rev |
line source |
nuclear@39
|
1 /*
|
nuclear@39
|
2 libvmath - a vector math library
|
nuclear@39
|
3 Copyright (C) 2004-2011 John Tsiombikas <nuclear@member.fsf.org>
|
nuclear@39
|
4
|
nuclear@39
|
5 This program is free software: you can redistribute it and/or modify
|
nuclear@39
|
6 it under the terms of the GNU Lesser General Public License as published
|
nuclear@39
|
7 by the Free Software Foundation, either version 3 of the License, or
|
nuclear@39
|
8 (at your option) any later version.
|
nuclear@39
|
9
|
nuclear@39
|
10 This program is distributed in the hope that it will be useful,
|
nuclear@39
|
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
|
nuclear@39
|
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
nuclear@39
|
13 GNU Lesser General Public License for more details.
|
nuclear@39
|
14
|
nuclear@39
|
15 You should have received a copy of the GNU Lesser General Public License
|
nuclear@39
|
16 along with this program. If not, see <http://www.gnu.org/licenses/>.
|
nuclear@39
|
17 */
|
nuclear@39
|
18
|
nuclear@28
|
19 #include <stdlib.h>
|
nuclear@28
|
20 #include <math.h>
|
nuclear@28
|
21 #include "vmath.h"
|
nuclear@28
|
22
|
nuclear@28
|
23 /** Numerical calculation of integrals using simpson's rule */
|
nuclear@28
|
24 scalar_t integral(scalar_t (*f)(scalar_t), scalar_t low, scalar_t high, int samples)
|
nuclear@28
|
25 {
|
nuclear@28
|
26 int i;
|
nuclear@28
|
27 scalar_t h = (high - low) / (scalar_t)samples;
|
nuclear@28
|
28 scalar_t sum = 0.0;
|
nuclear@28
|
29
|
nuclear@28
|
30 for(i=0; i<samples+1; i++) {
|
nuclear@28
|
31 scalar_t y = f((scalar_t)i * h + low);
|
nuclear@28
|
32 sum += ((!i || i == samples) ? y : ((i % 2) ? 4.0 * y : 2.0 * y)) * (h / 3.0);
|
nuclear@28
|
33 }
|
nuclear@28
|
34 return sum;
|
nuclear@28
|
35 }
|
nuclear@28
|
36
|
nuclear@28
|
37 /** Gaussuan function */
|
nuclear@28
|
38 scalar_t gaussian(scalar_t x, scalar_t mean, scalar_t sdev)
|
nuclear@28
|
39 {
|
nuclear@28
|
40 scalar_t exponent = -SQ(x - mean) / (2.0 * SQ(sdev));
|
nuclear@28
|
41 return 1.0 - -pow(M_E, exponent) / (sdev * sqrt(TWO_PI));
|
nuclear@28
|
42 }
|
nuclear@28
|
43
|
nuclear@28
|
44
|
nuclear@28
|
45 /** b-spline approximation */
|
nuclear@28
|
46 scalar_t bspline(scalar_t a, scalar_t b, scalar_t c, scalar_t d, scalar_t t)
|
nuclear@28
|
47 {
|
nuclear@28
|
48 vec4_t tmp;
|
nuclear@28
|
49 scalar_t tsq = t * t;
|
nuclear@28
|
50
|
nuclear@28
|
51 static mat4_t bspline_mat = {
|
nuclear@28
|
52 {-1, 3, -3, 1},
|
nuclear@28
|
53 {3, -6, 3, 0},
|
nuclear@28
|
54 {-3, 0, 3, 0},
|
nuclear@28
|
55 {1, 4, 1, 0}
|
nuclear@28
|
56 };
|
nuclear@28
|
57
|
nuclear@28
|
58 tmp = v4_scale(v4_transform(v4_cons(a, b, c, d), bspline_mat), 1.0 / 6.0);
|
nuclear@28
|
