gba-x3dtest

annotate src/x3d.c @ 13:2070a81127f2

foo
author John Tsiombikas <nuclear@member.fsf.org>
date Mon, 23 Jun 2014 08:28:28 +0300
parents ecc022a21279
children c398d834d64a
rev   line source
nuclear@9 1 #include "config.h"
nuclear@7 2 #include <string.h>
nuclear@12 3 #include <math.h>
nuclear@7 4 #include "x3d.h"
nuclear@7 5 #include "fixed.h"
nuclear@7 6 #include "sincos.h"
nuclear@8 7 #include "logger.h"
nuclear@8 8 #include "polyfill.h"
nuclear@8 9 #include "gbasys.h"
nuclear@7 10
nuclear@7 11 #define MAT_STACK_SIZE 4
nuclear@7 12
nuclear@7 13 struct matrix {
nuclear@8 14 int32_t m[12];
nuclear@7 15 };
nuclear@7 16
nuclear@8 17 static void proc_vertex(const int32_t *vin, const int32_t *cin, pvec3 *vout, pvec3 *cout);
nuclear@8 18
nuclear@8 19
nuclear@7 20 static int32_t proj_fov = M_PI_X16;
nuclear@7 21 static int32_t proj_aspect = 65536;
nuclear@13 22 static int32_t inv_proj_aspect = 65536;
nuclear@7 23 static int32_t proj_near = ftox16(0.5);
nuclear@7 24 static int32_t proj_far = 500 << 16;
nuclear@13 25 static int32_t inv_tan_half_xfov, inv_tan_half_yfov;
nuclear@7 26
nuclear@8 27 #define ID_INIT {65536, 0, 0, 0, 0, 65536, 0, 0, 0, 0, 65536, 0}
nuclear@8 28
nuclear@8 29 static struct matrix identity = { ID_INIT };
nuclear@7 30
nuclear@7 31 static short mtop;
nuclear@8 32 static struct matrix mstack[MAT_STACK_SIZE] = { {ID_INIT}, {ID_INIT} };
nuclear@8 33
nuclear@8 34 static const int32_t *vertex_array;
nuclear@8 35 static unsigned short vertex_count;
nuclear@8 36 static const int32_t *color_array;
nuclear@8 37 static unsigned short color_count;
nuclear@8 38
nuclear@8 39 static int32_t im_color[3];
nuclear@9 40 static uint8_t im_color_index;
nuclear@7 41
nuclear@12 42 void x3d_projection(int fov, int32_t aspect, int32_t nearz, int32_t farz)
nuclear@7 43 {
nuclear@12 44 proj_fov = (M_PI_X16 * fov) / 180;
nuclear@7 45 proj_aspect = aspect;
nuclear@13 46 inv_proj_aspect = x16div(65536, proj_aspect);
nuclear@7 47 proj_near = nearz;
nuclear@7 48 proj_far = farz;
nuclear@12 49
nuclear@13 50 inv_tan_half_yfov = (int32_t)(65536.0 / tan(0.5 * proj_fov / 65536.0));
nuclear@13 51 inv_tan_half_xfov = x16mul(inv_tan_half_yfov, aspect);
nuclear@7 52 }
nuclear@7 53
nuclear@7 54 int x3d_push_matrix(void)
nuclear@7 55 {
nuclear@7 56 short newtop = mtop + 1;
nuclear@7 57 if(newtop >= MAT_STACK_SIZE) {
nuclear@7 58 return -1;
nuclear@7 59 }
nuclear@7 60 memcpy(mstack + newtop, mstack + mtop, sizeof *mstack);
nuclear@7 61 mtop = newtop;
nuclear@7 62 return 0;
nuclear@7 63 }
nuclear@7 64
nuclear@7 65 int x3d_pop_matrix(void)
nuclear@7 66 {
nuclear@7 67 if(mtop <= 0) {
nuclear@7 68 return -1;
nuclear@7 69 }
nuclear@7 70 --mtop;
nuclear@7 71 return 0;
nuclear@7 72 }
nuclear@7 73
nuclear@7 74 void x3d_load_matrix(int32_t *m)
nuclear@7 75 {
nuclear@8 76 memcpy(mstack[mtop].m, m, sizeof *mstack);
nuclear@7 77 }
nuclear@7 78
nuclear@7 79
nuclear@7 80 #define M(i,j) (((i) << 2) + (j))
nuclear@7 81 void x3d_mult_matrix(int32_t *m)
nuclear@7 82 {
nuclear@7 83 int i, j;
nuclear@7 84 struct matrix tmp;
nuclear@7 85
nuclear@8 86 memcpy(tmp.m, mstack[mtop].m, sizeof tmp);
nuclear@7 87
nuclear@7 88 for(i=0; i<3; i++) {
nuclear@7 89 for(j=0; j<4; j++) {
nuclear@8 90 mstack[mtop].m[M(i, j)] =
nuclear@8 91 x16mul(tmp.m[M(0, j)], m[M(i, 0)]) +
nuclear@8 92 x16mul(tmp.m[M(1, j)], m[M(i, 1)]) +
