cubemapper

annotate src/mesh.cc @ 4:2bfafdced01a

added README, COPYING, and copyright headers
author John Tsiombikas <nuclear@member.fsf.org>
date Sun, 30 Jul 2017 16:11:19 +0300
parents 8fc9e1d3aad2
children
rev   line source
nuclear@4 1 /*
nuclear@4 2 Cubemapper - a program for converting panoramic images into cubemaps
nuclear@4 3 Copyright (C) 2017 John Tsiombikas <nuclear@member.fsf.org>
nuclear@4 4
nuclear@4 5 This program is free software: you can redistribute it and/or modify
nuclear@4 6 it under the terms of the GNU General Public License as published by
nuclear@4 7 the Free Software Foundation, either version 3 of the License, or
nuclear@4 8 (at your option) any later version.
nuclear@4 9
nuclear@4 10 This program is distributed in the hope that it will be useful,
nuclear@4 11 but WITHOUT ANY WARRANTY; without even the implied warranty of
nuclear@4 12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
nuclear@4 13 GNU General Public License for more details.
nuclear@4 14
nuclear@4 15 You should have received a copy of the GNU General Public License
nuclear@4 16 along with this program. If not, see <http://www.gnu.org/licenses/>.
nuclear@4 17 */
nuclear@0 18 #include <stdio.h>
nuclear@0 19 #include <stdlib.h>
nuclear@0 20 #include <float.h>
nuclear@0 21 #include <assert.h>
nuclear@0 22 #include "opengl.h"
nuclear@0 23 #include "mesh.h"
nuclear@0 24 //#include "xform_node.h"
nuclear@0 25
nuclear@0 26 #define USE_OLDGL
nuclear@0 27
nuclear@0 28 bool Mesh::use_custom_sdr_attr = true;
nuclear@0 29 int Mesh::global_sdr_loc[NUM_MESH_ATTR] = { 0, 1, 2, 3, 4, 5, 6 };
nuclear@0 30 /*
nuclear@0 31 (int)SDR_ATTR_VERTEX,
nuclear@0 32 (int)SDR_ATTR_NORMAL,
nuclear@0 33 (int)SDR_ATTR_TANGENT,
nuclear@0 34 (int)SDR_ATTR_TEXCOORD,
nuclear@0 35 (int)SDR_ATTR_COLOR,
nuclear@0 36 -1, -1};
nuclear@0 37 */
nuclear@0 38 unsigned int Mesh::intersect_mode = ISECT_DEFAULT;
nuclear@0 39 float Mesh::vertex_sel_dist = 0.01;
nuclear@0 40 float Mesh::vis_vecsize = 1.0;
nuclear@0 41
nuclear@0 42 Mesh::Mesh()
nuclear@0 43 {
nuclear@0 44 clear();
nuclear@0 45
nuclear@0 46 glGenBuffers(NUM_MESH_ATTR + 1, buffer_objects);
nuclear@0 47
nuclear@0 48 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 49 vattr[i].vbo = buffer_objects[i];
nuclear@0 50 }
nuclear@0 51 ibo = buffer_objects[NUM_MESH_ATTR];
nuclear@0 52 wire_ibo = 0;
nuclear@0 53 }
nuclear@0 54
nuclear@0 55 Mesh::~Mesh()
nuclear@0 56 {
nuclear@0 57 glDeleteBuffers(NUM_MESH_ATTR + 1, buffer_objects);
nuclear@0 58
nuclear@0 59 if(wire_ibo) {
nuclear@0 60 glDeleteBuffers(1, &wire_ibo);
nuclear@0 61 }
nuclear@0 62 }
nuclear@0 63
nuclear@0 64 Mesh::Mesh(const Mesh &rhs)
nuclear@0 65 {
nuclear@0 66 clear();
nuclear@0 67
nuclear@0 68 glGenBuffers(NUM_MESH_ATTR + 1, buffer_objects);
nuclear@0 69
nuclear@0 70 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 71 vattr[i].vbo = buffer_objects[i];
nuclear@0 72 }
nuclear@0 73 ibo = buffer_objects[NUM_MESH_ATTR];
nuclear@0 74 wire_ibo = 0;
nuclear@0 75
nuclear@0 76 clone(rhs);
nuclear@0 77 }
nuclear@0 78
nuclear@0 79 Mesh &Mesh::operator =(const Mesh &rhs)
nuclear@0 80 {
nuclear@0 81 if(&rhs != this) {
nuclear@0 82 clone(rhs);
nuclear@0 83 }
nuclear@0 84 return *this;
nuclear@0 85 }
nuclear@0 86
nuclear@0 87 bool Mesh::clone(const Mesh &m)
nuclear@0 88 {
nuclear@0 89 clear();
nuclear@0 90
nuclear@0 91 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 92 if(m.has_attrib(i)) {
nuclear@0 93 m.get_attrib_data(i); // force validation of the actual data on the source mesh
nuclear@0 94
nuclear@0 95 vattr[i].nelem = m.vattr[i].nelem;
nuclear@0 96 vattr[i].data = m.vattr[i].data; // copy the actual data
nuclear@0 97 vattr[i].data_valid = true;
nuclear@0 98 }
nuclear@0 99 }
nuclear@0 100
nuclear@0 101 if(m.is_indexed()) {
nuclear@0 102 m.get_index_data(); // again, force validation
nuclear@0 103
nuclear@0 104 // copy the index data
nuclear@0 105 idata = m.idata;
nuclear@0 106 idata_valid = true;
nuclear@0 107 }
nuclear@0 108
nuclear@0 109 name = m.name;
nuclear@0 110 nverts = m.nverts;
nuclear@0 111 nfaces = m.nfaces;
nuclear@0 112
nuclear@0 113 //bones = m.bones;
nuclear@0 114
nuclear@0 115 memcpy(cur_val, m.cur_val, sizeof cur_val);
nuclear@0 116
nuclear@0 117 aabb = m.aabb;
nuclear@0 118 aabb_valid = m.aabb_valid;
nuclear@0 119 bsph = m.bsph;
nuclear@0 120 bsph_valid = m.bsph_valid;
nuclear@0 121
nuclear@0 122 hitface = m.hitface;
nuclear@0 123 hitvert = m.hitvert;
nuclear@0 124
nuclear@0 125 intersect_mode = m.intersect_mode;
nuclear@0 126 vertex_sel_dist = m.vertex_sel_dist;
nuclear@0 127 vis_vecsize = m.vis_vecsize;
nuclear@0 128
nuclear@0 129 return true;
nuclear@0 130 }
nuclear@0 131
nuclear@0 132 void Mesh::set_name(const char *name)
nuclear@0 133 {
nuclear@0 134 this->name = name;
nuclear@0 135 }
nuclear@0 136
nuclear@0 137 const char *Mesh::get_name() const
nuclear@0 138 {
nuclear@0 139 return name.c_str();
nuclear@0 140 }
nuclear@0 141
nuclear@0 142 bool Mesh::has_attrib(int attr) const
nuclear@0 143 {
nuclear@0 144 if(attr < 0 || attr >= NUM_MESH_ATTR) {
nuclear@0 145 return false;
nuclear@0 146 }
nuclear@0 147
nuclear@0 148 // if neither of these is valid, then nobody has set this attribute
nuclear@0 149 return vattr[attr].vbo_valid || vattr[attr].data_valid;
nuclear@0 150 }
nuclear@0 151
nuclear@0 152 bool Mesh::is_indexed() const
nuclear@0 153 {
nuclear@0 154 return ibo_valid || idata_valid;
nuclear@0 155 }
nuclear@0 156
nuclear@0 157 void Mesh::clear()
nuclear@0 158 {
nuclear@0 159 //bones.clear();
nuclear@0 160
nuclear@0 161 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 162 vattr[i].nelem = 0;
nuclear@0 163 vattr[i].vbo_valid = false;
nuclear@0 164 vattr[i].data_valid = false;
nuclear@0 165 //vattr[i].sdr_loc = -1;
nuclear@0 166 vattr[i].data.clear();
nuclear@0 167 }
nuclear@0 168 ibo_valid = idata_valid = false;
nuclear@0 169 idata.clear();
nuclear@0 170
nuclear@0 171 wire_ibo_valid = false;
nuclear@0 172
nuclear@0 173 nverts = nfaces = 0;
nuclear@0 174
nuclear@0 175 bsph_valid = false;
nuclear@0 176 aabb_valid = false;
nuclear@0 177 }
nuclear@0 178
nuclear@0 179 float *Mesh::set_attrib_data(int attrib, int nelem, unsigned int num, const float *data)
nuclear@0 180 {
