.0, 0.0, 0.0, 1.0);
nuclear@0 243 const float *data = get_attrib_data(attrib);
nuclear@0 244 if(data) {
nuclear@0 245 data += idx * vattr[attrib].nelem;
nuclear@0 246 for(int i=0; i<vattr[attrib].nelem; i++) {
nuclear@0 247 v[i] = data[i];
nuclear@0 248 }
nuclear@0 249 }
nuclear@0 250 return v;
nuclear@0 251 }
nuclear@0 252
nuclear@0 253 int Mesh::get_attrib_count(int attrib) const
nuclear@0 254 {
nuclear@0 255 return has_attrib(attrib) ? nverts : 0;
nuclear@0 256 }
nuclear@0 257
nuclear@0 258
nuclear@0 259 unsigned int *Mesh::set_index_data(int num, const unsigned int *indices)
nuclear@0 260 {
nuclear@0 261 int nidx = nfaces * 3;
nuclear@0 262 if(nidx && num != nidx) {
nuclear@0 263 fprintf(stderr, "%s: index count missmatch (%d instead of %d)\n", __FUNCTION__, num, nidx);
nuclear@0 264 return 0;
nuclear@0 265 }
nuclear@0 266 nfaces = num / 3;
nuclear@0 267
nuclear@0 268 idata.clear();
nuclear@0 269 idata.resize(num);
nuclear@0 270
nuclear@0 271 if(indices) {
nuclear@0 272 memcpy(&idata[0], indices, num * sizeof *indices);
nuclear@0 273 }
nuclear@0 274
nuclear@0 275 idata_valid = true;
nuclear@0 276 ibo_valid = false;
nuclear@0 277
nuclear@0 278 return &idata[0];
nuclear@0 279 }
nuclear@0 280
nuclear@0 281 unsigned int *Mesh::get_index_data()
nuclear@0 282 {
nuclear@0 283 ibo_valid = false;
nuclear@0 284 return (unsigned int*)((const Mesh*)this)->get_index_data();
nuclear@0 285 }
nuclear@0 286
nuclear@0 287 const unsigned int *Mesh::get_index_data() const
nuclear@0 288 {
nuclear@0 289 if(!idata_valid) {
nuclear@0 290 #if GL_ES_VERSION_2_0
nuclear@0 291 fprintf(stderr, "%s: can't read back index data in CrippledGL ES\n", __FUNCTION__);
nuclear@0 292 return 0;
nuclear@0 293 #else
nuclear@0 294 if(!ibo_valid) {
nuclear@0 295 fprintf(stderr, "%s: indices unavailable\n", __FUNCTION__);
nuclear@0 296 return 0;
nuclear@0 297 }
nuclear@0 298
nuclear@0 299 // local data copy is unavailable, gram the data from the ibo
nuclear@0 300 Mesh *m = (Mesh*)this;
nuclear@0 301 int nidx = nfaces * 3;
nuclear@0 302 m->idata.resize(nidx);
nuclear@0 303
nuclear@0 304 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo);
nuclear@0 305 void *data = glMapBuffer(GL_ELEMENT_ARRAY_BUFFER, GL_READ_ONLY);
nuclear@0 306 memcpy(&m->idata[0], data, nidx * sizeof(unsigned int));
nuclear@0 307 glUnmapBuffer(GL_ELEMENT_ARRAY_BUFFER);
nuclear@0 308
nuclear@0 309 idata_valid = true;
nuclear@0 310 #endif
nuclear@0 311 }
nuclear@0 312
nuclear@0 313 return &idata[0];
nuclear@0 314 }
nuclear@0 315
nuclear@0 316 int Mesh::get_index_count() const
nuclear@0 317 {
nuclear@0 318 return nfaces * 3;
nuclear@0 319 }
nuclear@0 320
nuclear@0 321 void Mesh::append(const Mesh &mesh)
nuclear@0 322 {
nuclear@0 323 unsigned int idxoffs = nverts;
nuclear@0 324
nuclear@7 325 if(!nverts) {
nuclear@7 326 clone(mesh);
nuclear@7 327 return;
nuclear@7 328 }
nuclear@7 329
nuclear@0 330 nverts += mesh.nverts;
nuclear@0 331 nfaces += mesh.nfaces;
nuclear@0 332
nuclear@0 333 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 334 if(has_attrib(i) && mesh.has_attrib(i)) {
nuclear@0 335 // force validating the data arrays
nuclear@0 336 get_attrib_data(i);
nuclear@0 337 mesh.get_attrib_data(i);
nuclear@0 338
nuclear@0 339 // append the mesh data
nuclear@0 340 vattr[i].data.insert(vattr[i].data.end(), mesh.vattr[i].data.begin(), mesh.vattr[i].data.end());
nuclear@0 341 }
nuclear@0 342 }
nuclear@0 343
nuclear@0 344 if(ibo_valid || idata_valid) {
nuclear@0 345 // make index arrays valid
nuclear@0 346 get_index_data();
nuclear@0 347 mesh.get_index_data();
nuclear@0 348
nuclear@0 349 size_t orig_sz = idata.size();
nuclear@0 350
nuclear@0 351 idata.insert(idata.end(), mesh.idata.begin(), mesh.idata.end());
nuclear@0 352
nuclear@0 353 // fixup all the new indices
nuclear@0 354 for(size_t i=orig_sz; i<idata.size(); i++) {
nuclear@0 355 idata[i] += idxoffs;
nuclear@0 356 }
nuclear@0 357 }
nuclear@0 358
nuclear@0 359 // fuck everything
nuclear@0 360 wire_ibo_valid = false;
nuclear@0 361 aabb_valid = false;
nuclear@0 362 bsph_valid = false;
nuclear@0 363 }
nuclear@0 364
nuclear@0 365 // assemble a complete vertex by adding all the useful attributes
nuclear@0 366 void Mesh::vertex(float x, float y, float z)
nuclear@0 367 {
nuclear@0 368 cur_val[MESH_ATTR_VERTEX] = Vector4(x, y, z, 1.0f);
nuclear@0 369 vattr[MESH_ATTR_VERTEX].data_valid = true;
nuclear@0 370 vattr[MESH_ATTR_VERTEX].nelem = 3;
nuclear@0 371
