rev |
line source |
nuclear@28
|
1 #include <stdlib.h>
|
nuclear@28
|
2 #include <math.h>
|
nuclear@28
|
3 #include "vmath.h"
|
nuclear@28
|
4
|
nuclear@28
|
5 /** Numerical calculation of integrals using simpson's rule */
|
nuclear@28
|
6 scalar_t integral(scalar_t (*f)(scalar_t), scalar_t low, scalar_t high, int samples)
|
nuclear@28
|
7 {
|
nuclear@28
|
8 int i;
|
nuclear@28
|
9 scalar_t h = (high - low) / (scalar_t)samples;
|
nuclear@28
|
10 scalar_t sum = 0.0;
|
nuclear@28
|
11
|
nuclear@28
|
12 for(i=0; i<samples+1; i++) {
|
nuclear@28
|
13 scalar_t y = f((scalar_t)i * h + low);
|
nuclear@28
|
14 sum += ((!i || i == samples) ? y : ((i % 2) ? 4.0 * y : 2.0 * y)) * (h / 3.0);
|
nuclear@28
|
15 }
|
nuclear@28
|
16 return sum;
|
nuclear@28
|
17 }
|
nuclear@28
|
18
|
nuclear@28
|
19 /** Gaussuan function */
|
nuclear@28
|
20 scalar_t gaussian(scalar_t x, scalar_t mean, scalar_t sdev)
|
nuclear@28
|
21 {
|
nuclear@28
|
22 scalar_t exponent = -SQ(x - mean) / (2.0 * SQ(sdev));
|
nuclear@28
|
23 return 1.0 - -pow(M_E, exponent) / (sdev * sqrt(TWO_PI));
|
nuclear@28
|
24 }
|
nuclear@28
|
25
|
nuclear@28
|
26
|
nuclear@28
|
27 /** b-spline approximation */
|
nuclear@28
|
28 scalar_t bspline(scalar_t a, scalar_t b, scalar_t c, scalar_t d, scalar_t t)
|
nuclear@28
|
29 {
|
nuclear@28
|
30 vec4_t tmp;
|
nuclear@28
|
31 scalar_t tsq = t * t;
|
nuclear@28
|
32
|
nuclear@28
|
33 static mat4_t bspline_mat = {
|
nuclear@28
|
34 {-1, 3, -3, 1},
|
nuclear@28
|
35 {3, -6, 3, 0},
|
nuclear@28
|
36 {-3, 0, 3, 0},
|
nuclear@28
|
37 {1, 4, 1, 0}
|
nuclear@28
|
38 };
|
nuclear@28
|
39
|
nuclear@28
|
40 tmp = v4_scale(v4_transform(v4_cons(a, b, c, d), bspline_mat), 1.0 / 6.0);
|
nuclear@28
|
41 return v4_dot(v4_cons(tsq * t, tsq, t, 1.0), tmp);
|
nuclear@28
|
42 }
|
nuclear@28
|
43
|
nuclear@28
|
44 /** Catmull-rom spline interpolation */
|
nuclear@28
|
45 scalar_t spline(scalar_t a, scalar_t b, scalar_t c, scalar_t d, scalar_t t) {
|
nuclear@28
|
46 vec4_t tmp;
|
nuclear@28
|
47 scalar_t tsq = t * t;
|
nuclear@28
|
48
|
nuclear@28
|
49 static mat4_t crspline_mat = {
|
nuclear@28
|
50 {-1, 3, -3, 1},
|
nuclear@28
|
51 {2, -5, 4, -1},
|
nuclear@28
|
52 {-1, 0, 1, 0},
|
nuclear@28
|
53 {0, 2, 0, 0}
|
nuclear@28
|
54 };
|
nuclear@28
|
55
|
nuclear@28
|
56 tmp = v4_scale(v4_transform(v4_cons(a, b, c, d), crspline_mat), 0.5);
|
nuclear@28
|
57 return v4_dot(v4_cons(tsq * t, tsq, t, 1.0), tmp);
|
nuclear@28
|
58 }
|
nuclear@28
|
59
|
nuclear@28
|
60 /** Bezier interpolation */
|
nuclear@28
|