nuclear@8 93 x16mul(tmp.m[M(2, j)], m[M(i, 2)]);
nuclear@7 94 }
nuclear@8 95 mstack[mtop].m[M(i, 3)] += m[M(i, 3)];
nuclear@7 96 }
nuclear@7 97 }
nuclear@7 98
nuclear@7 99 void x3d_load_identity(void)
nuclear@7 100 {
nuclear@8 101 memcpy(mstack[mtop].m, identity.m, sizeof identity);
nuclear@7 102 }
nuclear@7 103
nuclear@8 104 void x3d_translate(int32_t x, int32_t y, int32_t z)
nuclear@8 105 {
nuclear@8 106 int32_t m[] = ID_INIT;
nuclear@8 107 m[3] = x;
nuclear@8 108 m[7] = y;
nuclear@8 109 m[11] = z;
nuclear@8 110
nuclear@8 111 x3d_mult_matrix(m);
nuclear@8 112 }
nuclear@8 113
nuclear@8 114 void x3d_rotate(int32_t deg, int32_t x, int32_t y, int32_t z)
nuclear@8 115 {
nuclear@8 116 int32_t xform[] = ID_INIT;
nuclear@8 117
nuclear@8 118 int32_t angle = x16mul(M_PI_X16, deg) / 180;
nuclear@8 119 int32_t sina = sin_x16(angle);
nuclear@8 120 int32_t cosa = cos_x16(angle);
nuclear@8 121 int32_t one_minus_cosa = 65536 - cosa;
nuclear@8 122 int32_t nxsq = x16sq(x);
nuclear@8 123 int32_t nysq = x16sq(y);
nuclear@8 124 int32_t nzsq = x16sq(z);
nuclear@8 125
nuclear@8 126 xform[0] = nxsq + x16mul(65536 - nxsq, cosa);
nuclear@8 127 xform[4] = x16mul(x16mul(x, y), one_minus_cosa) - x16mul(z, sina);
nuclear@8 128 xform[8] = x16mul(x16mul(x, z), one_minus_cosa) + x16mul(y, sina);
nuclear@8 129 xform[1] = x16mul(x16mul(x, y), one_minus_cosa) + x16mul(z, sina);
nuclear@8 130 xform[5] = nysq + x16mul(65536 - nysq, cosa);
nuclear@8 131 xform[9] = x16mul(x16mul(y, z), one_minus_cosa) - x16mul(x, sina);
nuclear@8 132 xform[2] = x16mul(x16mul(x, z), one_minus_cosa) - x16mul(y, sina);
nuclear@8 133 xform[6] = x16mul(x16mul(y, z), one_minus_cosa) + x16mul(x, sina);
nuclear@8 134 xform[10] = nzsq + x16mul(65536 - nzsq, cosa);
nuclear@8 135
nuclear@8 136 x3d_mult_matrix(xform);
nuclear@8 137 }
nuclear@8 138
nuclear@8 139 void x3d_scale(int32_t x, int32_t y, int32_t z)
nuclear@8 140 {
nuclear@8 141 int32_t m[] = ID_INIT;
nuclear@8 142
nuclear@8 143 m[0] = x;
nuclear@8 144 m[5] = y;
nuclear@8 145 m[10] = z;
nuclear@8 146
nuclear@8 147 x3d_mult_matrix(m);
nuclear@8 148 }
nuclear@8 149
nuclear@8 150 void x3d_vertex_array(int count, const int32_t *ptr)
nuclear@8 151 {
nuclear@8 152 vertex_array = ptr;
nuclear@8 153 vertex_count = count;
nuclear@8 154 }
nuclear@8 155
nuclear@8 156 void x3d_color_array(int count, const int32_t *ptr)
nuclear@8 157 {
nuclear@8 158 color_array = ptr;
nuclear@8 159 color_count = count;
nuclear@8 160 }
nuclear@8 161
nuclear@12 162 int x3d_draw(int prim, int vnum)
nuclear@8 163 {
nuclear@8 164 int i, j, pverts = prim;
nuclear@8 165 const int32_t *vptr = vertex_array;
nuclear@8 166 const int32_t *cptr = color_array;
nuclear@9 167 #ifndef PALMODE
nuclear@8 168 short cr, cg, cb;
nuclear@9 169 #endif
nuclear@9 170 uint16_t color;
nuclear@8 171
nuclear@8 172 if(!vertex_array) return -1;
nuclear@8 173
nuclear@8 174 if(vnum > vertex_count) {
nuclear@8 175 logmsg(LOG_DBG, "%s called with vnum=%d, but current vertex array has %d vertices\n",
nuclear@8 176 __FUNCTION__, vnum, vertex_count);
nuclear@8 177 vnum = vertex_count;
nuclear@8 178 }
nuclear@8 179 if(color_array && vnum > color_count) {
nuclear@8 180 logmsg(LOG_DBG, "%s called with vnum=%d, but current color array has %d elements\n",
nuclear@8 181 __FUNCTION__, vnum, color_count);
nuclear@8 182 vnum = color_count;