nuclear@0 372 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 373 if(vattr[i].data_valid) {
nuclear@0 374 for(int j=0; j<vattr[MESH_ATTR_VERTEX].nelem; j++) {
nuclear@0 375 vattr[i].data.push_back(cur_val[i][j]);
nuclear@0 376 }
nuclear@0 377 }
nuclear@0 378 vattr[i].vbo_valid = false;
nuclear@0 379 }
nuclear@0 380
nuclear@0 381 if(idata_valid) {
nuclear@0 382 idata.clear();
nuclear@0 383 }
nuclear@0 384 ibo_valid = idata_valid = false;
nuclear@0 385 }
nuclear@0 386
nuclear@0 387 void Mesh::normal(float nx, float ny, float nz)
nuclear@0 388 {
nuclear@0 389 cur_val[MESH_ATTR_NORMAL] = Vector4(nx, ny, nz, 1.0f);
nuclear@0 390 vattr[MESH_ATTR_NORMAL].data_valid = true;
nuclear@0 391 vattr[MESH_ATTR_NORMAL].nelem = 3;
nuclear@0 392 }
nuclear@0 393
nuclear@0 394 void Mesh::tangent(float tx, float ty, float tz)
nuclear@0 395 {
nuclear@0 396 cur_val[MESH_ATTR_TANGENT] = Vector4(tx, ty, tz, 1.0f);
nuclear@0 397 vattr[MESH_ATTR_TANGENT].data_valid = true;
nuclear@0 398 vattr[MESH_ATTR_TANGENT].nelem = 3;
nuclear@0 399 }
nuclear@0 400
nuclear@0 401 void Mesh::texcoord(float u, float v, float w)
nuclear@0 402 {
nuclear@0 403 cur_val[MESH_ATTR_TEXCOORD] = Vector4(u, v, w, 1.0f);
nuclear@0 404 vattr[MESH_ATTR_TEXCOORD].data_valid = true;
nuclear@0 405 vattr[MESH_ATTR_TEXCOORD].nelem = 3;
nuclear@0 406 }
nuclear@0 407
nuclear@0 408 void Mesh::boneweights(float w1, float w2, float w3, float w4)
nuclear@0 409 {
nuclear@0 410 cur_val[MESH_ATTR_BONEWEIGHTS] = Vector4(w1, w2, w3, w4);
nuclear@0 411 vattr[MESH_ATTR_BONEWEIGHTS].data_valid = true;
nuclear@0 412 vattr[MESH_ATTR_BONEWEIGHTS].nelem = 4;
nuclear@0 413 }
nuclear@0 414
nuclear@0 415 void Mesh::boneidx(int idx1, int idx2, int idx3, int idx4)
nuclear@0 416 {
nuclear@0 417 cur_val[MESH_ATTR_BONEIDX] = Vector4(idx1, idx2, idx3, idx4);
nuclear@0 418 vattr[MESH_ATTR_BONEIDX].data_valid = true;
nuclear@0 419 vattr[MESH_ATTR_BONEIDX].nelem = 4;
nuclear@0 420 }
nuclear@0 421
nuclear@0 422 int Mesh::get_poly_count() const
nuclear@0 423 {
nuclear@0 424 if(nfaces) {
nuclear@0 425 return nfaces;
nuclear@0 426 }
nuclear@0 427 if(nverts) {
nuclear@0 428 return nverts / 3;
nuclear@0 429 }
nuclear@0 430 return 0;
nuclear@0 431 }
nuclear@0 432
nuclear@0 433 /// static function
nuclear@0 434 void Mesh::set_attrib_location(int attr, int loc)
nuclear@0 435 {
nuclear@0 436 if(attr < 0 || attr >= NUM_MESH_ATTR) {
nuclear@0 437 return;
nuclear@0 438 }
nuclear@0 439 Mesh::global_sdr_loc[attr] = loc;
nuclear@0 440 }
nuclear@0 441
nuclear@0 442 /// static function
nuclear@0 443 int Mesh::get_attrib_location(int attr)
nuclear@0 444 {
nuclear@0 445 if(attr < 0 || attr >= NUM_MESH_ATTR) {
nuclear@0 446 return -1;
nuclear@0 447 }
nuclear@0 448 return Mesh::global_sdr_loc[attr];
nuclear@0 449 }
nuclear@0 450
nuclear@0 451 /// static function
nuclear@0 452 void Mesh::clear_attrib_locations()
nuclear@0 453 {
nuclear@0 454 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 455 Mesh::global_sdr_loc[i] = -1;
nuclear@0 456 }
nuclear@0 457 }
nuclear@0 458
nuclear@0 459 /// static function
nuclear@0 460 void Mesh::set_vis_vecsize(float sz)
nuclear@0 461 {
nuclear@0 462 Mesh::vis_vecsize = sz;
nuclear@0 463 }
nuclear@0 464
nuclear@0 465 float Mesh::get_vis_vecsize()
nuclear@0 466 {
nuclear@0 467 return Mesh::vis_vecsize;
nuclear@0 468 }
nuclear@0 469
nuclear@0 470 void Mesh::apply_xform(const Matrix4x4 &xform)
nuclear@0 471 {
nuclear@0 472 Matrix4x4 dir_xform = xform;
nuclear@0 473 dir_xform[0][3] = dir_xform[1][3] = dir_xform[2][3] = 0.0f;
nuclear@0 474 dir_xform[3][0] = dir_xform[3][1] = dir_xform[3][2] = 0.0f;
nuclear@0 475 dir_xform[3][3] = 1.0f;
nuclear@0 476
nuclear@0 477 apply_xform(xform, dir_xform);
nuclear@0 478 }
nuclear@0 479
nuclear@0 480 void Mesh::apply_xform(const Matrix4x4 &xform, const Matrix4x4 &dir_xform)
nuclear@0 481 {
nuclear@0 482 for(unsigned int i=0; i<nverts; i++) {
nuclear@0 483 Vector4 v = get_attrib(MESH_ATTR_VERTEX, i);
nuclear@0 484 set_attrib(MESH_ATTR_VERTEX, i, v.transformed(xform));
nuclear@0 485
nuclear@0 486 if(has_attrib(MESH_ATTR_NORMAL)) {
nuclear@0 487 Vector3 n = get_attrib(MESH_ATTR_NORMAL, i);
nuclear@0 488 set_attrib(MESH_ATTR_NORMAL, i, n.transformed(dir_xform));
nuclear@0 489 }
nuclear@0 490 if(has_attrib(MESH_ATTR_TANGENT)) {
nuclear@0 491 Vector3 t = get_attrib(MESH_ATTR_TANGENT, i);
nuclear@0 492 set_attrib(MESH_ATTR_TANGENT, i, t.transformed(dir_xform));
nuclear@0 493 }
nuclear@0 494 }
nuclear@0 495 }
nuclear@0 496
nuclear@0 497 void Mesh::flip()