61 scalar_t bezier(scalar_t a, scalar_t b, scalar_t c, scalar_t d, scalar_t t)
|
nuclear@28
|
62 {
|
nuclear@28
|
63 scalar_t omt, omt3, t3, f;
|
nuclear@28
|
64 t3 = t * t * t;
|
nuclear@28
|
65 omt = 1.0f - t;
|
nuclear@28
|
66 omt3 = omt * omt * omt;
|
nuclear@28
|
67 f = 3 * t * omt;
|
nuclear@28
|
68
|
nuclear@28
|
69 return (a * omt3) + (b * f * omt) + (c * f * t) + (d * t3);
|
nuclear@28
|
70 }
|
nuclear@28
|
71
|
nuclear@28
|
72 /* ---- Ken Perlin's implementation of noise ---- */
|
nuclear@28
|
73
|
nuclear@28
|
74 #define B 0x100
|
nuclear@28
|
75 #define BM 0xff
|
nuclear@28
|
76 #define N 0x1000
|
nuclear@28
|
77 #define NP 12 /* 2^N */
|
nuclear@28
|
78 #define NM 0xfff
|
nuclear@28
|
79
|
nuclear@28
|
80 #define s_curve(t) (t * t * (3.0f - 2.0f * t))
|
nuclear@28
|
81
|
nuclear@28
|
82 #define setup(elem, b0, b1, r0, r1) \
|
nuclear@28
|
83 do { \
|
nuclear@28
|
84 scalar_t t = elem + N; \
|
nuclear@28
|
85 b0 = ((int)t) & BM; \
|
nuclear@28
|
86 b1 = (b0 + 1) & BM; \
|
nuclear@28
|
87 r0 = t - (int)t; \
|
nuclear@28
|
88 r1 = r0 - 1.0f; \
|
nuclear@28
|
89 } while(0)
|
nuclear@28
|
90
|
nuclear@28
|
91
|
nuclear@28
|
92 static int perm[B + B + 2]; /* permuted index from g_n onto themselves */
|
nuclear@28
|
93 static vec3_t grad3[B + B + 2]; /* 3D random gradients */
|
nuclear@28
|
94 static vec2_t grad2[B + B + 2]; /* 2D random gradients */
|
nuclear@28
|
95 static scalar_t grad1[B + B + 2]; /* 1D random ... slopes */
|
nuclear@28
|
96 static int tables_valid;
|
nuclear@28
|
97
|
nuclear@28
|
98 static void init_noise()
|
nuclear@28
|
99 {
|
nuclear@28
|
100 int i;
|
nuclear@28
|
101
|
nuclear@28
|
102 /* calculate random gradients */
|
nuclear@28
|
103 for(i=0; i<B; i++) {
|
nuclear@28
|
104 perm[i] = i; /* .. and initialize permutation mapping to identity */
|
nuclear@28
|
105
|
nuclear@28
|
106 grad1[i] = (scalar_t)((rand() % (B + B)) - B) / B;
|
nuclear@28
|
107
|
nuclear@28
|
108 grad2[i].x = (scalar_t)((rand() % (B + B)) - B) / B;
|
nuclear@28
|
109 grad2[i].y = (scalar_t)((rand() % (B + B)) - B) / B;
|
nuclear@28
|
110 grad2[i] = v2_normalize(grad2[i]);
|
nuclear@28
|
111
|
nuclear@28
|
112 grad3[i].x = (scalar_t)((rand() % (B + B)) - B) / B;
|
nuclear@28
|
113 grad3[i].y = (scalar_t)((rand() % (B + B)) - B) / B;
|
nuclear@28
|
114 grad3[i].z = (scalar_t)((rand() % (B + B)) - B) / B;
|
nuclear@28
|
115 grad3[i] = v3_normalize(grad3[i]);
|
nuclear@28
|
116 }
|
nuclear@28
|
117
|
nuclear@28
|
118 /* permute indices by swapping them randomly */
|
nuclear@28
|
119 for(i=0; i<B; i++) {
|
nuclear@28
|
