gba-x3dtest

annotate src/x3d.c @ 8:fb0a0d6a8b52

sortof works
author John Tsiombikas <nuclear@member.fsf.org>
date Thu, 19 Jun 2014 05:53:46 +0300
parents 158d23956801
children b0ed38f13261
rev   line source
nuclear@7 1 #include <string.h>
nuclear@7 2 #include "x3d.h"
nuclear@7 3 #include "fixed.h"
nuclear@7 4 #include "sincos.h"
nuclear@8 5 #include "logger.h"
nuclear@8 6 #include "polyfill.h"
nuclear@8 7 #include "gbasys.h"
nuclear@7 8
nuclear@7 9 #define MAT_STACK_SIZE 4
nuclear@7 10
nuclear@7 11 struct matrix {
nuclear@8 12 int32_t m[12];
nuclear@7 13 };
nuclear@7 14
nuclear@8 15 static void proc_vertex(const int32_t *vin, const int32_t *cin, pvec3 *vout, pvec3 *cout);
nuclear@8 16
nuclear@8 17
nuclear@7 18 static int32_t proj_fov = M_PI_X16;
nuclear@7 19 static int32_t proj_aspect = 65536;
nuclear@7 20 static int32_t proj_near = ftox16(0.5);
nuclear@7 21 static int32_t proj_far = 500 << 16;
nuclear@7 22
nuclear@8 23 #define ID_INIT {65536, 0, 0, 0, 0, 65536, 0, 0, 0, 0, 65536, 0}
nuclear@8 24
nuclear@8 25 static struct matrix identity = { ID_INIT };
nuclear@7 26
nuclear@7 27 static short mtop;
nuclear@8 28 static struct matrix mstack[MAT_STACK_SIZE] = { {ID_INIT}, {ID_INIT} };
nuclear@8 29
nuclear@8 30 static const int32_t *vertex_array;
nuclear@8 31 static unsigned short vertex_count;
nuclear@8 32 static const int32_t *color_array;
nuclear@8 33 static unsigned short color_count;
nuclear@8 34
nuclear@8 35 static int32_t im_color[3];
nuclear@7 36
nuclear@7 37 void x3d_projection(int32_t fov, int32_t aspect, int32_t nearz, int32_t farz)
nuclear@7 38 {
nuclear@7 39 proj_fov = fov;
nuclear@7 40 proj_aspect = aspect;
nuclear@7 41 proj_near = nearz;
nuclear@7 42 proj_far = farz;
nuclear@7 43 }
nuclear@7 44
nuclear@7 45 int x3d_push_matrix(void)
nuclear@7 46 {
nuclear@7 47 short newtop = mtop + 1;
nuclear@7 48 if(newtop >= MAT_STACK_SIZE) {
nuclear@7 49 return -1;
nuclear@7 50 }
nuclear@7 51 memcpy(mstack + newtop, mstack + mtop, sizeof *mstack);
nuclear@7 52 mtop = newtop;
nuclear@7 53 return 0;
nuclear@7 54 }
nuclear@7 55
nuclear@7 56 int x3d_pop_matrix(void)
nuclear@7 57 {
nuclear@7 58 if(mtop <= 0) {
nuclear@7 59 return -1;
nuclear@7 60 }
nuclear@7 61 --mtop;
nuclear@7 62 return 0;
nuclear@7 63 }
nuclear@7 64
nuclear@7 65 void x3d_load_matrix(int32_t *m)
nuclear@7 66 {
nuclear@8 67 memcpy(mstack[mtop].m, m, sizeof *mstack);
nuclear@7 68 }
nuclear@7 69
nuclear@7 70
nuclear@7 71 #define M(i,j) (((i) << 2) + (j))
nuclear@7 72 void x3d_mult_matrix(int32_t *m)
nuclear@7 73 {
nuclear@7 74 int i, j;
nuclear@7 75 struct matrix tmp;
nuclear@7 76
nuclear@8 77 memcpy(tmp.m, mstack[mtop].m, sizeof tmp);
nuclear@7 78
nuclear@7 79 for(i=0; i<3; i++) {
nuclear@7 80 for(j=0; j<4; j++) {
nuclear@8 81 mstack[mtop].m[M(i, j)] =
nuclear@8 82 x16mul(tmp.m[M(0, j)], m[M(i, 0)]) +