nuclear@0 498 {
nuclear@0 499 flip_faces();
nuclear@0 500 flip_normals();
nuclear@0 501 }
nuclear@0 502
nuclear@0 503 void Mesh::flip_faces()
nuclear@0 504 {
nuclear@0 505 if(is_indexed()) {
nuclear@0 506 unsigned int *indices = get_index_data();
nuclear@0 507 if(!indices) return;
nuclear@0 508
nuclear@0 509 int idxnum = get_index_count();
nuclear@0 510 for(int i=0; i<idxnum; i+=3) {
nuclear@0 511 unsigned int tmp = indices[i + 2];
nuclear@0 512 indices[i + 2] = indices[i + 1];
nuclear@0 513 indices[i + 1] = tmp;
nuclear@0 514 }
nuclear@0 515
nuclear@0 516 } else {
nuclear@0 517 Vector3 *verts = (Vector3*)get_attrib_data(MESH_ATTR_VERTEX);
nuclear@0 518 if(!verts) return;
nuclear@0 519
nuclear@0 520 int vnum = get_attrib_count(MESH_ATTR_VERTEX);
nuclear@0 521 for(int i=0; i<vnum; i+=3) {
nuclear@0 522 Vector3 tmp = verts[i + 2];
nuclear@0 523 verts[i + 2] = verts[i + 1];
nuclear@0 524 verts[i + 1] = tmp;
nuclear@0 525 }
nuclear@0 526 }
nuclear@0 527 }
nuclear@0 528
nuclear@0 529 void Mesh::flip_normals()
nuclear@0 530 {
nuclear@0 531 Vector3 *normals = (Vector3*)get_attrib_data(MESH_ATTR_NORMAL);
nuclear@0 532 if(!normals) return;
nuclear@0 533
nuclear@0 534 int num = get_attrib_count(MESH_ATTR_NORMAL);
nuclear@0 535 for(int i=0; i<num; i++) {
nuclear@0 536 normals[i] = -normals[i];
nuclear@0 537 }
nuclear@0 538 }
nuclear@0 539
nuclear@0 540 /*
nuclear@0 541 int Mesh::add_bone(XFormNode *bone)
nuclear@0 542 {
nuclear@0 543 int idx = bones.size();
nuclear@0 544 bones.push_back(bone);
nuclear@0 545 return idx;
nuclear@0 546 }
nuclear@0 547
nuclear@0 548 const XFormNode *Mesh::get_bone(int idx) const
nuclear@0 549 {
nuclear@0 550 if(idx < 0 || idx >= (int)bones.size()) {
nuclear@0 551 return 0;
nuclear@0 552 }
nuclear@0 553 return bones[idx];
nuclear@0 554 }
nuclear@0 555
nuclear@0 556 int Mesh::get_bones_count() const
nuclear@0 557 {
nuclear@0 558 return (int)bones.size();
nuclear@0 559 }
nuclear@0 560 */
nuclear@0 561
nuclear@0 562 void Mesh::draw() const
nuclear@0 563 {
nuclear@1 564 int cur_sdr;
nuclear@1 565 glGetIntegerv(GL_CURRENT_PROGRAM, &cur_sdr);
nuclear@1 566
nuclear@0 567
nuclear@0 568 ((Mesh*)this)->update_buffers();
nuclear@0 569
nuclear@0 570 if(!vattr[MESH_ATTR_VERTEX].vbo_valid) {
nuclear@0 571 fprintf(stderr, "%s: invalid vertex buffer\n", __FUNCTION__);
nuclear@0 572 return;
nuclear@0 573 }
nuclear@0 574
nuclear@1 575 if(cur_sdr) {
nuclear@0 576 // rendering with shaders
nuclear@0 577 if(global_sdr_loc[MESH_ATTR_VERTEX] == -1) {
nuclear@0 578 fprintf(stderr, "%s: shader attribute location for vertices unset\n", __FUNCTION__);
nuclear@0 579 return;
nuclear@0 580 }
nuclear@0 581
nuclear@0 582 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 583 int loc = global_sdr_loc[i];
nuclear@0 584 if(loc >= 0 && vattr[i].vbo_valid) {
nuclear@0 585 glBindBuffer(GL_ARRAY_BUFFER, vattr[i].vbo);
nuclear@0 586 glVertexAttribPointer(loc, vattr[i].nelem, GL_FLOAT, GL_FALSE, 0, 0);
nuclear@0 587 glEnableVertexAttribArray(loc);
nuclear@0 588 }
nuclear@0 589 }
nuclear@0 590 } else {
nuclear@0 591 #ifndef GL_ES_VERSION_2_0
nuclear@0 592 // rendering with fixed-function (not available in GLES2)
nuclear@0 593 glBindBuffer(GL_ARRAY_BUFFER, vattr[MESH_ATTR_VERTEX].vbo);
nuclear@0 594 glVertexPointer(vattr[MESH_ATTR_VERTEX].nelem, GL_FLOAT, 0, 0);
nuclear@0 595 glEnableClientState(GL_VERTEX_ARRAY);
nuclear@0 596
nuclear@0 597 if(vattr[MESH_ATTR_NORMAL].vbo_valid) {
nuclear@0 598 glBindBuffer(GL_ARRAY_BUFFER, vattr[MESH_ATTR_NORMAL].vbo);
nuclear@0 599 glNormalPointer(GL_FLOAT, 0, 0);
nuclear@0 600 glEnableClientState(GL_NORMAL_ARRAY);
nuclear@0 601 }
nuclear@0 602 if(vattr[MESH_ATTR_TEXCOORD].vbo_valid) {
nuclear@0 603 glBindBuffer(GL_ARRAY_BUFFER, vattr[MESH_ATTR_TEXCOORD].vbo);
nuclear@0 604 glTexCoordPointer(vattr[MESH_ATTR_TEXCOORD].nelem, GL_FLOAT, 0, 0);
nuclear@0 605 glEnableClientState(GL_TEXTURE_COORD_ARRAY);
nuclear@0 606 }
nuclear@0 607 if(vattr[MESH_ATTR_COLOR].vbo_valid) {
nuclear@0 608 glBindBuffer(GL_ARRAY_BUFFER, vattr[MESH_ATTR_COLOR].vbo);
nuclear@0 609 glColorPointer(vattr[MESH_ATTR_COLOR].nelem, GL_FLOAT, 0, 0);
nuclear@0 610 glEnableClientState(GL_COLOR_ARRAY);
nuclear@0 611 }
nuclear@0 612 #endif
nuclear@0 613 }
nuclear@0 614 glBindBuffer(GL_ARRAY_BUFFER, 0);
nuclear@0 615
nuclear@0 616 if(ibo_valid) {
nuclear@0 617 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo);
nuclear@0 618 glDrawElements(GL_TRIANGLES, nfaces * 3, GL_UNSIGNED_INT, 0);