nuclear@0 181 if(attrib < 0 || attrib >= NUM_MESH_ATTR) {
nuclear@0 182 fprintf(stderr, "%s: invalid attrib: %d\n", __FUNCTION__, attrib);
nuclear@0 183 return 0;
nuclear@0 184 }
nuclear@0 185
nuclear@0 186 if(nverts && num != nverts) {
nuclear@0 187 fprintf(stderr, "%s: attribute count missmatch (%d instead of %d)\n", __FUNCTION__, num, nverts);
nuclear@0 188 return 0;
nuclear@0 189 }
nuclear@0 190 nverts = num;
nuclear@0 191
nuclear@0 192 vattr[attrib].data.clear();
nuclear@0 193 vattr[attrib].nelem = nelem;
nuclear@0 194 vattr[attrib].data.resize(num * nelem);
nuclear@0 195
nuclear@0 196 if(data) {
nuclear@0 197 memcpy(&vattr[attrib].data[0], data, num * nelem * sizeof *data);
nuclear@0 198 }
nuclear@0 199
nuclear@0 200 vattr[attrib].data_valid = true;
nuclear@0 201 vattr[attrib].vbo_valid = false;
nuclear@0 202 return &vattr[attrib].data[0];
nuclear@0 203 }
nuclear@0 204
nuclear@0 205 float *Mesh::get_attrib_data(int attrib)
nuclear@0 206 {
nuclear@0 207 if(attrib < 0 || attrib >= NUM_MESH_ATTR) {
nuclear@0 208 fprintf(stderr, "%s: invalid attrib: %d\n", __FUNCTION__, attrib);
nuclear@0 209 return 0;
nuclear@0 210 }
nuclear@0 211
nuclear@0 212 vattr[attrib].vbo_valid = false;
nuclear@0 213 return (float*)((const Mesh*)this)->get_attrib_data(attrib);
nuclear@0 214 }
nuclear@0 215
nuclear@0 216 const float *Mesh::get_attrib_data(int attrib) const
nuclear@0 217 {
nuclear@0 218 if(attrib < 0 || attrib >= NUM_MESH_ATTR) {
nuclear@0 219 fprintf(stderr, "%s: invalid attrib: %d\n", __FUNCTION__, attrib);
nuclear@0 220 return 0;
nuclear@0 221 }
nuclear@0 222
nuclear@0 223 if(!vattr[attrib].data_valid) {
nuclear@0 224 #if GL_ES_VERSION_2_0
nuclear@0 225 fprintf(stderr, "%s: can't read back attrib data on CrippledGL ES\n", __FUNCTION__);
nuclear@0 226 return 0;
nuclear@0 227 #else
nuclear@0 228 if(!vattr[attrib].vbo_valid) {
nuclear@0 229 fprintf(stderr, "%s: unavailable attrib: %d\n", __FUNCTION__, attrib);
nuclear@0 230 return 0;
nuclear@0 231 }
nuclear@0 232
nuclear@0 233 // local data copy is unavailable, grab the data from the vbo
nuclear@0 234 Mesh *m = (Mesh*)this;
nuclear@0 235 m->vattr[attrib].data.resize(nverts * vattr[attrib].nelem);
nuclear@0 236
nuclear@0 237 glBindBuffer(GL_ARRAY_BUFFER, vattr[attrib].vbo);
nuclear@0 238 void *data = glMapBuffer(GL_ARRAY_BUFFER, GL_READ_ONLY);
nuclear@0 239 memcpy(&m->vattr[attrib].data[0], data, nverts * vattr[attrib].nelem * sizeof(float));
nuclear@0 240 glUnmapBuffer(GL_ARRAY_BUFFER);
nuclear@0 241
nuclear@0 242 vattr[attrib].data_valid = true;
nuclear@0 243 #endif
nuclear@0 244 }
nuclear@0 245
nuclear@0 246 return &vattr[attrib].data[0];
nuclear@0 247 }
nuclear@0 248
nuclear@0 249 void Mesh::set_attrib(int attrib, int idx, const Vec4 &v)
nuclear@0 250 {
nuclear@0 251 float *data = get_attrib_data(attrib);
nuclear@0 252 if(data) {
nuclear@0 253 data += idx * vattr[attrib].nelem;
nuclear@0 254 for(int i=0; i<vattr[attrib].nelem; i++) {
nuclear@0 255 data[i] = v[i];
nuclear@0 256 }
nuclear@0 257 }
nuclear@0 258 }
nuclear@0 259
nuclear@0 260 Vec4 Mesh::get_attrib(int attrib, int idx) const
nuclear@0 261 {
nuclear@0 262 Vec4 v(0.0, 0.0, 0.0, 1.0);
nuclear@0 263 const float *data = get_attrib_data(attrib);
nuclear@0 264 if(data) {
nuclear@0 265 data += idx * vattr[attrib].nelem;
nuclear@0 266 for(int i=0; i<vattr[attrib].nelem; i++) {
nuclear@0 267 v[i] = data[i];
nuclear@0 268 }
nuclear@0 269 }
nuclear@0 270 return v;
nuclear@0 271 }
nuclear@0 272
nuclear@0 273 int Mesh::get_attrib_count(int attrib) const
nuclear@0 274 {
nuclear@0 275 return has_attrib(attrib) ? nverts : 0;
nuclear@0 276 }
nuclear@0 277
nuclear@0 278
nuclear@0 279 unsigned int *Mesh::set_index_data(int num, const unsigned int *indices)
nuclear@0 280 {
nuclear@0 281 int nidx = nfaces * 3;
nuclear@0 282 if(nidx && num != nidx) {
nuclear@0 283 fprintf(stderr, "%s: index count missmatch (%d instead of %d)\n", __FUNCTION__, num, nidx);
nuclear@0 284 return 0;
nuclear@0 285 }
nuclear@0 286 nfaces = num / 3;
nuclear@0 287
nuclear@0 288 idata.clear();
nuclear@0 289 idata.resize(num);
nuclear@0 290
nuclear@0 291 if(indices) {
nuclear@0 292 memcpy(&idata[0], indices, num * sizeof *indices);
nuclear@0 293 }
nuclear@0 294
nuclear@0 295 idata_valid = true;
nuclear@0 296 ibo_valid = false;
nuclear@0 297
nuclear@0 298 return &idata[0];
nuclear@0 299 }
nuclear@0 300
nuclear@0 301 unsigned int *Mesh::get_index_data()
nuclear@0 302 {
nuclear@0 303 ibo_valid = false;
nuclear@0 304 return (unsigned int*)((const Mesh*)this)->get_index_data();
nuclear@0 305 }
nuclear@0 306
nuclear@0 307 const unsigned int *Mesh::get_index_data() const
nuclear@0 308 {
nuclear@0 309 if(!idata_valid) {
nuclear@0 310 #if GL_ES_VERSION_2_0
nuclear@0 311 fprintf(stderr, "%s: can't read back index data in CrippledGL ES\n", __FUNCTION__);
nuclear@0 312 return 0;
nuclear@0 313 #else
nuclear@0 314 if(!ibo_valid) {
nuclear@0 315 fprintf(stderr, "%s: indices unavailable\n", __FUNCTION__);
nuclear@0 316 return 0;
nuclear@0 317 }
nuclear@0 318
nuclear@0 319 // local data copy is unavailable, gram the data from the ibo
nuclear@0 320 Mesh *m = (Mesh*)this;
nuclear@0 321 int nidx = nfaces * 3;
nuclear@0 322 m->idata.resize(nidx);
nuclear@0 323
nuclear@0 324 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo);
nuclear@0 325 void *data = glMapBuffer(GL_ELEMENT_ARRAY_BUFFER, GL_READ_ONLY);
nuclear@0 326 memcpy(&m->idata[0], data, nidx * sizeof(unsigned int));
nuclear@0 327 glUnmapBuffer(GL_ELEMENT_ARRAY_BUFFER);
nuclear@0 328
nuclear@0 329 idata_valid = true;
nuclear@0 330 #endif
nuclear@0 331 }
nuclear@0 332
nuclear@0 333 return &idata[0];
nuclear@0 334 }
nuclear@0 335
nuclear@0 336 int Mesh::get_index_count() const
nuclear@0 337 {
nuclear@0 338 return nfaces * 3;
nuclear@0 339 }
nuclear@0 340
nuclear@0 341 void Mesh::append(const Mesh &mesh)
nuclear@0 342 {
nuclear@0 343 unsigned int idxoffs = nverts;
nuclear@0 344
nuclear@0 345 if(!nverts) {
nuclear@0 346 clone(mesh);
nuclear@0 347 return;
nuclear@0 348 }
nuclear@0 349
nuclear@0 350 nverts += mesh.nverts;
nuclear@0 351 nfaces += mesh.nfaces;
nuclear@0 352
nuclear@0 353 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 354 if(has_attrib(i) && mesh.has_attrib(i)) {