59 return v4_dot(v4_cons(tsq * t, tsq, t, 1.0), tmp);
|
nuclear@28
|
60 }
|
nuclear@28
|
61
|
nuclear@28
|
62 /** Catmull-rom spline interpolation */
|
nuclear@28
|
63 scalar_t spline(scalar_t a, scalar_t b, scalar_t c, scalar_t d, scalar_t t) {
|
nuclear@28
|
64 vec4_t tmp;
|
nuclear@28
|
65 scalar_t tsq = t * t;
|
nuclear@28
|
66
|
nuclear@28
|
67 static mat4_t crspline_mat = {
|
nuclear@28
|
68 {-1, 3, -3, 1},
|
nuclear@28
|
69 {2, -5, 4, -1},
|
nuclear@28
|
70 {-1, 0, 1, 0},
|
nuclear@28
|
71 {0, 2, 0, 0}
|
nuclear@28
|
72 };
|
nuclear@28
|
73
|
nuclear@28
|
74 tmp = v4_scale(v4_transform(v4_cons(a, b, c, d), crspline_mat), 0.5);
|
nuclear@28
|
75 return v4_dot(v4_cons(tsq * t, tsq, t, 1.0), tmp);
|
nuclear@28
|
76 }
|
nuclear@28
|
77
|
nuclear@28
|
78 /** Bezier interpolation */
|
nuclear@28
|
79 scalar_t bezier(scalar_t a, scalar_t b, scalar_t c, scalar_t d, scalar_t t)
|
nuclear@28
|
80 {
|
nuclear@28
|
81 scalar_t omt, omt3, t3, f;
|
nuclear@28
|
82 t3 = t * t * t;
|
nuclear@28
|
83 omt = 1.0f - t;
|
nuclear@28
|
84 omt3 = omt * omt * omt;
|
nuclear@28
|
85 f = 3 * t * omt;
|
nuclear@28
|
86
|
nuclear@28
|
87 return (a * omt3) + (b * f * omt) + (c * f * t) + (d * t3);
|
nuclear@28
|
88 }
|
nuclear@28
|
89
|
nuclear@28
|
90 /* ---- Ken Perlin's implementation of noise ---- */
|
nuclear@28
|
91
|
nuclear@28
|
92 #define B 0x100
|
nuclear@28
|
93 #define BM 0xff
|
nuclear@28
|
94 #define N 0x1000
|
nuclear@28
|
95 #define NP 12 /* 2^N */
|
nuclear@28
|
96 #define NM 0xfff
|
nuclear@28
|
97
|
nuclear@28
|
98 #define s_curve(t) (t * t * (3.0f - 2.0f * t))
|
nuclear@28
|
99
|
nuclear@28
|
100 #define setup(elem, b0, b1, r0, r1) \
|
nuclear@28
|
101 do { \
|
nuclear@28
|
102 scalar_t t = elem + N; \
|
nuclear@28
|
103 b0 = ((int)t) & BM; \
|
nuclear@28
|
104 b1 = (b0 + 1) & BM; \
|
nuclear@28
|
105 r0 = t - (int)t; \
|
nuclear@28
|
106 r1 = r0 - 1.0f; \
|
nuclear@28
|
107 } while(0)
|
nuclear@28
|
108
|
nuclear@28
|
109
|
nuclear@28
|
110 static int perm[B + B + 2]; /* permuted index from g_n onto themselves */
|
nuclear@28
|
111 static vec3_t grad3[B + B + 2]; /* 3D random gradients */
|
nuclear@28
|
112 static vec2_t grad2[B + B + 2]; /* 2D random gradients */
|
nuclear@28
|
113 static scalar_t grad1[B + B + 2]; /* 1D random ... slopes */
|
nuclear@28
|
114 static int tables_valid;
|
nuclear@28
|
115
|
nuclear@28
|
116 static void init_noise()
|
nuclear@28
|
117 {
|
nuclear@28
|
118 int i;
|
nuclear@28
|
119
|
nuclear@28
|
120 /* calculate random gradients */
|
nuclear@28
|
121 for(i=0; i<B; i++) {
|
nuclear@28
|
122 perm[i] = i; /* .. and initialize permutation mapping to identity */
|
nuclear@28
|
123
|
nuclear@28
|
124 grad1[i] = (scalar_t)((rand() % (B + B)) - B) / B;
|
nuclear@28
|
125
|
nuclear@28
|