nuclear@0 619 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
nuclear@0 620 } else {
nuclear@0 621 glDrawArrays(GL_TRIANGLES, 0, nverts);
nuclear@0 622 }
nuclear@0 623
nuclear@1 624 if(cur_sdr) {
nuclear@0 625 // rendered with shaders
nuclear@0 626 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 627 int loc = global_sdr_loc[i];
nuclear@0 628 if(loc >= 0 && vattr[i].vbo_valid) {
nuclear@0 629 glDisableVertexAttribArray(loc);
nuclear@0 630 }
nuclear@0 631 }
nuclear@0 632 } else {
nuclear@0 633 #ifndef GL_ES_VERSION_2_0
nuclear@0 634 // rendered with fixed-function
nuclear@0 635 glDisableClientState(GL_VERTEX_ARRAY);
nuclear@0 636 if(vattr[MESH_ATTR_NORMAL].vbo_valid) {
nuclear@0 637 glDisableClientState(GL_NORMAL_ARRAY);
nuclear@0 638 }
nuclear@0 639 if(vattr[MESH_ATTR_TEXCOORD].vbo_valid) {
nuclear@0 640 glDisableClientState(GL_TEXTURE_COORD_ARRAY);
nuclear@0 641 }
nuclear@0 642 if(vattr[MESH_ATTR_COLOR].vbo_valid) {
nuclear@0 643 glDisableClientState(GL_COLOR_ARRAY);
nuclear@0 644 }
nuclear@0 645 #endif
nuclear@0 646 }
nuclear@0 647 }
nuclear@0 648
nuclear@0 649 void Mesh::draw_wire() const
nuclear@0 650 {
nuclear@0 651 ((Mesh*)this)->update_wire_ibo();
nuclear@0 652
nuclear@0 653 if(!vattr[MESH_ATTR_VERTEX].vbo_valid || !wire_ibo_valid) {
nuclear@0 654 fprintf(stderr, "%s: invalid vertex buffer\n", __FUNCTION__);
nuclear@0 655 return;
nuclear@0 656 }
nuclear@0 657 if(global_sdr_loc[MESH_ATTR_VERTEX] == -1) {
nuclear@0 658 fprintf(stderr, "%s: shader attribute location for vertices unset\n", __FUNCTION__);
nuclear@0 659 return;
nuclear@0 660 }
nuclear@0 661
nuclear@0 662 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 663 int loc = global_sdr_loc[i];
nuclear@0 664 if(loc >= 0 && vattr[i].vbo_valid) {
nuclear@0 665 glBindBuffer(GL_ARRAY_BUFFER, vattr[i].vbo);
nuclear@0 666 glVertexAttribPointer(loc, vattr[i].nelem, GL_FLOAT, GL_FALSE, 0, 0);
nuclear@0 667 glEnableVertexAttribArray(loc);
nuclear@0 668 }
nuclear@0 669 }
nuclear@0 670 glBindBuffer(GL_ARRAY_BUFFER, 0);
nuclear@0 671
nuclear@0 672 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, wire_ibo);
nuclear@0 673 glDrawElements(GL_LINES, nfaces * 6, GL_UNSIGNED_INT, 0);
nuclear@0 674 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
nuclear@0 675
nuclear@0 676 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 677 int loc = global_sdr_loc[i];
nuclear@0 678 if(loc >= 0 && vattr[i].vbo_valid) {
nuclear@0 679 glDisableVertexAttribArray(loc);
nuclear@0 680 }
nuclear@0 681 }
nuclear@0 682 }
nuclear@0 683
nuclear@0 684 void Mesh::draw_vertices() const
nuclear@0 685 {
nuclear@0 686 ((Mesh*)this)->update_buffers();
nuclear@0 687
nuclear@0 688 if(!vattr[MESH_ATTR_VERTEX].vbo_valid) {
nuclear@0 689 fprintf(stderr, "%s: invalid vertex buffer\n", __FUNCTION__);
nuclear@0 690 return;
nuclear@0 691 }
nuclear@0 692 if(global_sdr_loc[MESH_ATTR_VERTEX] == -1) {
nuclear@0 693 fprintf(stderr, "%s: shader attribute location for vertices unset\n", __FUNCTION__);
nuclear@0 694 return;
nuclear@0 695 }
nuclear@0 696
nuclear@0 697 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 698 int loc = global_sdr_loc[i];
nuclear@0 699 if(loc >= 0 && vattr[i].vbo_valid) {
nuclear@0 700 glBindBuffer(GL_ARRAY_BUFFER, vattr[i].vbo);
nuclear@0 701 glVertexAttribPointer(loc, vattr[i].nelem, GL_FLOAT, GL_FALSE, 0, 0);
nuclear@0 702 glEnableVertexAttribArray(loc);
nuclear@0 703 }
nuclear@0 704 }
nuclear@0 705 glBindBuffer(GL_ARRAY_BUFFER, 0);
nuclear@0 706
nuclear@0 707 glDrawArrays(GL_POINTS, 0, nverts);
nuclear@0 708
nuclear@0 709 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 710 int loc = global_sdr_loc[i];
nuclear@0 711 if(loc >= 0 && vattr[i].vbo_valid) {
nuclear@0 712 glDisableVertexAttribArray(loc);
nuclear@0 713 }
nuclear@0 714 }
nuclear@0 715 }
nuclear@0 716
nuclear@0 717 void Mesh::draw_normals() const
nuclear@0 718 {
nuclear@0 719 #ifdef USE_OLDGL
nuclear@0 720 Vector3 *varr = (Vector3*)get_attrib_data(MESH_ATTR_VERTEX);
nuclear@0 721 Vector3 *norm = (Vector3*)get_attrib_data(MESH_ATTR_NORMAL);
nuclear@0 722 if(!varr || !norm) {
nuclear@0 723 return;
nuclear@0 724 }
nuclear@0 725
nuclear@0 726 glBegin(GL_LINES);
nuclear@0 727 if(get_current_shader()) {
nuclear@0 728 int vert_loc = global_sdr_loc[MESH_ATTR_VERTEX];
nuclear@0 729 if(vert_loc < 0) {
nuclear@0 730 glEnd();
nuclear@0 731 return;
nuclear@0 732 }
nuclear@0 733
nuclear@0 734 for(size_t i=0; i<nverts; i++) {