nuclear@8 83 x16mul(tmp.m[M(1, j)], m[M(i, 1)]) +
nuclear@8 84 x16mul(tmp.m[M(2, j)], m[M(i, 2)]);
nuclear@7 85 }
nuclear@8 86 mstack[mtop].m[M(i, 3)] += m[M(i, 3)];
nuclear@7 87 }
nuclear@7 88 }
nuclear@7 89
nuclear@7 90 void x3d_load_identity(void)
nuclear@7 91 {
nuclear@8 92 memcpy(mstack[mtop].m, identity.m, sizeof identity);
nuclear@7 93 }
nuclear@7 94
nuclear@8 95 void x3d_translate(int32_t x, int32_t y, int32_t z)
nuclear@8 96 {
nuclear@8 97 int32_t m[] = ID_INIT;
nuclear@8 98 m[3] = x;
nuclear@8 99 m[7] = y;
nuclear@8 100 m[11] = z;
nuclear@8 101
nuclear@8 102 x3d_mult_matrix(m);
nuclear@8 103 }
nuclear@8 104
nuclear@8 105 void x3d_rotate(int32_t deg, int32_t x, int32_t y, int32_t z)
nuclear@8 106 {
nuclear@8 107 int32_t xform[] = ID_INIT;
nuclear@8 108
nuclear@8 109 int32_t angle = x16mul(M_PI_X16, deg) / 180;
nuclear@8 110 int32_t sina = sin_x16(angle);
nuclear@8 111 int32_t cosa = cos_x16(angle);
nuclear@8 112 int32_t one_minus_cosa = 65536 - cosa;
nuclear@8 113 int32_t nxsq = x16sq(x);
nuclear@8 114 int32_t nysq = x16sq(y);
nuclear@8 115 int32_t nzsq = x16sq(z);
nuclear@8 116
nuclear@8 117 xform[0] = nxsq + x16mul(65536 - nxsq, cosa);
nuclear@8 118 xform[4] = x16mul(x16mul(x, y), one_minus_cosa) - x16mul(z, sina);
nuclear@8 119 xform[8] = x16mul(x16mul(x, z), one_minus_cosa) + x16mul(y, sina);
nuclear@8 120 xform[1] = x16mul(x16mul(x, y), one_minus_cosa) + x16mul(z, sina);
nuclear@8 121 xform[5] = nysq + x16mul(65536 - nysq, cosa);
nuclear@8 122 xform[9] = x16mul(x16mul(y, z), one_minus_cosa) - x16mul(x, sina);
nuclear@8 123 xform[2] = x16mul(x16mul(x, z), one_minus_cosa) - x16mul(y, sina);
nuclear@8 124 xform[6] = x16mul(x16mul(y, z), one_minus_cosa) + x16mul(x, sina);
nuclear@8 125 xform[10] = nzsq + x16mul(65536 - nzsq, cosa);
nuclear@8 126
nuclear@8 127 x3d_mult_matrix(xform);
nuclear@8 128 }
nuclear@8 129
nuclear@8 130 void x3d_scale(int32_t x, int32_t y, int32_t z)
nuclear@8 131 {
nuclear@8 132 int32_t m[] = ID_INIT;
nuclear@8 133
nuclear@8 134 m[0] = x;
nuclear@8 135 m[5] = y;
nuclear@8 136 m[10] = z;
nuclear@8 137
nuclear@8 138 x3d_mult_matrix(m);
nuclear@8 139 }
nuclear@8 140
nuclear@8 141 void x3d_vertex_array(int count, const int32_t *ptr)
nuclear@8 142 {
nuclear@8 143 vertex_array = ptr;
nuclear@8 144 vertex_count = count;
nuclear@8 145 }
nuclear@8 146
nuclear@8 147 void x3d_color_array(int count, const int32_t *ptr)
nuclear@8 148 {
nuclear@8 149 color_array = ptr;
nuclear@8 150 color_count = count;
nuclear@8 151 }
nuclear@8 152
nuclear@8 153 int x3d_draw_arrays(int prim, int vnum)
nuclear@8 154 {
nuclear@8 155 int i, j, pverts = prim;
nuclear@8 156 const int32_t *vptr = vertex_array;
nuclear@8 157 const int32_t *cptr = color_array;
nuclear@8 158 short cr, cg, cb;
nuclear@8 159
nuclear@8 160 if(!vertex_array) return -1;
nuclear@8 161
nuclear@8 162 if(vnum > vertex_count) {