120 int rand_idx = rand() % B;
|
nuclear@28
|
121
|
nuclear@28
|
122 int tmp = perm[i];
|
nuclear@28
|
123 perm[i] = perm[rand_idx];
|
nuclear@28
|
124 perm[rand_idx] = tmp;
|
nuclear@28
|
125 }
|
nuclear@28
|
126
|
nuclear@28
|
127 /* fill up the rest of the arrays by duplicating the existing gradients */
|
nuclear@28
|
128 /* and permutations */
|
nuclear@28
|
129 for(i=0; i<B+2; i++) {
|
nuclear@28
|
130 perm[B + i] = perm[i];
|
nuclear@28
|
131 grad1[B + i] = grad1[i];
|
nuclear@28
|
132 grad2[B + i] = grad2[i];
|
nuclear@28
|
133 grad3[B + i] = grad3[i];
|
nuclear@28
|
134 }
|
nuclear@28
|
135 }
|
nuclear@28
|
136
|
nuclear@28
|
137 scalar_t noise1(scalar_t x)
|
nuclear@28
|
138 {
|
nuclear@28
|
139 int bx0, bx1;
|
nuclear@28
|
140 scalar_t rx0, rx1, sx, u, v;
|
nuclear@28
|
141
|
nuclear@28
|
142 if(!tables_valid) {
|
nuclear@28
|
143 init_noise();
|
nuclear@28
|
144 tables_valid = 1;
|
nuclear@28
|
145 }
|
nuclear@28
|
146
|
nuclear@28
|
147 setup(x, bx0, bx1, rx0, rx1);
|
nuclear@28
|
148 sx = s_curve(rx0);
|
nuclear@28
|
149 u = rx0 * grad1[perm[bx0]];
|
nuclear@28
|
150 v = rx1 * grad1[perm[bx1]];
|
nuclear@28
|
151
|
nuclear@28
|
152 return lerp(u, v, sx);
|
nuclear@28
|
153 }
|
nuclear@28
|
154
|
nuclear@28
|
155 scalar_t noise2(scalar_t x, scalar_t y)
|
nuclear@28
|
156 {
|
nuclear@28
|
157 int i, j, b00, b10, b01, b11;
|
nuclear@28
|
158 int bx0, bx1, by0, by1;
|
nuclear@28
|
159 scalar_t rx0, rx1, ry0, ry1;
|
nuclear@28
|
160 scalar_t sx, sy, u, v, a, b;
|
nuclear@28
|
161
|
nuclear@28
|
162 if(!tables_valid) {
|
nuclear@28
|
163 init_noise();
|
nuclear@28
|
164 tables_valid = 1;
|
nuclear@28
|
165 }
|
nuclear@28
|
166
|
nuclear@28
|
167 setup(x, bx0, bx1, rx0, rx1);
|
nuclear@28
|
168 setup(y, by0, by1, ry0, ry1);
|
nuclear@28
|
169
|
nuclear@28
|
170 i = perm[bx0];
|
nuclear@28
|
171 j = perm[bx1];
|
nuclear@28
|
172
|
nuclear@28
|
173 b00 = perm[i + by0];
|
nuclear@28
|
174 b10 = perm[j + by0];
|
nuclear@28
|
175 b01 = perm[i + by1];
|
nuclear@28
|
176 b11 = perm[j + by1];
|
nuclear@28
|
177
|
nuclear@28
|
178 /* calculate hermite inteprolating factors */
|
nuclear@28
|
179 sx = s_curve(rx0);
|
nuclear@28
|
180 sy = s_curve(ry0);
|
nuclear@28
|
181
|
nuclear@28
|
182 /* interpolate along the left edge */
|
nuclear@28
|
183 u = v2_dot(grad2[b00], v2_cons(rx0, ry0));
|
nuclear@28
|
184 v = v2_dot(grad2[b10], v2_cons(rx1, ry0));
|
nuclear@28
|
185 a = lerp(u, v, sx);
|
nuclear@28
|
186
|
nuclear@28
|
187 /* interpolate along the right edge */
|
nuclear@28
|