nuclear@8 183 }
nuclear@8 184
nuclear@8 185 for(i=0; i<vnum; i+=pverts) {
nuclear@8 186 /* process vertices */
nuclear@8 187 pvec3 vpos[4];
nuclear@8 188 pvec3 col[4];
nuclear@8 189
nuclear@8 190 for(j=0; j<pverts; j++) {
nuclear@8 191 proc_vertex(vptr, cptr, vpos + j, col + j);
nuclear@12 192
nuclear@12 193 if(vpos[j].z <= proj_near) {
nuclear@12 194 goto skip_prim;
nuclear@12 195 }
nuclear@12 196
nuclear@8 197 vptr += 3;
nuclear@8 198 if(cptr) cptr += 3;
nuclear@8 199 }
nuclear@8 200
nuclear@9 201 #ifdef PALMODE
nuclear@9 202 color = im_color_index;
nuclear@9 203 #else
nuclear@8 204 cr = col[0].x >> 8;
nuclear@8 205 cg = col[0].y >> 8;
nuclear@8 206 cb = col[0].z >> 8;
nuclear@8 207
nuclear@8 208 if(cr > 255) cr = 255;
nuclear@8 209 if(cg > 255) cg = 255;
nuclear@8 210 if(cb > 255) cb = 255;
nuclear@8 211
nuclear@9 212 color = RGB(cr, cg, cb);
nuclear@9 213 #endif
nuclear@9 214
nuclear@12 215 /* project & viewport */
nuclear@12 216 for(j=0; j<pverts; j++) {
nuclear@12 217 int32_t x, y;
nuclear@12 218
nuclear@13 219 x = x16mul(vpos[j].x, inv_tan_half_xfov);
nuclear@12 220 x = x16div(x, vpos[j].z);
nuclear@13 221 vpos[j].x = (x16mul(x, inv_proj_aspect) + 65536) * (WIDTH / 2);
nuclear@12 222
nuclear@13 223 y = x16mul(vpos[j].y, inv_tan_half_yfov);
nuclear@12 224 y = x16div(y, vpos[j].z);
nuclear@12 225 vpos[j].y = (65536 - y) * (HEIGHT / 2);
nuclear@12 226 }
nuclear@12 227
nuclear@8 228 switch(pverts) {
nuclear@8 229 case X3D_POINTS:
nuclear@9 230 draw_point(vpos, color);
nuclear@8 231 break;
nuclear@8 232
nuclear@8 233 case X3D_LINES:
nuclear@8 234 break;
nuclear@8 235
nuclear@8 236 case X3D_TRIANGLES:
nuclear@8 237 case X3D_QUADS:
nuclear@9 238 draw_poly(pverts, vpos, color);
nuclear@8 239 break;
nuclear@8 240 }
nuclear@12 241 skip_prim: ;
nuclear@8 242 }
nuclear@8 243 return 0;
nuclear@8 244 }
nuclear@8 245
nuclear@8 246 static void proc_vertex(const int32_t *vin, const int32_t *cin, pvec3 *vout, pvec3 *cout)
nuclear@8 247 {
nuclear@8 248 int i;
nuclear@8 249 int32_t tvert[3];
nuclear@8 250 int32_t *mvmat = mstack[mtop].m;
nuclear@8 251
nuclear@8 252 /* transform vertex with current matrix */
nuclear@8 253 for(i=0; i<3; i++) {
nuclear@8 254 tvert[i] = x16mul(mvmat[0], vin[0]) +
nuclear@8 255 x16mul(mvmat[1], vin[1]) +
nuclear@8 256 x16mul(mvmat[2], vin[2]) +
nuclear@8 257 mvmat[3];
nuclear@8 258 mvmat += 4;
nuclear@8 259 }
nuclear@8 260
nuclear@8 261 vout->x = tvert[0];
nuclear@8 262 vout->y = tvert[1];
nuclear@8 263 vout->z = tvert[2];
nuclear@8 264 /*logmsg(LOG_DBG, "%s: (%g %g %g) -> (%g %g %g)\n", __FUNCTION__,
nuclear@8 265 x16tof(vin[0]), x16tof(vin[1]), x16tof(vin[2]),
nuclear@8 266 x16tof(vout->x), x16tof(vout->y), x16tof(vout->z));*/
nuclear@8 267
nuclear@8 268 if(color_array) {
nuclear@8 269 cout->x = cin[0];
nuclear@8 270 cout->y = cin[1];
nuclear@8 271 cout->z = cin[2];
nuclear@8 272 } else {
nuclear@8 273 cout->x = im_color[0];
nuclear@8 274 cout->y = im_color[1];
nuclear@8 275 cout->z = im_color[2];
nuclear@8 276 }
nuclear@8 277 }
nuclear@8 278
nuclear@9 279 void x3d_color_index(int cidx)
nuclear@9 280 {
nuclear@9 281 im_color_index = cidx;
nuclear@9 282 }
nuclear@9 283
nuclear@8 284 void x3d_color(int32_t r, int32_t g, int32_t b)
nuclear@8 285 {
nuclear@8 286 im_color[0] = r;
nuclear@8 287 im_color[1] = g;
nuclear@8 288 im_color[2] = b;
nuclear@8 289 }