126 grad2[i].x = (scalar_t)((rand() % (B + B)) - B) / B;
|
nuclear@28
|
127 grad2[i].y = (scalar_t)((rand() % (B + B)) - B) / B;
|
nuclear@28
|
128 grad2[i] = v2_normalize(grad2[i]);
|
nuclear@28
|
129
|
nuclear@28
|
130 grad3[i].x = (scalar_t)((rand() % (B + B)) - B) / B;
|
nuclear@28
|
131 grad3[i].y = (scalar_t)((rand() % (B + B)) - B) / B;
|
nuclear@28
|
132 grad3[i].z = (scalar_t)((rand() % (B + B)) - B) / B;
|
nuclear@28
|
133 grad3[i] = v3_normalize(grad3[i]);
|
nuclear@28
|
134 }
|
nuclear@28
|
135
|
nuclear@28
|
136 /* permute indices by swapping them randomly */
|
nuclear@28
|
137 for(i=0; i<B; i++) {
|
nuclear@28
|
138 int rand_idx = rand() % B;
|
nuclear@28
|
139
|
nuclear@28
|
140 int tmp = perm[i];
|
nuclear@28
|
141 perm[i] = perm[rand_idx];
|
nuclear@28
|
142 perm[rand_idx] = tmp;
|
nuclear@28
|
143 }
|
nuclear@28
|
144
|
nuclear@28
|
145 /* fill up the rest of the arrays by duplicating the existing gradients */
|
nuclear@28
|
146 /* and permutations */
|
nuclear@28
|
147 for(i=0; i<B+2; i++) {
|
nuclear@28
|
148 perm[B + i] = perm[i];
|
nuclear@28
|
149 grad1[B + i] = grad1[i];
|
nuclear@28
|
150 grad2[B + i] = grad2[i];
|
nuclear@28
|
151 grad3[B + i] = grad3[i];
|
nuclear@28
|
152 }
|
nuclear@28
|
153 }
|
nuclear@28
|
154
|
nuclear@28
|
155 scalar_t noise1(scalar_t x)
|
nuclear@28
|
156 {
|
nuclear@28
|
157 int bx0, bx1;
|
nuclear@28
|
158 scalar_t rx0, rx1, sx, u, v;
|
nuclear@28
|
159
|
nuclear@28
|
160 if(!tables_valid) {
|
nuclear@28
|
161 init_noise();
|
nuclear@28
|
162 tables_valid = 1;
|
nuclear@28
|
163 }
|
nuclear@28
|
164
|
nuclear@28
|
165 setup(x, bx0, bx1, rx0, rx1);
|
nuclear@28
|
166 sx = s_curve(rx0);
|
nuclear@28
|
167 u = rx0 * grad1[perm[bx0]];
|
nuclear@28
|
168 v = rx1 * grad1[perm[bx1]];
|
nuclear@28
|
169
|
nuclear@28
|
170 return lerp(u, v, sx);
|
nuclear@28
|
171 }
|
nuclear@28
|
172
|
nuclear@28
|
173 scalar_t noise2(scalar_t x, scalar_t y)
|
nuclear@28
|
174 {
|
nuclear@28
|
175 int i, j, b00, b10, b01, b11;
|
nuclear@28
|
176 int bx0, bx1, by0, by1;
|
nuclear@28
|
177 scalar_t rx0, rx1, ry0, ry1;
|
nuclear@28
|
178 scalar_t sx, sy, u, v, a, b;
|
nuclear@28
|
179
|
nuclear@28
|
180 if(!tables_valid) {
|
nuclear@28
|
181 init_noise();
|
nuclear@28
|
182 tables_valid = 1;
|
nuclear@28
|
183 }
|
nuclear@28
|
184
|
nuclear@28
|
185 setup(x, bx0, bx1, rx0, rx1);
|
nuclear@28
|
186 setup(y, by0, by1, ry0, ry1);
|
nuclear@28
|
187
|
nuclear@28
|
188 i = perm[bx0];
|
nuclear@28
|
189 j = perm[bx1];
|
nuclear@28
|
190
|
nuclear@28
|
191 b00 = perm[i + by0];
|
nuclear@28
|
192 b10 = perm[j + by0];
|
nuclear@28
|
193 b01 = perm[i + by1];
|
nuclear@28
|
194 b11 = perm[j + by1];
|
nuclear@28
|
195
|
nuclear@28
|
196 /* calculate hermite inteprolating factors */
|
nuclear@28