nuclear@0 735 glVertexAttrib3f(vert_loc, varr[i].x, varr[i].y, varr[i].z);
nuclear@0 736 Vector3 end = varr[i] + norm[i] * vis_vecsize;
nuclear@0 737 glVertexAttrib3f(vert_loc, end.x, end.y, end.z);
nuclear@0 738 }
nuclear@0 739 } else {
nuclear@0 740 for(size_t i=0; i<nverts; i++) {
nuclear@0 741 glVertex3f(varr[i].x, varr[i].y, varr[i].z);
nuclear@0 742 Vector3 end = varr[i] + norm[i] * vis_vecsize;
nuclear@0 743 glVertex3f(end.x, end.y, end.z);
nuclear@0 744 }
nuclear@0 745 }
nuclear@0 746 glEnd();
nuclear@0 747 #endif // USE_OLDGL
nuclear@0 748 }
nuclear@0 749
nuclear@0 750 void Mesh::draw_tangents() const
nuclear@0 751 {
nuclear@0 752 #ifdef USE_OLDGL
nuclear@0 753 Vector3 *varr = (Vector3*)get_attrib_data(MESH_ATTR_VERTEX);
nuclear@0 754 Vector3 *tang = (Vector3*)get_attrib_data(MESH_ATTR_TANGENT);
nuclear@0 755 if(!varr || !tang) {
nuclear@0 756 return;
nuclear@0 757 }
nuclear@0 758
nuclear@0 759 glBegin(GL_LINES);
nuclear@0 760 if(get_current_shader()) {
nuclear@0 761 int vert_loc = global_sdr_loc[MESH_ATTR_VERTEX];
nuclear@0 762 if(vert_loc < 0) {
nuclear@0 763 glEnd();
nuclear@0 764 return;
nuclear@0 765 }
nuclear@0 766
nuclear@0 767 for(size_t i=0; i<nverts; i++) {
nuclear@0 768 glVertexAttrib3f(vert_loc, varr[i].x, varr[i].y, varr[i].z);
nuclear@0 769 Vector3 end = varr[i] + tang[i] * vis_vecsize;
nuclear@0 770 glVertexAttrib3f(vert_loc, end.x, end.y, end.z);
nuclear@0 771 }
nuclear@0 772 } else {
nuclear@0 773 for(size_t i=0; i<nverts; i++) {
nuclear@0 774 glVertex3f(varr[i].x, varr[i].y, varr[i].z);
nuclear@0 775 Vector3 end = varr[i] + tang[i] * vis_vecsize;
nuclear@0 776 glVertex3f(end.x, end.y, end.z);
nuclear@0 777 }
nuclear@0 778 }
nuclear@0 779 glEnd();
nuclear@0 780 #endif // USE_OLDGL
nuclear@0 781 }
nuclear@0 782
nuclear@0 783 void Mesh::get_aabbox(Vector3 *vmin, Vector3 *vmax) const
nuclear@0 784 {
nuclear@0 785 if(!aabb_valid) {
nuclear@0 786 ((Mesh*)this)->calc_aabb();
nuclear@0 787 }
nuclear@0 788 *vmin = aabb.min;
nuclear@0 789 *vmax = aabb.max;
nuclear@0 790 }
nuclear@0 791
nuclear@0 792 const AABox &Mesh::get_aabbox() const
nuclear@0 793 {
nuclear@0 794 if(!aabb_valid) {
nuclear@0 795 ((Mesh*)this)->calc_aabb();
nuclear@0 796 }
nuclear@0 797 return aabb;
nuclear@0 798 }
nuclear@0 799
nuclear@0 800 float Mesh::get_bsphere(Vector3 *center, float *rad) const
nuclear@0 801 {
nuclear@0 802 if(!bsph_valid) {
nuclear@0 803 ((Mesh*)this)->calc_bsph();
nuclear@0 804 }
nuclear@0 805 *center = bsph.center;
nuclear@0 806 *rad = bsph.radius;
nuclear@0 807 return bsph.radius;
nuclear@0 808 }
nuclear@0 809
nuclear@0 810 const Sphere &Mesh::get_bsphere() const
nuclear@0 811 {
nuclear@0 812 if(!bsph_valid) {
nuclear@0 813 ((Mesh*)this)->calc_bsph();
nuclear@0 814 }
nuclear@0 815 return bsph;
nuclear@0 816 }
nuclear@0 817
nuclear@0 818 /// static function
nuclear@0 819 void Mesh::set_intersect_mode(unsigned int mode)
nuclear@0 820 {
nuclear@0 821 Mesh::intersect_mode = mode;
nuclear@0 822 }
nuclear@0 823
nuclear@0 824 /// static function
nuclear@0 825 unsigned int Mesh::get_intersect_mode()
nuclear@0 826 {
nuclear@0 827 return Mesh::intersect_mode;
nuclear@0 828 }
nuclear@0 829
nuclear@0 830 /// static function
nuclear@0 831 void Mesh::set_vertex_select_distance(float dist)
nuclear@0 832 {
nuclear@0 833 Mesh::vertex_sel_dist = dist;
nuclear@0 834 }
nuclear@0 835
nuclear@0 836 /// static function
nuclear@0 837 float Mesh::get_vertex_select_distance()
nuclear@0 838 {
nuclear@0 839 return Mesh::vertex_sel_dist;
nuclear@0 840 }
nuclear@0 841
nuclear@0 842 bool Mesh::intersect(const Ray &ray, HitPoint *hit) const
nuclear@0 843 {
nuclear@0 844 assert((Mesh::intersect_mode & (ISECT_VERTICES | ISECT_FACE)) != (ISECT_VERTICES | ISECT_FACE));
nuclear@0 845
nuclear@0 846 const Vector3 *varr = (Vector3*)get_attrib_data(MESH_ATTR_VERTEX);
nuclear@0 847 const Vector3 *narr = (Vector3*)get_attrib_data(MESH_ATTR_NORMAL);
nuclear@0 848 if(!varr) {
nuclear@0 849 return false;
nuclear@0 850 }
nuclear@0 851 const unsigned int *idxarr = get_index_data();
nuclear@0 852
nuclear@0 853 // first test with the bounding box
nuclear@0 854 AABox box;
nuclear@0 855 get_aabbox(&box.min, &box.max);
nuclear@0 856 if(!box.intersect(ray)) {
nuclear@0 857 return false;
nuclear@0 858 }
nuclear@0 859
nuclear@0 860 HitPoint nearest_hit;
nuclear@0 861 nearest_hit.dist = FLT_MAX;
nuclear@0 862 nearest_hit.obj = 0;
nuclear@0 863
nuclear@0 864 if(Mesh::intersect_mode & ISECT_VERTICES) {
nuclear@0 865 // we asked for "intersections" with the vertices of the mesh