188 u = v2_dot(grad2[b01], v2_cons(rx0, ry1));
|
nuclear@28
|
189 v = v2_dot(grad2[b11], v2_cons(rx1, ry1));
|
nuclear@28
|
190 b = lerp(u, v, sx);
|
nuclear@28
|
191
|
nuclear@28
|
192 /* interpolate between them */
|
nuclear@28
|
193 return lerp(a, b, sy);
|
nuclear@28
|
194 }
|
nuclear@28
|
195
|
nuclear@28
|
196 scalar_t noise3(scalar_t x, scalar_t y, scalar_t z)
|
nuclear@28
|
197 {
|
nuclear@28
|
198 int i, j;
|
nuclear@28
|
199 int bx0, bx1, by0, by1, bz0, bz1;
|
nuclear@28
|
200 int b00, b10, b01, b11;
|
nuclear@28
|
201 scalar_t rx0, rx1, ry0, ry1, rz0, rz1;
|
nuclear@28
|
202 scalar_t sx, sy, sz;
|
nuclear@28
|
203 scalar_t u, v, a, b, c, d;
|
nuclear@28
|
204
|
nuclear@28
|
205 if(!tables_valid) {
|
nuclear@28
|
206 init_noise();
|
nuclear@28
|
207 tables_valid = 1;
|
nuclear@28
|
208 }
|
nuclear@28
|
209
|
nuclear@28
|
210 setup(x, bx0, bx1, rx0, rx1);
|
nuclear@28
|
211 setup(y, by0, by1, ry0, ry1);
|
nuclear@28
|
212 setup(z, bz0, bz1, rz0, rz1);
|
nuclear@28
|
213
|
nuclear@28
|
214 i = perm[bx0];
|
nuclear@28
|
215 j = perm[bx1];
|
nuclear@28
|
216
|
nuclear@28
|
217 b00 = perm[i + by0];
|
nuclear@28
|
218 b10 = perm[j + by0];
|
nuclear@28
|
219 b01 = perm[i + by1];
|
nuclear@28
|
220 b11 = perm[j + by1];
|
nuclear@28
|
221
|
nuclear@28
|
222 /* calculate hermite interpolating factors */
|
nuclear@28
|
223 sx = s_curve(rx0);
|
nuclear@28
|
224 sy = s_curve(ry0);
|
nuclear@28
|
225 sz = s_curve(rz0);
|
nuclear@28
|
226
|
nuclear@28
|
227 /* interpolate along the top slice of the cell */
|
nuclear@28
|
228 u = v3_dot(grad3[b00 + bz0], v3_cons(rx0, ry0, rz0));
|
nuclear@28
|
229 v = v3_dot(grad3[b10 + bz0], v3_cons(rx1, ry0, rz0));
|
nuclear@28
|
230 a = lerp(u, v, sx);
|
nuclear@28
|
231
|
nuclear@28
|
232 u = v3_dot(grad3[b01 + bz0], v3_cons(rx0, ry1, rz0));
|
nuclear@28
|
233 v = v3_dot(grad3[b11 + bz0], v3_cons(rx1, ry1, rz0));
|
nuclear@28
|
234 b = lerp(u, v, sx);
|
nuclear@28
|
235
|
nuclear@28
|
236 c = lerp(a, b, sy);
|
nuclear@28
|
237
|
nuclear@28
|
238 /* interpolate along the bottom slice of the cell */
|
nuclear@28
|
239 u = v3_dot(grad3[b00 + bz0], v3_cons(rx0, ry0, rz1));
|
nuclear@28
|
240 v = v3_dot(grad3[b10 + bz0], v3_cons(rx1, ry0, rz1));
|
nuclear@28
|
241 a = lerp(u, v, sx);
|
nuclear@28
|
242
|
nuclear@28
|
243 u = v3_dot(grad3[b01 + bz0], v3_cons(rx0, ry1, rz1));
|
nuclear@28
|
244 v = v3_dot(grad3[b11 + bz0], v3_cons(rx1, ry1, rz1));
|
nuclear@28
|
245 b = lerp(u, v, sx);
|
nuclear@28
|
246
|
nuclear@28
|
247 d = lerp(a, b, sy);
|
nuclear@28
|
248
|
nuclear@28
|