nuclear@0 355 // force validating the data arrays
nuclear@0 356 get_attrib_data(i);
nuclear@0 357 mesh.get_attrib_data(i);
nuclear@0 358
nuclear@0 359 // append the mesh data
nuclear@0 360 vattr[i].data.insert(vattr[i].data.end(), mesh.vattr[i].data.begin(), mesh.vattr[i].data.end());
nuclear@0 361 }
nuclear@0 362 }
nuclear@0 363
nuclear@0 364 if(ibo_valid || idata_valid) {
nuclear@0 365 // make index arrays valid
nuclear@0 366 get_index_data();
nuclear@0 367 mesh.get_index_data();
nuclear@0 368
nuclear@0 369 size_t orig_sz = idata.size();
nuclear@0 370
nuclear@0 371 idata.insert(idata.end(), mesh.idata.begin(), mesh.idata.end());
nuclear@0 372
nuclear@0 373 // fixup all the new indices
nuclear@0 374 for(size_t i=orig_sz; i<idata.size(); i++) {
nuclear@0 375 idata[i] += idxoffs;
nuclear@0 376 }
nuclear@0 377 }
nuclear@0 378
nuclear@0 379 // fuck everything
nuclear@0 380 wire_ibo_valid = false;
nuclear@0 381 aabb_valid = false;
nuclear@0 382 bsph_valid = false;
nuclear@0 383 }
nuclear@0 384
nuclear@0 385 // assemble a complete vertex by adding all the useful attributes
nuclear@0 386 void Mesh::vertex(float x, float y, float z)
nuclear@0 387 {
nuclear@0 388 cur_val[MESH_ATTR_VERTEX] = Vec4(x, y, z, 1.0f);
nuclear@0 389 vattr[MESH_ATTR_VERTEX].data_valid = true;
nuclear@0 390 vattr[MESH_ATTR_VERTEX].nelem = 3;
nuclear@0 391
nuclear@0 392 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 393 if(vattr[i].data_valid) {
nuclear@0 394 for(int j=0; j<vattr[MESH_ATTR_VERTEX].nelem; j++) {
nuclear@0 395 vattr[i].data.push_back(cur_val[i][j]);
nuclear@0 396 }
nuclear@0 397 }
nuclear@0 398 vattr[i].vbo_valid = false;
nuclear@0 399 }
nuclear@0 400
nuclear@0 401 if(idata_valid) {
nuclear@0 402 idata.clear();
nuclear@0 403 }
nuclear@0 404 ibo_valid = idata_valid = false;
nuclear@0 405 }
nuclear@0 406
nuclear@0 407 void Mesh::normal(float nx, float ny, float nz)
nuclear@0 408 {
nuclear@0 409 cur_val[MESH_ATTR_NORMAL] = Vec4(nx, ny, nz, 1.0f);
nuclear@0 410 vattr[MESH_ATTR_NORMAL].data_valid = true;
nuclear@0 411 vattr[MESH_ATTR_NORMAL].nelem = 3;
nuclear@0 412 }
nuclear@0 413
nuclear@0 414 void Mesh::tangent(float tx, float ty, float tz)
nuclear@0 415 {
nuclear@0 416 cur_val[MESH_ATTR_TANGENT] = Vec4(tx, ty, tz, 1.0f);
nuclear@0 417 vattr[MESH_ATTR_TANGENT].data_valid = true;
nuclear@0 418 vattr[MESH_ATTR_TANGENT].nelem = 3;
nuclear@0 419 }
nuclear@0 420
nuclear@0 421 void Mesh::texcoord(float u, float v, float w)
nuclear@0 422 {
nuclear@0 423 cur_val[MESH_ATTR_TEXCOORD] = Vec4(u, v, w, 1.0f);
nuclear@0 424 vattr[MESH_ATTR_TEXCOORD].data_valid = true;
nuclear@0 425 vattr[MESH_ATTR_TEXCOORD].nelem = 3;
nuclear@0 426 }
nuclear@0 427
nuclear@0 428 void Mesh::boneweights(float w1, float w2, float w3, float w4)
nuclear@0 429 {
nuclear@0 430 cur_val[MESH_ATTR_BONEWEIGHTS] = Vec4(w1, w2, w3, w4);
nuclear@0 431 vattr[MESH_ATTR_BONEWEIGHTS].data_valid = true;
nuclear@0 432 vattr[MESH_ATTR_BONEWEIGHTS].nelem = 4;
nuclear@0 433 }
nuclear@0 434
nuclear@0 435 void Mesh::boneidx(int idx1, int idx2, int idx3, int idx4)
nuclear@0 436 {
nuclear@0 437 cur_val[MESH_ATTR_BONEIDX] = Vec4(idx1, idx2, idx3, idx4);
nuclear@0 438 vattr[MESH_ATTR_BONEIDX].data_valid = true;
nuclear@0 439 vattr[MESH_ATTR_BONEIDX].nelem = 4;
nuclear@0 440 }
nuclear@0 441
nuclear@0 442 int Mesh::get_poly_count() const
nuclear@0 443 {
nuclear@0 444 if(nfaces) {
nuclear@0 445 return nfaces;
nuclear@0 446 }
nuclear@0 447 if(nverts) {
nuclear@0 448 return nverts / 3;
nuclear@0 449 }
nuclear@0 450 return 0;
nuclear@0 451 }
nuclear@0 452
nuclear@0 453 /// static function
nuclear@0 454 void Mesh::set_attrib_location(int attr, int loc)
nuclear@0 455 {
nuclear@0 456 if(attr < 0 || attr >= NUM_MESH_ATTR) {
nuclear@0 457 return;
nuclear@0 458 }
nuclear@0 459 Mesh::global_sdr_loc[attr] = loc;
nuclear@0 460 }
nuclear@0 461
nuclear@0 462 /// static function
nuclear@0 463 int Mesh::get_attrib_location(int attr)
nuclear@0 464 {
nuclear@0 465 if(attr < 0 || attr >= NUM_MESH_ATTR) {
nuclear@0 466 return -1;
nuclear@0 467 }
nuclear@0 468 return Mesh::global_sdr_loc[attr];
nuclear@0 469 }
nuclear@0 470
nuclear@0 471 /// static function
nuclear@0 472 void Mesh::clear_attrib_locations()
nuclear@0 473 {
nuclear@0 474 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 475 Mesh::global_sdr_loc[i] = -1;
nuclear@0 476 }
nuclear@0 477 }
nuclear@0 478
nuclear@0 479 /// static function
nuclear@0 480 void Mesh::set_vis_vecsize(float sz)
nuclear@0 481 {
nuclear@0 482 Mesh::vis_vecsize = sz;
nuclear@0 483 }
nuclear@0 484
nuclear@0 485 float Mesh::get_vis_vecsize()
nuclear@0 486 {
nuclear@0 487 return Mesh::vis_vecsize;
nuclear@0 488 }
nuclear@0 489
nuclear@0 490 void Mesh::apply_xform(const Mat4 &xform)
nuclear@0 491 {
nuclear@0 492 Mat4 dir_xform = xform.upper3x3();
nuclear@0 493 apply_xform(xform, dir_xform);
nuclear@0 494 }
nuclear@0 495
nuclear@0 496 void Mesh::apply_xform(const Mat4 &xform, const Mat4 &dir_xform)
nuclear@0 497 {
nuclear@0 498 for(unsigned int i=0; i<nverts; i++) {
nuclear@0 499 Vec4 v = get_attrib(MESH_ATTR_VERTEX, i);
nuclear@0 500 set_attrib(MESH_ATTR_VERTEX, i, xform * v);
nuclear@0 501
nuclear@0 502 if(has_attrib(MESH_ATTR_NORMAL)) {
nuclear@0 503 Vec3 n = get_attrib(MESH_ATTR_NORMAL, i).xyz();
nuclear@0 504 set_attrib(MESH_ATTR_NORMAL, i, Vec4(dir_xform * n));
nuclear@0 505 }
nuclear@0 506 if(has_attrib(MESH_ATTR_TANGENT)) {
nuclear@0 507 Vec3 t = get_attrib(MESH_ATTR_TANGENT, i).xyz();
nuclear@0 508 set_attrib(MESH_ATTR_TANGENT, i, Vec4(dir_xform * t));
nuclear@0 509 }
nuclear@0 510 }
nuclear@0 511 }
nuclear@0 512
nuclear@0 513 void Mesh::flip()
nuclear@0 514 {
nuclear@0 515 flip_faces();
nuclear@0 516 flip_normals();
nuclear@0 517 }
nuclear@0 518
nuclear@0 519 void Mesh::flip_faces()
nuclear@0 520 {
nuclear@0 521 if(is_indexed()) {
nuclear@0 522 unsigned int *indices = get_index_data();
nuclear@0 523 if(!indices) return;
nuclear@0 524
nuclear@0 525 int idxnum = get_index_count();
nuclear@0 526 for(int i=0; i<idxnum; i+=3) {
nuclear@0 527 unsigned int tmp = indices[i + 2];
nuclear@0 528 indices[i + 2] = indices[i + 1];
nuclear@0 529 indices[i + 1] = tmp;
nuclear@0 530 }
nuclear@0 531
nuclear@0 532 } else {