nuclear@0 866 long nearest_vidx = -1;
nuclear@0 867 float thres_sq = Mesh::vertex_sel_dist * Mesh::vertex_sel_dist;
nuclear@0 868
nuclear@0 869 for(unsigned int i=0; i<nverts; i++) {
nuclear@0 870
nuclear@0 871 if((Mesh::intersect_mode & ISECT_FRONT) && dot_product(narr[i], ray.dir) > 0) {
nuclear@0 872 continue;
nuclear@0 873 }
nuclear@0 874
nuclear@0 875 // project the vertex onto the ray line
nuclear@0 876 float t = dot_product(varr[i] - ray.origin, ray.dir);
nuclear@0 877 Vector3 vproj = ray.origin + ray.dir * t;
nuclear@0 878
nuclear@0 879 float dist_sq = (vproj - varr[i]).length_sq();
nuclear@0 880 if(dist_sq < thres_sq) {
nuclear@0 881 if(!hit) {
nuclear@0 882 return true;
nuclear@0 883 }
nuclear@0 884 if(t < nearest_hit.dist) {
nuclear@0 885 nearest_hit.dist = t;
nuclear@0 886 nearest_vidx = i;
nuclear@0 887 }
nuclear@0 888 }
nuclear@0 889 }
nuclear@0 890
nuclear@0 891 if(nearest_vidx != -1) {
nuclear@0 892 hitvert = varr[nearest_vidx];
nuclear@0 893 nearest_hit.obj = &hitvert;
nuclear@0 894 }
nuclear@0 895
nuclear@0 896 } else {
nuclear@0 897 // regular intersection test with polygons
nuclear@0 898
nuclear@0 899 for(unsigned int i=0; i<nfaces; i++) {
nuclear@0 900 Triangle face(i, varr, idxarr);
nuclear@0 901
nuclear@0 902 // ignore back-facing polygons if the mode flags include ISECT_FRONT
nuclear@0 903 if((Mesh::intersect_mode & ISECT_FRONT) && dot_product(face.get_normal(), ray.dir) > 0) {
nuclear@0 904 continue;
nuclear@0 905 }
nuclear@0 906
nuclear@0 907 HitPoint fhit;
nuclear@0 908 if(face.intersect(ray, hit ? &fhit : 0)) {
nuclear@0 909 if(!hit) {
nuclear@0 910 return true;
nuclear@0 911 }
nuclear@0 912 if(fhit.dist < nearest_hit.dist) {
nuclear@0 913 nearest_hit = fhit;
nuclear@0 914 hitface = face;
nuclear@0 915 }
nuclear@0 916 }
nuclear@0 917 }
nuclear@0 918 }
nuclear@0 919
nuclear@0 920 if(nearest_hit.obj) {
nuclear@0 921 if(hit) {
nuclear@0 922 *hit = nearest_hit;
nuclear@0 923
nuclear@0 924 // if we are interested in the mesh and not the faces set obj to this
nuclear@0 925 if(Mesh::intersect_mode & ISECT_FACE) {
nuclear@0 926 hit->obj = &hitface;
nuclear@0 927 } else if(Mesh::intersect_mode & ISECT_VERTICES) {
nuclear@0 928 hit->obj = &hitvert;
nuclear@0 929 } else {
nuclear@0 930 hit->obj = this;
nuclear@0 931 }
nuclear@0 932 }
nuclear@0 933 return true;
nuclear@0 934 }
nuclear@0 935 return false;
nuclear@0 936 }
nuclear@0 937
nuclear@0 938
nuclear@6 939 // texture coordinate manipulation
nuclear@6 940 void Mesh::texcoord_apply_xform(const Matrix4x4 &xform)
nuclear@6 941 {
nuclear@6 942 if(!has_attrib(MESH_ATTR_TEXCOORD)) {
nuclear@6 943 return;
nuclear@6 944 }
nuclear@6 945
nuclear@6 946 for(unsigned int i=0; i<nverts; i++) {
nuclear@6 947 Vector4 tc = get_attrib(MESH_ATTR_TEXCOORD, i);
nuclear@6 948 set_attrib(MESH_ATTR_TEXCOORD, i, tc.transformed(xform));
nuclear@6 949 }
nuclear@6 950 }
nuclear@6 951
nuclear@6 952 void Mesh::texcoord_gen_plane(const Vector3 &norm, const Vector3 &tang)
nuclear@6 953 {
nuclear@6 954 if(!nverts) return;
nuclear@6 955
nuclear@6 956 if(!has_attrib(MESH_ATTR_TEXCOORD)) {
nuclear@6 957 // allocate texture coordinate attribute array
nuclear@6 958 set_attrib_data(MESH_ATTR_TEXCOORD, 2, nverts);
nuclear@6 959 }
nuclear@6 960
nuclear@6 961 Vector3 n = norm.normalized();
nuclear@6 962 Vector3 b = cross_product(n, tang).normalized();
nuclear@6 963 Vector3 t = cross_product(b, n);
nuclear@6 964
nuclear@6 965 for(unsigned int i=0; i<nverts; i++) {
nuclear@6 966 Vector3 pos = get_attrib(MESH_ATTR_VERTEX, i);
nuclear@6 967
nuclear@6 968 // distance along the tangent direction
nuclear@6 969 float u = dot_product(pos, t);
nuclear@6 970 // distance along the bitangent direction
nuclear@6 971 float v = dot_product(pos, b);
nuclear@6 972
nuclear@6 973 set_attrib(MESH_ATTR_TEXCOORD, i, Vector4(u, v, 0, 1));
nuclear@6 974 }
nuclear@6 975 }
nuclear@6 976
nuclear@6 977 void Mesh::texcoord_gen_box()
nuclear@6 978 {
nuclear@6 979 if(!nverts || !has_attrib(MESH_ATTR_NORMAL)) return;
nuclear@6 980
nuclear@6 981 if(!has_attrib(MESH_ATTR_TEXCOORD)) {
nuclear@6 982 // allocate texture coordinate attribute array
nuclear@6 983 set_attrib_data(MESH_ATTR_TEXCOORD, 2, nverts);
nuclear@6 984 }
nuclear@6 985
nuclear@6 986 for(unsigned int i=0; i<nverts; i++) {
nuclear@6 987 Vector3 pos = Vector3(get_attrib(MESH_ATTR_VERTEX, i)) * 0.5 + Vector3(0.5, 0.5, 0.5);
nuclear@6 988 Vector3 norm = get_attrib(MESH_ATTR_NORMAL, i);