|
197 sx = s_curve(rx0);
|
nuclear@28
|
198 sy = s_curve(ry0);
|
nuclear@28
|
199
|
nuclear@28
|
200 /* interpolate along the left edge */
|
nuclear@28
|
201 u = v2_dot(grad2[b00], v2_cons(rx0, ry0));
|
nuclear@28
|
202 v = v2_dot(grad2[b10], v2_cons(rx1, ry0));
|
nuclear@28
|
203 a = lerp(u, v, sx);
|
nuclear@28
|
204
|
nuclear@28
|
205 /* interpolate along the right edge */
|
nuclear@28
|
206 u = v2_dot(grad2[b01], v2_cons(rx0, ry1));
|
nuclear@28
|
207 v = v2_dot(grad2[b11], v2_cons(rx1, ry1));
|
nuclear@28
|
208 b = lerp(u, v, sx);
|
nuclear@28
|
209
|
nuclear@28
|
210 /* interpolate between them */
|
nuclear@28
|
211 return lerp(a, b, sy);
|
nuclear@28
|
212 }
|
nuclear@28
|
213
|
nuclear@28
|
214 scalar_t noise3(scalar_t x, scalar_t y, scalar_t z)
|
nuclear@28
|
215 {
|
nuclear@28
|
216 int i, j;
|
nuclear@28
|
217 int bx0, bx1, by0, by1, bz0, bz1;
|
nuclear@28
|
218 int b00, b10, b01, b11;
|
nuclear@28
|
219 scalar_t rx0, rx1, ry0, ry1, rz0, rz1;
|
nuclear@28
|
220 scalar_t sx, sy, sz;
|
nuclear@28
|
221 scalar_t u, v, a, b, c, d;
|
nuclear@28
|
222
|
nuclear@28
|
223 if(!tables_valid) {
|
nuclear@28
|
224 init_noise();
|
nuclear@28
|
225 tables_valid = 1;
|
nuclear@28
|
226 }
|
nuclear@28
|
227
|
nuclear@28
|
228 setup(x, bx0, bx1, rx0, rx1);
|
nuclear@28
|
229 setup(y, by0, by1, ry0, ry1);
|
nuclear@28
|
230 setup(z, bz0, bz1, rz0, rz1);
|
nuclear@28
|
231
|
nuclear@28
|
232 i = perm[bx0];
|
nuclear@28
|
233 j = perm[bx1];
|
nuclear@28
|
234
|
nuclear@28
|
235 b00 = perm[i + by0];
|
nuclear@28
|
236 b10 = perm[j + by0];
|
nuclear@28
|
237 b01 = perm[i + by1];
|
nuclear@28
|
238 b11 = perm[j + by1];
|
nuclear@28
|
239
|
nuclear@28
|
240 /* calculate hermite interpolating factors */
|
nuclear@28
|
241 sx = s_curve(rx0);
|
nuclear@28
|
242 sy = s_curve(ry0);
|
nuclear@28
|
243 sz = s_curve(rz0);
|
nuclear@28
|
244
|
nuclear@28
|
245 /* interpolate along the top slice of the cell */
|
nuclear@28
|
246 u = v3_dot(grad3[b00 + bz0], v3_cons(rx0, ry0, rz0));
|
nuclear@28
|
247 v = v3_dot(grad3[b10 + bz0], v3_cons(rx1, ry0, rz0));
|
nuclear@28
|
248 a = lerp(u, v, sx);
|
nuclear@28
|
249
|
nuclear@28
|
250 u = v3_dot(grad3[b01 + bz0], v3_cons(rx0, ry1, rz0));
|
nuclear@28
|
251 v = v3_dot(grad3[b11 + bz0], v3_cons(rx1, ry1, rz0));
|
nuclear@28
|
252 b = lerp(u, v, sx);
|
nuclear@28
|
253
|
nuclear@28
|
254 c = lerp(a, b, sy);
|
nuclear@28
|
255
|
nuclear@28
|
256 /* interpolate along the bottom slice of the cell */
|
nuclear@28
|
257 u = v3_dot(grad3[b00 + bz0], v3_cons(rx0, ry0, rz1));
|
nuclear@28
|
258 v = v3_dot(grad3[b10 + bz0], v3_cons(rx1, ry0, rz1));
|
nuclear@28
|
259 a = lerp(u, v, sx);
|
nuclear@28
|
260
|
nuclear@28
|
261 u = v3_dot(grad3[b01 + bz0], v3_cons(rx0, ry1, rz1));
|
nuclear@28