nuclear@0 533 Vec3 *verts = (Vec3*)get_attrib_data(MESH_ATTR_VERTEX);
nuclear@0 534 if(!verts) return;
nuclear@0 535
nuclear@0 536 int vnum = get_attrib_count(MESH_ATTR_VERTEX);
nuclear@0 537 for(int i=0; i<vnum; i+=3) {
nuclear@0 538 Vec3 tmp = verts[i + 2];
nuclear@0 539 verts[i + 2] = verts[i + 1];
nuclear@0 540 verts[i + 1] = tmp;
nuclear@0 541 }
nuclear@0 542 }
nuclear@0 543 }
nuclear@0 544
nuclear@0 545 void Mesh::flip_normals()
nuclear@0 546 {
nuclear@0 547 Vec3 *normals = (Vec3*)get_attrib_data(MESH_ATTR_NORMAL);
nuclear@0 548 if(!normals) return;
nuclear@0 549
nuclear@0 550 int num = get_attrib_count(MESH_ATTR_NORMAL);
nuclear@0 551 for(int i=0; i<num; i++) {
nuclear@0 552 normals[i] = -normals[i];
nuclear@0 553 }
nuclear@0 554 }
nuclear@0 555
nuclear@0 556 /*
nuclear@0 557 int Mesh::add_bone(XFormNode *bone)
nuclear@0 558 {
nuclear@0 559 int idx = bones.size();
nuclear@0 560 bones.push_back(bone);
nuclear@0 561 return idx;
nuclear@0 562 }
nuclear@0 563
nuclear@0 564 const XFormNode *Mesh::get_bone(int idx) const
nuclear@0 565 {
nuclear@0 566 if(idx < 0 || idx >= (int)bones.size()) {
nuclear@0 567 return 0;
nuclear@0 568 }
nuclear@0 569 return bones[idx];
nuclear@0 570 }
nuclear@0 571
nuclear@0 572 int Mesh::get_bones_count() const
nuclear@0 573 {
nuclear@0 574 return (int)bones.size();
nuclear@0 575 }
nuclear@0 576 */
nuclear@0 577
nuclear@0 578 bool Mesh::pre_draw() const
nuclear@0 579 {
nuclear@0 580 cur_sdr = 0;
nuclear@0 581 glGetIntegerv(GL_CURRENT_PROGRAM, &cur_sdr);
nuclear@0 582
nuclear@0 583 ((Mesh*)this)->update_buffers();
nuclear@0 584
nuclear@0 585 if(!vattr[MESH_ATTR_VERTEX].vbo_valid) {
nuclear@0 586 fprintf(stderr, "%s: invalid vertex buffer\n", __FUNCTION__);
nuclear@0 587 return false;
nuclear@0 588 }
nuclear@0 589
nuclear@0 590 if(cur_sdr && use_custom_sdr_attr) {
nuclear@0 591 // rendering with shaders
nuclear@0 592 if(global_sdr_loc[MESH_ATTR_VERTEX] == -1) {
nuclear@0 593 fprintf(stderr, "%s: shader attribute location for vertices unset\n", __FUNCTION__);
nuclear@0 594 return false;
nuclear@0 595 }
nuclear@0 596
nuclear@0 597 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 598 int loc = global_sdr_loc[i];
nuclear@0 599 if(loc >= 0 && vattr[i].vbo_valid) {
nuclear@0 600 glBindBuffer(GL_ARRAY_BUFFER, vattr[i].vbo);
nuclear@0 601 glVertexAttribPointer(loc, vattr[i].nelem, GL_FLOAT, GL_FALSE, 0, 0);
nuclear@0 602 glEnableVertexAttribArray(loc);
nuclear@0 603 }
nuclear@0 604 }
nuclear@0 605 } else {
nuclear@0 606 #ifndef GL_ES_VERSION_2_0
nuclear@0 607 // rendering with fixed-function (not available in GLES2)
nuclear@0 608 glBindBuffer(GL_ARRAY_BUFFER, vattr[MESH_ATTR_VERTEX].vbo);
nuclear@0 609 glVertexPointer(vattr[MESH_ATTR_VERTEX].nelem, GL_FLOAT, 0, 0);
nuclear@0 610 glEnableClientState(GL_VERTEX_ARRAY);
nuclear@0 611
nuclear@0 612 if(vattr[MESH_ATTR_NORMAL].vbo_valid) {
nuclear@0 613 glBindBuffer(GL_ARRAY_BUFFER, vattr[MESH_ATTR_NORMAL].vbo);
nuclear@0 614 glNormalPointer(GL_FLOAT, 0, 0);
nuclear@0 615 glEnableClientState(GL_NORMAL_ARRAY);
nuclear@0 616 }
nuclear@0 617 if(vattr[MESH_ATTR_TEXCOORD].vbo_valid) {
nuclear@0 618 glBindBuffer(GL_ARRAY_BUFFER, vattr[MESH_ATTR_TEXCOORD].vbo);
nuclear@0 619 glTexCoordPointer(vattr[MESH_ATTR_TEXCOORD].nelem, GL_FLOAT, 0, 0);
nuclear@0 620 glEnableClientState(GL_TEXTURE_COORD_ARRAY);
nuclear@0 621 }
nuclear@0 622 if(vattr[MESH_ATTR_COLOR].vbo_valid) {
nuclear@0 623 glBindBuffer(GL_ARRAY_BUFFER, vattr[MESH_ATTR_COLOR].vbo);
nuclear@0 624 glColorPointer(vattr[MESH_ATTR_COLOR].nelem, GL_FLOAT, 0, 0);
nuclear@0 625 glEnableClientState(GL_COLOR_ARRAY);
nuclear@0 626 }
nuclear@0 627 #endif
nuclear@0 628 }
nuclear@0 629 glBindBuffer(GL_ARRAY_BUFFER, 0);
nuclear@0 630
nuclear@0 631 return true;
nuclear@0 632 }
nuclear@0 633
nuclear@0 634 void Mesh::draw() const
nuclear@0 635 {
nuclear@0 636 if(!pre_draw()) return;
nuclear@0 637
nuclear@0 638 if(ibo_valid) {
nuclear@0 639 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo);
nuclear@0 640 glDrawElements(GL_TRIANGLES, nfaces * 3, GL_UNSIGNED_INT, 0);
nuclear@0 641 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
nuclear@0 642 } else {
nuclear@0 643 glDrawArrays(GL_TRIANGLES, 0, nverts);
nuclear@0 644 }
nuclear@0 645
nuclear@0 646 post_draw();
nuclear@0 647 }
nuclear@0 648
nuclear@0 649 void Mesh::post_draw() const
nuclear@0 650 {
nuclear@0 651 if(cur_sdr && use_custom_sdr_attr) {
nuclear@0 652 // rendered with shaders
nuclear@0 653 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 654 int loc = global_sdr_loc[i];
nuclear@0 655 if(loc >= 0 && vattr[i].vbo_valid) {
nuclear@0 656 glDisableVertexAttribArray(loc);
nuclear@0 657 }
nuclear@0 658 }
nuclear@0 659 } else {
nuclear@0 660 #ifndef GL_ES_VERSION_2_0
nuclear@0 661 // rendered with fixed-function
nuclear@0 662 glDisableClientState(GL_VERTEX_ARRAY);
nuclear@0 663 if(vattr[MESH_ATTR_NORMAL].vbo_valid) {
nuclear@0 664 glDisableClientState(GL_NORMAL_ARRAY);
nuclear@0 665 }
nuclear@0 666 if(vattr[MESH_ATTR_TEXCOORD].vbo_valid) {
nuclear@0 667 glDisableClientState(GL_TEXTURE_COORD_ARRAY);
nuclear@0 668 }
nuclear@0 669 if(vattr[MESH_ATTR_COLOR].vbo_valid) {
nuclear@0 670 glDisableClientState(GL_COLOR_ARRAY);
nuclear@0 671 }
nuclear@0 672 #endif
nuclear@0 673 }
nuclear@0 674 }
nuclear@0 675
nuclear@0 676 void Mesh::draw_wire() const
nuclear@0 677 {
nuclear@0 678 if(!pre_draw()) return;
nuclear@0 679
nuclear@0 680 ((Mesh*)this)->update_wire_ibo();
nuclear@0 681
nuclear@0 682 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, wire_ibo);
nuclear@0 683 glDrawElements(GL_LINES, nfaces * 6, GL_UNSIGNED_INT, 0);
nuclear@0 684 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
nuclear@0 685
nuclear@0 686 post_draw();
nuclear@0 687 }
nuclear@0 688
nuclear@0 689 void Mesh::draw_vertices() const
nuclear@0 690 {
nuclear@0 691 if(!pre_draw()) return;
nuclear@0 692
nuclear@0 693 glDrawArrays(GL_POINTS, 0, nverts);
nuclear@0 694
nuclear@0 695 post_draw();
nuclear@0 696 }
nuclear@0 697
nuclear@0 698 void Mesh::draw_normals() const
nuclear@0 699 {
nuclear@0 700 #ifdef USE_OLDGL
nuclear@0 701 int cur_sdr = 0;
nuclear@0 702 glGetIntegerv(GL_CURRENT_PROGRAM, &cur_sdr);
nuclear@0 703
nuclear@0 704 Vec3 *varr = (Vec3*)get_attrib_data(MESH_ATTR_VERTEX);