nuclear@8 163 logmsg(LOG_DBG, "%s called with vnum=%d, but current vertex array has %d vertices\n",
nuclear@8 164 __FUNCTION__, vnum, vertex_count);
nuclear@8 165 vnum = vertex_count;
nuclear@8 166 }
nuclear@8 167 if(color_array && vnum > color_count) {
nuclear@8 168 logmsg(LOG_DBG, "%s called with vnum=%d, but current color array has %d elements\n",
nuclear@8 169 __FUNCTION__, vnum, color_count);
nuclear@8 170 vnum = color_count;
nuclear@8 171 }
nuclear@8 172
nuclear@8 173 for(i=0; i<vnum; i+=pverts) {
nuclear@8 174 /* process vertices */
nuclear@8 175 pvec3 vpos[4];
nuclear@8 176 pvec3 col[4];
nuclear@8 177
nuclear@8 178 for(j=0; j<pverts; j++) {
nuclear@8 179 proc_vertex(vptr, cptr, vpos + j, col + j);
nuclear@8 180 vptr += 3;
nuclear@8 181 if(cptr) cptr += 3;
nuclear@8 182 }
nuclear@8 183
nuclear@8 184 cr = col[0].x >> 8;
nuclear@8 185 cg = col[0].y >> 8;
nuclear@8 186 cb = col[0].z >> 8;
nuclear@8 187
nuclear@8 188 if(cr > 255) cr = 255;
nuclear@8 189 if(cg > 255) cg = 255;
nuclear@8 190 if(cb > 255) cb = 255;
nuclear@8 191
nuclear@8 192 switch(pverts) {
nuclear@8 193 case X3D_POINTS:
nuclear@8 194 draw_point(vpos, RGB(cr, cg, cb));
nuclear@8 195 break;
nuclear@8 196
nuclear@8 197 case X3D_LINES:
nuclear@8 198 break;
nuclear@8 199
nuclear@8 200 case X3D_TRIANGLES:
nuclear@8 201 case X3D_QUADS:
nuclear@8 202 draw_poly(pverts, vpos, RGB(cr, cg, cb));
nuclear@8 203 break;
nuclear@8 204 }
nuclear@8 205 }
nuclear@8 206 return 0;
nuclear@8 207 }
nuclear@8 208
nuclear@8 209 static void proc_vertex(const int32_t *vin, const int32_t *cin, pvec3 *vout, pvec3 *cout)
nuclear@8 210 {
nuclear@8 211 int i;
nuclear@8 212 int32_t tvert[3];
nuclear@8 213 int32_t *mvmat = mstack[mtop].m;
nuclear@8 214
nuclear@8 215 /* transform vertex with current matrix */
nuclear@8 216 for(i=0; i<3; i++) {
nuclear@8 217 tvert[i] = x16mul(mvmat[0], vin[0]) +
nuclear@8 218 x16mul(mvmat[1], vin[1]) +
nuclear@8 219 x16mul(mvmat[2], vin[2]) +
nuclear@8 220 mvmat[3];
nuclear@8 221 mvmat += 4;
nuclear@8 222 }
nuclear@8 223
nuclear@8 224 vout->x = tvert[0];
nuclear@8 225 vout->y = tvert[1];
nuclear@8 226 vout->z = tvert[2];
nuclear@8 227 /*logmsg(LOG_DBG, "%s: (%g %g %g) -> (%g %g %g)\n", __FUNCTION__,
nuclear@8 228 x16tof(vin[0]), x16tof(vin[1]), x16tof(vin[2]),
nuclear@8 229 x16tof(vout->x), x16tof(vout->y), x16tof(vout->z));*/
nuclear@8 230
nuclear@8 231 if(color_array) {
nuclear@8 232 cout->x = cin[0];
nuclear@8 233 cout->y = cin[1];
nuclear@8 234 cout->z = cin[2];
nuclear@8 235 } else {
nuclear@8 236 cout->x = im_color[0];
nuclear@8 237 cout->y = im_color[1];
nuclear@8 238 cout->z = im_color[2];
nuclear@8 239 }
nuclear@8 240 }
nuclear@8 241
nuclear@8 242 void x3d_color(int32_t r, int32_t g, int32_t b)
nuclear@8 243 {
nuclear@8 244 im_color[0] = r;
nuclear@8 245 im_color[1] = g;
nuclear@8 246 im_color[2] = b;
nuclear@8 247 }