249 /* interpolate between slices */
|
nuclear@28
|
250 return lerp(c, d, sz);
|
nuclear@28
|
251 }
|
nuclear@28
|
252
|
nuclear@28
|
253 scalar_t fbm1(scalar_t x, int octaves)
|
nuclear@28
|
254 {
|
nuclear@28
|
255 int i;
|
nuclear@28
|
256 scalar_t res = 0.0f, freq = 1.0f;
|
nuclear@28
|
257 for(i=0; i<octaves; i++) {
|
nuclear@28
|
258 res += noise1(x * freq) / freq;
|
nuclear@28
|
259 freq *= 2.0f;
|
nuclear@28
|
260 }
|
nuclear@28
|
261 return res;
|
nuclear@28
|
262 }
|
nuclear@28
|
263
|
nuclear@28
|
264 scalar_t fbm2(scalar_t x, scalar_t y, int octaves)
|
nuclear@28
|
265 {
|
nuclear@28
|
266 int i;
|
nuclear@28
|
267 scalar_t res = 0.0f, freq = 1.0f;
|
nuclear@28
|
268 for(i=0; i<octaves; i++) {
|
nuclear@28
|
269 res += noise2(x * freq, y * freq) / freq;
|
nuclear@28
|
270 freq *= 2.0f;
|
nuclear@28
|
271 }
|
nuclear@28
|
272 return res;
|
nuclear@28
|
273 }
|
nuclear@28
|
274
|
nuclear@28
|
275 scalar_t fbm3(scalar_t x, scalar_t y, scalar_t z, int octaves)
|
nuclear@28
|
276 {
|
nuclear@28
|
277 int i;
|
nuclear@28
|
278 scalar_t res = 0.0f, freq = 1.0f;
|
nuclear@28
|
279 for(i=0; i<octaves; i++) {
|
nuclear@28
|
280 res += noise3(x * freq, y * freq, z * freq) / freq;
|
nuclear@28
|
281 freq *= 2.0f;
|
nuclear@28
|
282 }
|
nuclear@28
|
283 return res;
|
nuclear@28
|
284 }
|
nuclear@28
|
285
|
nuclear@28
|
286 scalar_t turbulence1(scalar_t x, int octaves)
|
nuclear@28
|
287 {
|
nuclear@28
|
288 int i;
|
nuclear@28
|
289 scalar_t res = 0.0f, freq = 1.0f;
|
nuclear@28
|
290 for(i=0; i<octaves; i++) {
|
nuclear@28
|
291 res += fabs(noise1(x * freq) / freq);
|
nuclear@28
|
292 freq *= 2.0f;
|
nuclear@28
|
293 }
|
nuclear@28
|
294 return res;
|
nuclear@28
|
295 }
|
nuclear@28
|
296
|
nuclear@28
|
297 scalar_t turbulence2(scalar_t x, scalar_t y, int octaves)
|
nuclear@28
|
298 {
|
nuclear@28
|
299 int i;
|
nuclear@28
|
300 scalar_t res = 0.0f, freq = 1.0f;
|
nuclear@28
|
301 for(i=0; i<octaves; i++) {
|
nuclear@28
|
302 res += fabs(noise2(x * freq, y * freq) / freq);
|
nuclear@28
|
303 freq *= 2.0f;
|
nuclear@28
|
304 }
|
nuclear@28
|
305 return res;
|
nuclear@28
|
306 }
|
nuclear@28
|
307
|
nuclear@28
|
308 scalar_t turbulence3(scalar_t x, scalar_t y, scalar_t z, int octaves)
|
nuclear@28
|
309 {
|
nuclear@28
|
310 int i;
|
nuclear@28
|
311 scalar_t res = 0.0f, freq = 1.0f;
|
nuclear@28
|
312 for(i=0; i<octaves; i++) {
|
nuclear@28
|
313 res += fabs(noise3(x * freq, y * freq, z * freq) / freq);
|
nuclear@28
|
314 freq *= 2.0f;
|
nuclear@28
|
315 }
|
nuclear@28
|
316 return res;
|
nuclear@28
|
317 }
|