nuclear@0 705 Vec3 *norm = (Vec3*)get_attrib_data(MESH_ATTR_NORMAL);
nuclear@0 706 if(!varr || !norm) {
nuclear@0 707 return;
nuclear@0 708 }
nuclear@0 709
nuclear@0 710 glBegin(GL_LINES);
nuclear@0 711 if(cur_sdr && use_custom_sdr_attr) {
nuclear@0 712 int vert_loc = global_sdr_loc[MESH_ATTR_VERTEX];
nuclear@0 713 if(vert_loc < 0) {
nuclear@0 714 glEnd();
nuclear@0 715 return;
nuclear@0 716 }
nuclear@0 717
nuclear@0 718 for(size_t i=0; i<nverts; i++) {
nuclear@0 719 glVertexAttrib3f(vert_loc, varr[i].x, varr[i].y, varr[i].z);
nuclear@0 720 Vec3 end = varr[i] + norm[i] * vis_vecsize;
nuclear@0 721 glVertexAttrib3f(vert_loc, end.x, end.y, end.z);
nuclear@0 722 }
nuclear@0 723 } else {
nuclear@0 724 for(size_t i=0; i<nverts; i++) {
nuclear@0 725 glVertex3f(varr[i].x, varr[i].y, varr[i].z);
nuclear@0 726 Vec3 end = varr[i] + norm[i] * vis_vecsize;
nuclear@0 727 glVertex3f(end.x, end.y, end.z);
nuclear@0 728 }
nuclear@0 729 }
nuclear@0 730 glEnd();
nuclear@0 731 #endif // USE_OLDGL
nuclear@0 732 }
nuclear@0 733
nuclear@0 734 void Mesh::draw_tangents() const
nuclear@0 735 {
nuclear@0 736 #ifdef USE_OLDGL
nuclear@0 737 int cur_sdr = 0;
nuclear@0 738 glGetIntegerv(GL_CURRENT_PROGRAM, &cur_sdr);
nuclear@0 739
nuclear@0 740 Vec3 *varr = (Vec3*)get_attrib_data(MESH_ATTR_VERTEX);
nuclear@0 741 Vec3 *tang = (Vec3*)get_attrib_data(MESH_ATTR_TANGENT);
nuclear@0 742 if(!varr || !tang) {
nuclear@0 743 return;
nuclear@0 744 }
nuclear@0 745
nuclear@0 746 glBegin(GL_LINES);
nuclear@0 747 if(cur_sdr && use_custom_sdr_attr) {
nuclear@0 748 int vert_loc = global_sdr_loc[MESH_ATTR_VERTEX];
nuclear@0 749 if(vert_loc < 0) {
nuclear@0 750 glEnd();
nuclear@0 751 return;
nuclear@0 752 }
nuclear@0 753
nuclear@0 754 for(size_t i=0; i<nverts; i++) {
nuclear@0 755 glVertexAttrib3f(vert_loc, varr[i].x, varr[i].y, varr[i].z);
nuclear@0 756 Vec3 end = varr[i] + tang[i] * vis_vecsize;
nuclear@0 757 glVertexAttrib3f(vert_loc, end.x, end.y, end.z);
nuclear@0 758 }
nuclear@0 759 } else {
nuclear@0 760 for(size_t i=0; i<nverts; i++) {
nuclear@0 761 glVertex3f(varr[i].x, varr[i].y, varr[i].z);
nuclear@0 762 Vec3 end = varr[i] + tang[i] * vis_vecsize;
nuclear@0 763 glVertex3f(end.x, end.y, end.z);
nuclear@0 764 }
nuclear@0 765 }
nuclear@0 766 glEnd();
nuclear@0 767 #endif // USE_OLDGL
nuclear@0 768 }
nuclear@0 769
nuclear@0 770 void Mesh::get_aabbox(Vec3 *vmin, Vec3 *vmax) const
nuclear@0 771 {
nuclear@0 772 if(!aabb_valid) {
nuclear@0 773 ((Mesh*)this)->calc_aabb();
nuclear@0 774 }
nuclear@0 775 *vmin = aabb.min;
nuclear@0 776 *vmax = aabb.max;
nuclear@0 777 }
nuclear@0 778
nuclear@0 779 const AABox &Mesh::get_aabbox() const
nuclear@0 780 {
nuclear@0 781 if(!aabb_valid) {
nuclear@0 782 ((Mesh*)this)->calc_aabb();
nuclear@0 783 }
nuclear@0 784 return aabb;
nuclear@0 785 }
nuclear@0 786
nuclear@0 787 float Mesh::get_bsphere(Vec3 *center, float *rad) const
nuclear@0 788 {
nuclear@0 789 if(!bsph_valid) {
nuclear@0 790 ((Mesh*)this)->calc_bsph();
nuclear@0 791 }
nuclear@0 792 *center = bsph.center;
nuclear@0 793 *rad = bsph.radius;
nuclear@0 794 return bsph.radius;
nuclear@0 795 }
nuclear@0 796
nuclear@0 797 const Sphere &Mesh::get_bsphere() const
nuclear@0 798 {
nuclear@0 799 if(!bsph_valid) {
nuclear@0 800 ((Mesh*)this)->calc_bsph();
nuclear@0 801 }
nuclear@0 802 return bsph;
nuclear@0 803 }
nuclear@0 804
nuclear@0 805 /// static function
nuclear@0 806 void Mesh::set_intersect_mode(unsigned int mode)
nuclear@0 807 {
nuclear@0 808 Mesh::intersect_mode = mode;
nuclear@0 809 }
nuclear@0 810
nuclear@0 811 /// static function
nuclear@0 812 unsigned int Mesh::get_intersect_mode()
nuclear@0 813 {
nuclear@0 814 return Mesh::intersect_mode;
nuclear@0 815 }
nuclear@0 816
nuclear@0 817 /// static function
nuclear@0 818 void Mesh::set_vertex_select_distance(float dist)
nuclear@0 819 {
nuclear@0 820 Mesh::vertex_sel_dist = dist;
nuclear@0 821 }
nuclear@0 822
nuclear@0 823 /// static function
nuclear@0 824 float Mesh::get_vertex_select_distance()
nuclear@0 825 {
nuclear@0 826 return Mesh::vertex_sel_dist;
nuclear@0 827 }
nuclear@0 828
nuclear@0 829 bool Mesh::intersect(const Ray &ray, HitPoint *hit) const
nuclear@0 830 {
nuclear@0 831 assert((Mesh::intersect_mode & (ISECT_VERTICES | ISECT_FACE)) != (ISECT_VERTICES | ISECT_FACE));
nuclear@0 832
nuclear@0 833 const Vec3 *varr = (Vec3*)get_attrib_data(MESH_ATTR_VERTEX);
nuclear@0 834 const Vec3 *narr = (Vec3*)get_attrib_data(MESH_ATTR_NORMAL);
nuclear@0 835 if(!varr) {
nuclear@0 836 return false;
nuclear@0 837 }
nuclear@0 838 const unsigned int *idxarr = get_index_data();
nuclear@0 839
nuclear@0 840 // first test with the bounding box
nuclear@0 841 AABox box;
nuclear@0 842 get_aabbox(&box.min, &box.max);
nuclear@0 843 if(!box.intersect(ray)) {
nuclear@0 844 return false;
nuclear@0 845 }
nuclear@0 846
nuclear@0 847 HitPoint nearest_hit;
nuclear@0 848 nearest_hit.dist = FLT_MAX;
nuclear@0 849 nearest_hit.obj = 0;
nuclear@0 850
nuclear@0 851 if(Mesh::intersect_mode & ISECT_VERTICES) {
nuclear@0 852 // we asked for "intersections" with the vertices of the mesh
nuclear@0 853 long nearest_vidx = -1;
nuclear@0 854 float thres_sq = Mesh::vertex_sel_dist * Mesh::vertex_sel_dist;
nuclear@0 855
nuclear@0 856 for(unsigned int i=0; i<nverts; i++) {
nuclear@0 857
nuclear@0 858 if((Mesh::intersect_mode & ISECT_FRONT) && dot(narr[i], ray.dir) > 0) {
nuclear@0 859 continue;
nuclear@0 860 }
nuclear@0 861
nuclear@0 862 // project the vertex onto the ray line
nuclear@0 863 float t = dot(varr[i] - ray.origin, ray.dir);
nuclear@0 864 Vec3 vproj = ray.origin + ray.dir * t;
nuclear@0 865
nuclear@0 866 float dist_sq = length_sq(vproj - varr[i]);
nuclear@0 867 if(dist_sq < thres_sq) {
nuclear@0 868 if(!hit) {
nuclear@0 869 return true;
nuclear@0 870 }
nuclear@0 871 if(t < nearest_hit.dist) {
nuclear@0 872 nearest_hit.dist = t;
nuclear@0 873 nearest_vidx = i;
nuclear@0 874 }
nuclear@0 875 }
nuclear@0 876 }
nuclear@0 877
nuclear@0 878 if(nearest_vidx != -1) {
nuclear@0 879 hitvert = varr[nearest_vidx];
nuclear@0 880 nearest_hit.obj = &hitvert;
nuclear@0 881 }
nuclear@0 882
nuclear@0 883 } else {
nuclear@0 884 // regular intersection test with polygons
nuclear@0 885
nuclear@0 886 for(unsigned int i=0; i<nfaces; i++) {