nuclear@6 989
nuclear@6 990 float abs_nx = fabs(norm.x);
nuclear@6 991 float abs_ny = fabs(norm.y);
nuclear@6 992 float abs_nz = fabs(norm.z);
nuclear@6 993 int dom = abs_nx > abs_ny && abs_nx > abs_nz ? 0 : (abs_ny > abs_nz ? 1 : 2);
nuclear@6 994
nuclear@6 995 float uv[2], *uvptr = uv;
nuclear@6 996 for(int j=0; j<3; j++) {
nuclear@6 997 if(j == dom) continue; // skip dominant axis
nuclear@6 998
nuclear@6 999 *uvptr++ = pos[j];
nuclear@6 1000 }
nuclear@6 1001 set_attrib(MESH_ATTR_TEXCOORD, i, Vector4(uv[0], uv[1], 0, 1));
nuclear@6 1002 }
nuclear@6 1003 }
nuclear@6 1004
nuclear@0 1005 // ------ private member functions ------
nuclear@0 1006
nuclear@0 1007 void Mesh::calc_aabb()
nuclear@0 1008 {
nuclear@0 1009 // the cast is to force calling the const version which doesn't invalidate
nuclear@0 1010 if(!((const Mesh*)this)->get_attrib_data(MESH_ATTR_VERTEX)) {
nuclear@0 1011 return;
nuclear@0 1012 }
nuclear@0 1013
nuclear@0 1014 aabb.min = Vector3(FLT_MAX, FLT_MAX, FLT_MAX);
nuclear@0 1015 aabb.max = -aabb.min;
nuclear@0 1016
nuclear@0 1017 for(unsigned int i=0; i<nverts; i++) {
nuclear@0 1018 Vector4 v = get_attrib(MESH_ATTR_VERTEX, i);
nuclear@0 1019 for(int j=0; j<3; j++) {
nuclear@0 1020 if(v[j] < aabb.min[j]) {
nuclear@0 1021 aabb.min[j] = v[j];
nuclear@0 1022 }
nuclear@0 1023 if(v[j] > aabb.max[j]) {
nuclear@0 1024 aabb.max[j] = v[j];
nuclear@0 1025 }
nuclear@0 1026 }
nuclear@0 1027 }
nuclear@0 1028 aabb_valid = true;
nuclear@0 1029 }
nuclear@0 1030
nuclear@0 1031 void Mesh::calc_bsph()
nuclear@0 1032 {
nuclear@0 1033 // the cast is to force calling the const version which doesn't invalidate
nuclear@0 1034 if(!((const Mesh*)this)->get_attrib_data(MESH_ATTR_VERTEX)) {
nuclear@0 1035 return;
nuclear@0 1036 }
nuclear@0 1037
nuclear@0 1038 Vector3 v;
nuclear@0 1039 bsph.center = Vector3(0, 0, 0);
nuclear@0 1040
nuclear@0 1041 // first find the center
nuclear@0 1042 for(unsigned int i=0; i<nverts; i++) {
nuclear@0 1043 v = get_attrib(MESH_ATTR_VERTEX, i);
nuclear@0 1044 bsph.center += v;
nuclear@0 1045 }
nuclear@0 1046 bsph.center /= (float)nverts;
nuclear@0 1047
nuclear@0 1048 bsph.radius = 0.0f;
nuclear@0 1049 for(unsigned int i=0; i<nverts; i++) {
nuclear@0 1050 v = get_attrib(MESH_ATTR_VERTEX, i);
nuclear@0 1051 float dist_sq = (v - bsph.center).length_sq();
nuclear@0 1052 if(dist_sq > bsph.radius) {
nuclear@0 1053 bsph.radius = dist_sq;
nuclear@0 1054 }
nuclear@0 1055 }
nuclear@0 1056 bsph.radius = sqrt(bsph.radius);
nuclear@0 1057
nuclear@0 1058 bsph_valid = true;
nuclear@0 1059 }
nuclear@0 1060
nuclear@0 1061 void Mesh::update_buffers()
nuclear@0 1062 {
nuclear@0 1063 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 1064 if(has_attrib(i) && !vattr[i].vbo_valid) {
nuclear@0 1065 glBindBuffer(GL_ARRAY_BUFFER, vattr[i].vbo);
nuclear@0 1066 glBufferData(GL_ARRAY_BUFFER, nverts * vattr[i].nelem * sizeof(float), &vattr[i].data[0], GL_STATIC_DRAW);
nuclear@0 1067 vattr[i].vbo_valid = true;
nuclear@0 1068 }
nuclear@0 1069 }
nuclear@0 1070 glBindBuffer(GL_ARRAY_BUFFER, 0);
nuclear@0 1071
nuclear@0 1072 if(idata_valid && !ibo_valid) {
nuclear@0 1073 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo);
nuclear@0 1074 glBufferData(GL_ELEMENT_ARRAY_BUFFER, nfaces * 3 * sizeof(unsigned int), &idata[0], GL_STATIC_DRAW);
nuclear@0 1075 ibo_valid = true;
nuclear@0 1076 }
nuclear@0 1077 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
nuclear@0 1078 }
nuclear@0 1079
nuclear@0 1080 void Mesh::update_wire_ibo()
nuclear@0 1081 {
nuclear@0 1082 update_buffers();
nuclear@0 1083
nuclear@0 1084 if(wire_ibo_valid) {
nuclear@0 1085 return;
nuclear@0 1086 }
nuclear@0 1087
nuclear@0 1088 if(!wire_ibo) {
nuclear@0 1089 glGenBuffers(1, &wire_ibo);
nuclear@0 1090 }
nuclear@0 1091
nuclear@0 1092 unsigned int *wire_idxarr = new unsigned int[nfaces * 6];
nuclear@0 1093 unsigned int *dest = wire_idxarr;
nuclear@0 1094
nuclear@0 1095 if(ibo_valid) {
nuclear@0 1096 // we're dealing with an indexed mesh
nuclear@0 1097 const unsigned int *idxarr = ((const Mesh*)this)->get_index_data();
nuclear@0 1098
nuclear@0 1099 for(unsigned int i=0; i<nfaces; i++) {
nuclear@0 1100 *dest++ = idxarr[0];
nuclear@0 1101 *dest++ = idxarr[1];
nuclear@0 1102 *dest++ = idxarr[1];
nuclear@0 1103 *dest++ = idxarr[2];
nuclear@0 1104 *dest++ = idxarr[2];
nuclear@0 1105 *dest++ = idxarr[0];
nuclear@0 1106 idxarr += 3;
nuclear@0 1107 }
nuclear@0 1108 } else {
nuclear@0 1109 // not an indexed mesh ...