|
262 v = v3_dot(grad3[b11 + bz0], v3_cons(rx1, ry1, rz1));
|
nuclear@28
|
263 b = lerp(u, v, sx);
|
nuclear@28
|
264
|
nuclear@28
|
265 d = lerp(a, b, sy);
|
nuclear@28
|
266
|
nuclear@28
|
267 /* interpolate between slices */
|
nuclear@28
|
268 return lerp(c, d, sz);
|
nuclear@28
|
269 }
|
nuclear@28
|
270
|
nuclear@28
|
271 scalar_t fbm1(scalar_t x, int octaves)
|
nuclear@28
|
272 {
|
nuclear@28
|
273 int i;
|
nuclear@28
|
274 scalar_t res = 0.0f, freq = 1.0f;
|
nuclear@28
|
275 for(i=0; i<octaves; i++) {
|
nuclear@28
|
276 res += noise1(x * freq) / freq;
|
nuclear@28
|
277 freq *= 2.0f;
|
nuclear@28
|
278 }
|
nuclear@28
|
279 return res;
|
nuclear@28
|
280 }
|
nuclear@28
|
281
|
nuclear@28
|
282 scalar_t fbm2(scalar_t x, scalar_t y, int octaves)
|
nuclear@28
|
283 {
|
nuclear@28
|
284 int i;
|
nuclear@28
|
285 scalar_t res = 0.0f, freq = 1.0f;
|
nuclear@28
|
286 for(i=0; i<octaves; i++) {
|
nuclear@28
|
287 res += noise2(x * freq, y * freq) / freq;
|
nuclear@28
|
288 freq *= 2.0f;
|
nuclear@28
|
289 }
|
nuclear@28
|
290 return res;
|
nuclear@28
|
291 }
|
nuclear@28
|
292
|
nuclear@28
|
293 scalar_t fbm3(scalar_t x, scalar_t y, scalar_t z, int octaves)
|
nuclear@28
|
294 {
|
nuclear@28
|
295 int i;
|
nuclear@28
|
296 scalar_t res = 0.0f, freq = 1.0f;
|
nuclear@28
|
297 for(i=0; i<octaves; i++) {
|
nuclear@28
|
298 res += noise3(x * freq, y * freq, z * freq) / freq;
|
nuclear@28
|
299 freq *= 2.0f;
|
nuclear@28
|
300 }
|
nuclear@28
|
301 return res;
|
nuclear@28
|
302 }
|
nuclear@28
|
303
|
nuclear@28
|
304 scalar_t turbulence1(scalar_t x, int octaves)
|
nuclear@28
|
305 {
|
nuclear@28
|
306 int i;
|
nuclear@28
|
307 scalar_t res = 0.0f, freq = 1.0f;
|
nuclear@28
|
308 for(i=0; i<octaves; i++) {
|
nuclear@28
|
309 res += fabs(noise1(x * freq) / freq);
|
nuclear@28
|
310 freq *= 2.0f;
|
nuclear@28
|
311 }
|
nuclear@28
|
312 return res;
|
nuclear@28
|
313 }
|
nuclear@28
|
314
|
nuclear@28
|
315 scalar_t turbulence2(scalar_t x, scalar_t y, int octaves)
|
nuclear@28
|
316 {
|
nuclear@28
|
317 int i;
|
nuclear@28
|
318 scalar_t res = 0.0f, freq = 1.0f;
|
nuclear@28
|
319 for(i=0; i<octaves; i++) {
|
nuclear@28
|
320 res += fabs(noise2(x * freq, y * freq) / freq);
|
nuclear@28
|
321 freq *= 2.0f;
|
nuclear@28
|
322 }
|
nuclear@28
|
323 return res;
|
nuclear@28
|
324 }
|
nuclear@28
|
325
|
nuclear@28
|
326 scalar_t turbulence3(scalar_t x, scalar_t y, scalar_t z, int octaves)
|
nuclear@28
|
327 {
|
nuclear@28
|
328 int i;
|
nuclear@28
|
329 scalar_t res = 0.0f, freq = 1.0f;
|
nuclear@28
|
330 for(i=0; i<octaves; i++) {
|
nuclear@28
|
331 res += fabs(noise3(x * freq, y * freq, z * freq) / freq);
|
nuclear@28
|
332 freq *= 2.0f;
|
nuclear@28
|
333 }
|
nuclear@28
|
334 return res;
|
nuclear@28
|
335 }
|