nuclear@0 887 Triangle face(i, varr, idxarr);
nuclear@0 888
nuclear@0 889 // ignore back-facing polygons if the mode flags include ISECT_FRONT
nuclear@0 890 if((Mesh::intersect_mode & ISECT_FRONT) && dot(face.get_normal(), ray.dir) > 0) {
nuclear@0 891 continue;
nuclear@0 892 }
nuclear@0 893
nuclear@0 894 HitPoint fhit;
nuclear@0 895 if(face.intersect(ray, hit ? &fhit : 0)) {
nuclear@0 896 if(!hit) {
nuclear@0 897 return true;
nuclear@0 898 }
nuclear@0 899 if(fhit.dist < nearest_hit.dist) {
nuclear@0 900 nearest_hit = fhit;
nuclear@0 901 hitface = face;
nuclear@0 902 }
nuclear@0 903 }
nuclear@0 904 }
nuclear@0 905 }
nuclear@0 906
nuclear@0 907 if(nearest_hit.obj) {
nuclear@0 908 if(hit) {
nuclear@0 909 *hit = nearest_hit;
nuclear@0 910
nuclear@0 911 // if we are interested in the mesh and not the faces set obj to this
nuclear@0 912 if(Mesh::intersect_mode & ISECT_FACE) {
nuclear@0 913 hit->obj = &hitface;
nuclear@0 914 } else if(Mesh::intersect_mode & ISECT_VERTICES) {
nuclear@0 915 hit->obj = &hitvert;
nuclear@0 916 } else {
nuclear@0 917 hit->obj = this;
nuclear@0 918 }
nuclear@0 919 }
nuclear@0 920 return true;
nuclear@0 921 }
nuclear@0 922 return false;
nuclear@0 923 }
nuclear@0 924
nuclear@0 925
nuclear@0 926 // texture coordinate manipulation
nuclear@0 927 void Mesh::texcoord_apply_xform(const Mat4 &xform)
nuclear@0 928 {
nuclear@0 929 if(!has_attrib(MESH_ATTR_TEXCOORD)) {
nuclear@0 930 return;
nuclear@0 931 }
nuclear@0 932
nuclear@0 933 for(unsigned int i=0; i<nverts; i++) {
nuclear@0 934 Vec4 tc = get_attrib(MESH_ATTR_TEXCOORD, i);
nuclear@0 935 set_attrib(MESH_ATTR_TEXCOORD, i, xform * tc);
nuclear@0 936 }
nuclear@0 937 }
nuclear@0 938
nuclear@0 939 void Mesh::texcoord_gen_plane(const Vec3 &norm, const Vec3 &tang)
nuclear@0 940 {
nuclear@0 941 if(!nverts) return;
nuclear@0 942
nuclear@0 943 if(!has_attrib(MESH_ATTR_TEXCOORD)) {
nuclear@0 944 // allocate texture coordinate attribute array
nuclear@0 945 set_attrib_data(MESH_ATTR_TEXCOORD, 2, nverts);
nuclear@0 946 }
nuclear@0 947
nuclear@0 948 Vec3 n = normalize(norm);
nuclear@0 949 Vec3 b = normalize(cross(n, tang));
nuclear@0 950 Vec3 t = cross(b, n);
nuclear@0 951
nuclear@0 952 for(unsigned int i=0; i<nverts; i++) {
nuclear@0 953 Vec3 pos = get_attrib(MESH_ATTR_VERTEX, i).xyz();
nuclear@0 954
nuclear@0 955 // distance along the tangent direction
nuclear@0 956 float u = dot(pos, t);
nuclear@0 957 // distance along the bitangent direction
nuclear@0 958 float v = dot(pos, b);
nuclear@0 959
nuclear@0 960 set_attrib(MESH_ATTR_TEXCOORD, i, Vec4(u, v, 0, 1));
nuclear@0 961 }
nuclear@0 962 }
nuclear@0 963
nuclear@0 964 void Mesh::texcoord_gen_box()
nuclear@0 965 {
nuclear@0 966 if(!nverts || !has_attrib(MESH_ATTR_NORMAL)) return;
nuclear@0 967
nuclear@0 968 if(!has_attrib(MESH_ATTR_TEXCOORD)) {
nuclear@0 969 // allocate texture coordinate attribute array
nuclear@0 970 set_attrib_data(MESH_ATTR_TEXCOORD, 2, nverts);
nuclear@0 971 }
nuclear@0 972
nuclear@0 973 for(unsigned int i=0; i<nverts; i++) {
nuclear@0 974 Vec3 pos = Vec3(get_attrib(MESH_ATTR_VERTEX, i)) * 0.5 + Vec3(0.5, 0.5, 0.5);
nuclear@0 975 Vec3 norm = get_attrib(MESH_ATTR_NORMAL, i).xyz();
nuclear@0 976
nuclear@0 977 float abs_nx = fabs(norm.x);
nuclear@0 978 float abs_ny = fabs(norm.y);
nuclear@0 979 float abs_nz = fabs(norm.z);
nuclear@0 980 int dom = abs_nx > abs_ny && abs_nx > abs_nz ? 0 : (abs_ny > abs_nz ? 1 : 2);
nuclear@0 981
nuclear@0 982 float uv[2], *uvptr = uv;
nuclear@0 983 for(int j=0; j<3; j++) {
nuclear@0 984 if(j == dom) continue; // skip dominant axis
nuclear@0 985
nuclear@0 986 *uvptr++ = pos[j];
nuclear@0 987 }
nuclear@0 988 set_attrib(MESH_ATTR_TEXCOORD, i, Vec4(uv[0], uv[1], 0, 1));
nuclear@0 989 }
nuclear@0 990 }
nuclear@0 991
nuclear@0 992 void Mesh::texcoord_gen_cylinder()
nuclear@0 993 {
nuclear@0 994 if(!nverts) return;
nuclear@0 995
nuclear@0 996 if(!has_attrib(MESH_ATTR_TEXCOORD)) {
nuclear@0 997 // allocate texture coordinate attribute array
nuclear@0 998 set_attrib_data(MESH_ATTR_TEXCOORD, 2, nverts);
nuclear@0 999 }
nuclear@0 1000
nuclear@0 1001 for(unsigned int i=0; i<nverts; i++) {
nuclear@0 1002 Vec3 pos = get_attrib(MESH_ATTR_VERTEX, i).xyz();
nuclear@0 1003
nuclear@0 1004 float rho = sqrt(pos.x * pos.x + pos.z * pos.z);
nuclear@0 1005 float theta = rho == 0.0 ? 0.0 : atan2(pos.z / rho, pos.x / rho);
nuclear@0 1006
nuclear@0 1007 float u = theta / (2.0 * M_PI) + 0.5;
nuclear@0 1008 float v = pos.y;
nuclear@0 1009
nuclear@0 1010 set_attrib(MESH_ATTR_TEXCOORD, i, Vec4(u, v, 0, 1));
nuclear@0 1011 }
nuclear@0 1012 }
nuclear@0 1013
nuclear@0 1014
nuclear@0 1015 bool Mesh::dump(const char *fname) const
nuclear@0 1016 {
nuclear@0 1017 FILE *fp = fopen(fname, "wb");
nuclear@0 1018 if(fp) {
nuclear@0 1019 bool res = dump(fp);
nuclear@0 1020 fclose(fp);
nuclear@0 1021 return res;
nuclear@0 1022 }
nuclear@0 1023 return false;
nuclear@0 1024 }
nuclear@0 1025
nuclear@0 1026 bool Mesh::dump(FILE *fp) const
nuclear@0 1027 {
nuclear@0 1028 if(!has_attrib(MESH_ATTR_VERTEX)) {
nuclear@0 1029 return false;
nuclear@0 1030 }
nuclear@0 1031
nuclear@0 1032 fprintf(fp, "VERTEX ATTRIBUTES\n");
nuclear@0 1033 static const char *label[] = { "pos", "nor", "tan", "tex", "col", "bw", "bid" };
nuclear@0 1034 static const char *elemfmt[] = { 0, " %s(%g)", " %s(%g, %g)", " %s(%g, %g, %g)", " %s(%g, %g, %g, %g)", 0 };
nuclear@0 1035
nuclear@0 1036 for(int i=0; i<(int)nverts; i++) {
nuclear@0 1037 fprintf(fp, "%5u:", i);
nuclear@0 1038 for(int j=0; j<NUM_MESH_ATTR; j++) {
nuclear@0 1039 if(has_attrib(j)) {
nuclear@0 1040 Vec4 v = get_attrib(j, i);
nuclear@0 1041 int nelem = vattr[j].nelem;
nuclear@0 1042 fprintf(fp, elemfmt[nelem], label[j], v.x, v.y, v.z, v.w);
nuclear@0 1043 }
nuclear@0 1044 }
nuclear@0 1045 fputc('\n', fp);
nuclear@0 1046 }
nuclear@0 1047
nuclear@0 1048 if(is_indexed()) {
nuclear@0 1049 const unsigned int *idx = get_index_data();
nuclear@0 1050 int numidx = get_index_count();
nuclear@0 1051 int numtri = numidx / 3;
nuclear@0 1052 assert(numidx % 3 == 0);
nuclear@0 1053
nuclear@0 1054 fprintf(fp, "FACES\n");
nuclear@0 1055
nuclear@0 1056 for(int i=0; i<numtri; i++) {
nuclear@0 1057 fprintf(fp, "%5d: %d %d %d\n", i, idx[0], idx[1], idx[2]);