nuclear@0 1110 for(unsigned int i=0; i<nfaces; i++) {
nuclear@0 1111 int vidx = i * 3;
nuclear@0 1112 *dest++ = vidx;
nuclear@0 1113 *dest++ = vidx + 1;
nuclear@0 1114 *dest++ = vidx + 1;
nuclear@0 1115 *dest++ = vidx + 2;
nuclear@0 1116 *dest++ = vidx + 2;
nuclear@0 1117 *dest++ = vidx;
nuclear@0 1118 }
nuclear@0 1119 }
nuclear@0 1120
nuclear@0 1121 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, wire_ibo);
nuclear@0 1122 glBufferData(GL_ELEMENT_ARRAY_BUFFER, nfaces * 6 * sizeof(unsigned int), wire_idxarr, GL_STATIC_DRAW);
nuclear@0 1123 delete [] wire_idxarr;
nuclear@0 1124 wire_ibo_valid = true;
nuclear@0 1125 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
nuclear@0 1126 }
nuclear@0 1127
nuclear@0 1128
nuclear@0 1129 // ------ class Triangle ------
nuclear@0 1130 Triangle::Triangle()
nuclear@0 1131 {
nuclear@0 1132 normal_valid = false;
nuclear@0 1133 id = -1;
nuclear@0 1134 }
nuclear@0 1135
nuclear@0 1136 Triangle::Triangle(const Vector3 &v0, const Vector3 &v1, const Vector3 &v2)
nuclear@0 1137 {
nuclear@0 1138 v[0] = v0;
nuclear@0 1139 v[1] = v1;
nuclear@0 1140 v[2] = v2;
nuclear@0 1141 normal_valid = false;
nuclear@0 1142 id = -1;
nuclear@0 1143 }
nuclear@0 1144
nuclear@0 1145 Triangle::Triangle(int n, const Vector3 *varr, const unsigned int *idxarr)
nuclear@0 1146 {
nuclear@0 1147 if(idxarr) {
nuclear@0 1148 v[0] = varr[idxarr[n * 3]];
nuclear@0 1149 v[1] = varr[idxarr[n * 3 + 1]];
nuclear@0 1150 v[2] = varr[idxarr[n * 3 + 2]];
nuclear@0 1151 } else {
nuclear@0 1152 v[0] = varr[n * 3];
nuclear@0 1153 v[1] = varr[n * 3 + 1];
nuclear@0 1154 v[2] = varr[n * 3 + 2];
nuclear@0 1155 }
nuclear@0 1156 normal_valid = false;
nuclear@0 1157 id = n;
nuclear@0 1158 }
nuclear@0 1159
nuclear@0 1160 void Triangle::calc_normal()
nuclear@0 1161 {
nuclear@0 1162 normal = cross_product(v[1] - v[0], v[2] - v[0]).normalized();
nuclear@0 1163 normal_valid = true;
nuclear@0 1164 }
nuclear@0 1165
nuclear@0 1166 const Vector3 &Triangle::get_normal() const
nuclear@0 1167 {
nuclear@0 1168 if(!normal_valid) {
nuclear@0 1169 ((Triangle*)this)->calc_normal();
nuclear@0 1170 }
nuclear@0 1171 return normal;
nuclear@0 1172 }
nuclear@0 1173
nuclear@0 1174 void Triangle::transform(const Matrix4x4 &xform)
nuclear@0 1175 {
nuclear@0 1176 v[0].transform(xform);
nuclear@0 1177 v[1].transform(xform);
nuclear@0 1178 v[2].transform(xform);
nuclear@0 1179 normal_valid = false;
nuclear@0 1180 }
nuclear@0 1181
nuclear@0 1182 void Triangle::draw() const
nuclear@0 1183 {
nuclear@0 1184 Vector3 n[3];
nuclear@0 1185 n[0] = get_normal();
nuclear@0 1186 n[1] = get_normal();
nuclear@0 1187 n[2] = get_normal();
nuclear@0 1188
nuclear@0 1189 int vloc = Mesh::get_attrib_location(MESH_ATTR_VERTEX);
nuclear@0 1190 int nloc = Mesh::get_attrib_location(MESH_ATTR_NORMAL);
nuclear@0 1191
nuclear@0 1192 glEnableVertexAttribArray(vloc);
nuclear@0 1193 glVertexAttribPointer(vloc, 3, GL_FLOAT, GL_FALSE, 0, &v[0].x);
nuclear@0 1194 glVertexAttribPointer(nloc, 3, GL_FLOAT, GL_FALSE, 0, &n[0].x);
nuclear@0 1195
nuclear@0 1196 glDrawArrays(GL_TRIANGLES, 0, 3);
nuclear@0 1197
nuclear@0 1198 glDisableVertexAttribArray(vloc);
nuclear@0 1199 glDisableVertexAttribArray(nloc);
nuclear@0 1200 }
nuclear@0 1201
nuclear@0 1202 void Triangle::draw_wire() const
nuclear@0 1203 {
nuclear@0 1204 static const int idxarr[] = {0, 1, 1, 2, 2, 0};
nuclear@0 1205 int vloc = Mesh::get_attrib_location(MESH_ATTR_VERTEX);
nuclear@0 1206
nuclear@0 1207 glEnableVertexAttribArray(vloc);
nuclear@0 1208 glVertexAttribPointer(vloc, 3, GL_FLOAT, GL_FALSE, 0, &v[0].x);
nuclear@0 1209
nuclear@0 1210 glDrawElements(GL_LINES, 6, GL_UNSIGNED_INT, idxarr);
nuclear@0 1211
nuclear@0 1212 glDisableVertexAttribArray(vloc);
nuclear@0 1213 }
nuclear@0 1214
nuclear@0 1215 Vector3 Triangle::calc_barycentric(const Vector3 &pos) const
nuclear@0 1216 {
nuclear@0 1217 Vector3 norm = get_normal();
nuclear@0 1218
nuclear@0 1219 float area_sq = fabs(dot_product(cross_product(v[1] - v[0], v[2] - v[0]), norm));
nuclear@0 1220 if(area_sq < 1e-5) {
nuclear@0 1221 return Vector3(0, 0, 0);
nuclear@0 1222 }
nuclear@0 1223
nuclear@0 1224 float asq0 = fabs(dot_product(cross_product(v[1] - pos, v[2] - pos), norm));
nuclear@0 1225 float asq1 = fabs(dot_product(cross_product(v[2] - pos, v[0] - pos), norm));
nuclear@0 1226 float asq2 = fabs(dot_product(cross_product(v[0] - pos, v[1] - pos), norm));
nuclear@0 1227
nuclear@0 1228 return Vector3(asq0 / area_sq, asq1 / area_sq, asq2 / area_sq);
nuclear@0 1229 }
nuclear@0 1230
nuclear@0 1231 bool Triangle::intersect(const Ray &ray, HitPoint *hit) const
nuclear@0 1232 {
nuclear@0 1233 Vector3 normal = get_normal();
nuclear@0 1234
nuclear@0 1235 float ndotdir = dot_product(ray.dir, normal);
nuclear@0 1236 if(fabs(ndotdir) < 1e-4) {
nuclear@0 1237 return false;
nuclear@0 1238 }
nuclear@0 1239
nuclear@0 1240 Vector3 vertdir = v[0] - ray.origin;
nuclear@0 1241 float t = dot_product(normal, vertdir) / ndotdir;
nuclear@0 1242
nuclear@0 1243 Vector3 pos = ray.origin + ray.dir * t;
nuclear@0 1244 Vector3 bary = calc_barycentric(pos);
nuclear@0 1245
nuclear@0 1246 if(bary.x + bary.y + bary.z > 1.00001) {
nuclear@0 1247 return false;
nuclear@0 1248 }
nuclear@0 1249
nuclear@0 1250 if(hit) {
nuclear@0 1251 hit->dist = t;
nuclear@0 1252 hit->pos = ray.origin + ray.dir * t;
nuclear@0 1253 hit->normal = normal;
nuclear@0 1254 hit->obj = this;
nuclear@0 1255 }
nuclear@0 1256 return true;
nuclear@0 1257 }