nuclear@0 1058 idx += 3;
nuclear@0 1059 }
nuclear@0 1060 }
nuclear@0 1061 return true;
nuclear@0 1062 }
nuclear@0 1063
nuclear@0 1064 bool Mesh::dump_obj(const char *fname) const
nuclear@0 1065 {
nuclear@0 1066 FILE *fp = fopen(fname, "wb");
nuclear@0 1067 if(fp) {
nuclear@0 1068 bool res = dump_obj(fp);
nuclear@0 1069 fclose(fp);
nuclear@0 1070 return res;
nuclear@0 1071 }
nuclear@0 1072 return false;
nuclear@0 1073 }
nuclear@0 1074
nuclear@0 1075 bool Mesh::dump_obj(FILE *fp) const
nuclear@0 1076 {
nuclear@0 1077 if(!has_attrib(MESH_ATTR_VERTEX)) {
nuclear@0 1078 return false;
nuclear@0 1079 }
nuclear@0 1080
nuclear@0 1081 for(int i=0; i<(int)nverts; i++) {
nuclear@0 1082 Vec4 v = get_attrib(MESH_ATTR_VERTEX, i);
nuclear@0 1083 fprintf(fp, "v %g %g %g\n", v.x, v.y, v.z);
nuclear@0 1084 }
nuclear@0 1085
nuclear@0 1086 if(has_attrib(MESH_ATTR_NORMAL)) {
nuclear@0 1087 for(int i=0; i<(int)nverts; i++) {
nuclear@0 1088 Vec4 v = get_attrib(MESH_ATTR_NORMAL, i);
nuclear@0 1089 fprintf(fp, "vn %g %g %g\n", v.x, v.y, v.z);
nuclear@0 1090 }
nuclear@0 1091 }
nuclear@0 1092
nuclear@0 1093 if(has_attrib(MESH_ATTR_TEXCOORD)) {
nuclear@0 1094 for(int i=0; i<(int)nverts; i++) {
nuclear@0 1095 Vec4 v = get_attrib(MESH_ATTR_TEXCOORD, i);
nuclear@0 1096 fprintf(fp, "vt %g %g\n", v.x, v.y);
nuclear@0 1097 }
nuclear@0 1098 }
nuclear@0 1099
nuclear@0 1100 if(is_indexed()) {
nuclear@0 1101 const unsigned int *idxptr = get_index_data();
nuclear@0 1102 int numidx = get_index_count();
nuclear@0 1103 int numtri = numidx / 3;
nuclear@0 1104 assert(numidx % 3 == 0);
nuclear@0 1105
nuclear@0 1106 for(int i=0; i<numtri; i++) {
nuclear@0 1107 fputc('f', fp);
nuclear@0 1108 for(int j=0; j<3; j++) {
nuclear@0 1109 unsigned int idx = *idxptr++ + 1;
nuclear@0 1110 fprintf(fp, " %u/%u/%u", idx, idx, idx);
nuclear@0 1111 }
nuclear@0 1112 fputc('\n', fp);
nuclear@0 1113 }
nuclear@0 1114 } else {
nuclear@0 1115 int numtri = nverts / 3;
nuclear@0 1116 unsigned int idx = 1;
nuclear@0 1117 for(int i=0; i<numtri; i++) {
nuclear@0 1118 fputc('f', fp);
nuclear@0 1119 for(int j=0; j<3; j++) {
nuclear@0 1120 fprintf(fp, " %u/%u/%u", idx, idx, idx);
nuclear@0 1121 ++idx;
nuclear@0 1122 }
nuclear@0 1123 fputc('\n', fp);
nuclear@0 1124 }
nuclear@0 1125 }
nuclear@0 1126 return true;
nuclear@0 1127 }
nuclear@0 1128
nuclear@0 1129 // ------ private member functions ------
nuclear@0 1130
nuclear@0 1131 void Mesh::calc_aabb()
nuclear@0 1132 {
nuclear@0 1133 // the cast is to force calling the const version which doesn't invalidate
nuclear@0 1134 if(!((const Mesh*)this)->get_attrib_data(MESH_ATTR_VERTEX)) {
nuclear@0 1135 return;
nuclear@0 1136 }
nuclear@0 1137
nuclear@0 1138 aabb.min = Vec3(FLT_MAX, FLT_MAX, FLT_MAX);
nuclear@0 1139 aabb.max = -aabb.min;
nuclear@0 1140
nuclear@0 1141 for(unsigned int i=0; i<nverts; i++) {
nuclear@0 1142 Vec4 v = get_attrib(MESH_ATTR_VERTEX, i);
nuclear@0 1143 for(int j=0; j<3; j++) {
nuclear@0 1144 if(v[j] < aabb.min[j]) {
nuclear@0 1145 aabb.min[j] = v[j];
nuclear@0 1146 }
nuclear@0 1147 if(v[j] > aabb.max[j]) {
nuclear@0 1148 aabb.max[j] = v[j];
nuclear@0 1149 }
nuclear@0 1150 }
nuclear@0 1151 }
nuclear@0 1152 aabb_valid = true;
nuclear@0 1153 }
nuclear@0 1154
nuclear@0 1155 void Mesh::calc_bsph()
nuclear@0 1156 {
nuclear@0 1157 // the cast is to force calling the const version which doesn't invalidate
nuclear@0 1158 if(!((const Mesh*)this)->get_attrib_data(MESH_ATTR_VERTEX)) {
nuclear@0 1159 return;
nuclear@0 1160 }
nuclear@0 1161
nuclear@0 1162 Vec3 v;
nuclear@0 1163 bsph.center = Vec3(0, 0, 0);
nuclear@0 1164
nuclear@0 1165 // first find the center
nuclear@0 1166 for(unsigned int i=0; i<nverts; i++) {
nuclear@0 1167 v = get_attrib(MESH_ATTR_VERTEX, i).xyz();
nuclear@0 1168 bsph.center += v;
nuclear@0 1169 }
nuclear@0 1170 bsph.center /= (float)nverts;
nuclear@0 1171
nuclear@0 1172 bsph.radius = 0.0f;
nuclear@0 1173 for(unsigned int i=0; i<nverts; i++) {
nuclear@0 1174 v = get_attrib(MESH_ATTR_VERTEX, i).xyz();
nuclear@0 1175 float dist_sq = length_sq(v - bsph.center);
nuclear@0 1176 if(dist_sq > bsph.radius) {
nuclear@0 1177 bsph.radius = dist_sq;
nuclear@0 1178 }
nuclear@0 1179 }
nuclear@0 1180 bsph.radius = sqrt(bsph.radius);
nuclear@0 1181
nuclear@0 1182 bsph_valid = true;
nuclear@0 1183 }
nuclear@0 1184
nuclear@0 1185 void Mesh::update_buffers()
nuclear@0 1186 {
nuclear@0 1187 for(int i=0; i<NUM_MESH_ATTR; i++) {
nuclear@0 1188 if(has_attrib(i) && !vattr[i].vbo_valid) {
nuclear@0 1189 glBindBuffer(GL_ARRAY_BUFFER, vattr[i].vbo);
nuclear@0 1190 glBufferData(GL_ARRAY_BUFFER, nverts * vattr[i].nelem * sizeof(float), &vattr[i].data[0], GL_STATIC_DRAW);
nuclear@0 1191 vattr[i].vbo_valid = true;
nuclear@0 1192 }
nuclear@0 1193 }
nuclear@0 1194 glBindBuffer(GL_ARRAY_BUFFER, 0);
nuclear@0 1195
nuclear@0 1196 if(idata_valid && !ibo_valid) {
nuclear@0 1197 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo);
nuclear@0 1198 glBufferData(GL_ELEMENT_ARRAY_BUFFER, nfaces * 3 * sizeof(unsigned int), &idata[0], GL_STATIC_DRAW);
nuclear@0 1199 ibo_valid = true;
nuclear@0 1200 }
nuclear@0 1201 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
nuclear@0 1202 }
nuclear@0 1203
nuclear@0 1204 void Mesh::update_wire_ibo()
nuclear@0 1205 {
nuclear@0 1206 update_buffers();
nuclear@0 1207
nuclear@0 1208 if(wire_ibo_valid) {
nuclear@0 1209 return;
nuclear@0 1210 }
nuclear@0 1211
nuclear@0 1212 if(!wire_ibo) {
nuclear@0 1213 glGenBuffers(1, &wire_ibo);
nuclear@0 1214 }
nuclear@0 1215
nuclear@0 1216 unsigned int *wire_idxarr = new unsigned int[nfaces * 6];
nuclear@0 1217 unsigned int *dest = wire_idxarr;
nuclear@0 1218
nuclear@0 1219 if(ibo_valid) {
nuclear@0 1220 // we're dealing with an indexed mesh
nuclear@0 1221 const unsigned int *idxarr = ((const Mesh*)this)->get_index_data();
nuclear@0 1222
nuclear@0 1223 for(unsigned int i=0; i<nfaces; i++) {
nuclear@0 1224 *dest++ = idxarr[0];
nuclear@0 1225 *dest++ = idxarr[1];
nuclear@0 1226 *dest++ = idxarr[1];
nuclear@0 1227 *dest++ = idxarr[2];
nuclear@0 1228 *dest++ = idxarr[2];
nuclear@0 1229 *dest++ = idxarr[0];
nuclear@0 1230 idxarr += 3;
nuclear@0 1231 }
nuclear@0 1232 } else {
nuclear@0 1233 // not an indexed mesh ...
nuclear@0 1234 for(unsigned int i=0; i<nfaces; i++) {
nuclear@0 1235 int vidx = i * 3;
nuclear@0 1236 *dest++ = vidx;
nuclear@0 1237 *dest++ = vidx + 1;
nuclear@0 1238 *dest++ = vidx + 1;
nuclear@0 1239 *dest++ = vidx + 2;
nuclear@0 1240 *dest++ = vidx + 2;
nuclear@0 1241 *dest++ = vidx;
nuclear@0 1242 }
nuclear@0 1243 }
nuclear@0 1244
nuclear@0 1245 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, wire_ibo);
nuclear@0 1246 glBufferData(GL_ELEMENT_ARRAY_BUFFER, nfaces * 6 * sizeof(unsigned int), wire_idxarr, GL_STATIC_DRAW);
nuclear@0 1247 delete [] wire_idxarr;
nuclear@0 1248 wire_ibo_valid = true;
nuclear@0 1249 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
nuclear@0 1250 }
nuclear@0 1251
nuclear@0 1252
nuclear@0 1253 // ------ class Triangle ------
nuclear@0 1254 Triangle::Triangle()
nuclear@0 1255 {
nuclear@0 1256 normal_valid = false;
nuclear@0 1257 id = -1;
nuclear@0 1258 }
nuclear@0 1259
nuclear@0 1260 Triangle::Triangle(const Vec3 &v0, const Vec3 &v1, const Vec3 &v2)
nuclear@0 1261 {
nuclear@0 1262 v[0] = v0;
nuclear@0 1263 v[1] = v1;
nuclear@0 1264 v[2] = v2;
nuclear@0 1265 normal_valid = false;
nuclear@0 1266 id = -1;
nuclear@0 1267 }
nuclear@0 1268
nuclear@0 1269 Triangle::Triangle(int n, const Vec3 *varr, const unsigned int *idxarr)
nuclear@0 1270 {
nuclear@0 1271 if(idxarr) {
nuclear@0 1272 v[0] = varr[idxarr[n * 3]];
nuclear@0 1273 v[1] = varr[idxarr[n * 3 + 1]];
nuclear@0 1274 v[2] = varr[idxarr[n * 3 + 2]];
nuclear@0 1275 } else {
nuclear@0 1276 v[0] = varr[n * 3];
nuclear@0 1277 v[1] = varr[n * 3 + 1];
nuclear@0 1278 v[2] = varr[n * 3 + 2];
nuclear@0 1279 }
nuclear@0 1280 normal_valid = false;
nuclear@0 1281 id = n;
nuclear@0 1282 }
nuclear@0 1283
nuclear@0 1284 void Triangle::calc_normal()
nuclear@0 1285 {
nuclear@0 1286 normal = normalize(cross(v[1] - v[0], v[2] - v[0]));
nuclear@0 1287 normal_valid = true;
nuclear@0 1288 }
nuclear@0 1289
nuclear@0 1290 const Vec3 &Triangle::get_normal() const
nuclear@0 1291 {
nuclear@0 1292 if(!normal_valid) {
nuclear@0 1293 ((Triangle*)this)->calc_normal();
nuclear@0 1294 }
nuclear@0 1295 return normal;
nuclear@0 1296 }
nuclear@0 1297
nuclear@0 1298 void Triangle::transform(const Mat4 &xform)
nuclear@0 1299 {
nuclear@0 1300 v[0] = xform * v[0];
nuclear@0 1301 v[1] = xform * v[1];
nuclear@0 1302 v[2] = xform * v[2];
nuclear@0 1303 normal_valid = false;
nuclear@0 1304 }
nuclear@0 1305
nuclear@0 1306 void Triangle::draw() const
nuclear@0 1307 {
nuclear@0 1308 Vec3 n[3];
nuclear@0 1309 n[0] = n[1] = n[2] = get_normal();
nuclear@0 1310
nuclear@0 1311 int vloc = Mesh::get_attrib_location(MESH_ATTR_VERTEX);
nuclear@0 1312 int nloc = Mesh::get_attrib_location(MESH_ATTR_NORMAL);
nuclear@0 1313
nuclear@0 1314 glEnableVertexAttribArray(vloc);
nuclear@0 1315 glVertexAttribPointer(vloc, 3, GL_FLOAT, GL_FALSE, 0, &v[0].x);
nuclear@0 1316 glVertexAttribPointer(nloc, 3, GL_FLOAT, GL_FALSE, 0, &n[0].x);
nuclear@0 1317
nuclear@0 1318 glDrawArrays(GL_TRIANGLES, 0, 3);
nuclear@0 1319
nuclear@0 1320 glDisableVertexAttribArray(vloc);
nuclear@0 1321 glDisableVertexAttribArray(nloc);
nuclear@0 1322 }
nuclear@0 1323
nuclear@0 1324 void Triangle::draw_wire() const
nuclear@0 1325 {
nuclear@0 1326 static const int idxarr[] = {0, 1, 1, 2, 2, 0};
nuclear@0 1327 int vloc = Mesh::get_attrib_location(MESH_ATTR_VERTEX);
nuclear@0 1328
nuclear@0 1329 glEnableVertexAttribArray(vloc);
nuclear@0 1330 glVertexAttribPointer(vloc, 3, GL_FLOAT, GL_FALSE, 0, &v[0].x);
nuclear@0 1331
nuclear@0 1332 glDrawElements(GL_LINES, 6, GL_UNSIGNED_INT, idxarr);
nuclear@0 1333
nuclear@0 1334 glDisableVertexAttribArray(vloc);
nuclear@0 1335 }
nuclear@0 1336
nuclear@0 1337 Vec3 Triangle::calc_barycentric(const Vec3 &pos) const
nuclear@0 1338 {
nuclear@0 1339 Vec3 norm = get_normal();
nuclear@0 1340
nuclear@0 1341 float area_sq = fabs(dot(cross(v[1] - v[0], v[2] - v[0]), norm));
nuclear@0 1342 if(area_sq < 1e-5) {
nuclear@0 1343 return Vec3(0, 0, 0);
nuclear@0 1344 }
nuclear@0 1345
nuclear@0 1346 float asq0 = fabs(dot(cross(v[1] - pos, v[2] - pos), norm));
nuclear@0 1347 float asq1 = fabs(dot(cross(v[2] - pos, v[0] - pos), norm));
nuclear@0 1348 float asq2 = fabs(dot(cross(v[0] - pos, v[1] - pos), norm));
nuclear@0 1349
nuclear@0 1350 return Vec3(asq0 / area_sq, asq1 / area_sq, asq2 / area_sq);
nuclear@0 1351 }
nuclear@0 1352
nuclear@0 1353 bool Triangle::intersect(const Ray &ray, HitPoint *hit) const
nuclear@0 1354 {
nuclear@0 1355 Vec3 normal = get_normal();
nuclear@0 1356
nuclear@0 1357 float ndotdir = dot(ray.dir, normal);
nuclear@0 1358 if(fabs(ndotdir) < 1e-4) {
nuclear@0 1359 return false;
nuclear@0 1360 }
nuclear@0 1361
nuclear@0 1362 Vec3 vertdir = v[0] - ray.origin;
nuclear@0 1363 float t = dot(normal, vertdir) / ndotdir;
nuclear@0 1364
nuclear@0 1365 Vec3 pos = ray.origin + ray.dir * t;
nuclear@0 1366 Vec3 bary = calc_barycentric(pos);
nuclear@0 1367
nuclear@0 1368 if(bary.x + bary.y + bary.z > 1.00001) {
nuclear@0 1369 return false;
nuclear@0 1370 }
nuclear@0 1371
nuclear@0 1372 if(hit) {
nuclear@0 1373 hit->dist = t;
nuclear@0 1374 hit->pos = ray.origin + ray.dir * t;
nuclear@0 1375 hit->normal = normal;
nuclear@0 1376 hit->obj = this;
nuclear@0 1377 }
nuclear@0 1378 return true;
nuclear@0 1379 }