cubemapper

view src/mesh.cc @ 0:8fc9e1d3aad2

initial commit
author John Tsiombikas <nuclear@member.fsf.org>
date Thu, 27 Jul 2017 20:36:12 +0300
parents
children 2bfafdced01a
line source
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <float.h>
4 #include <assert.h>
5 #include "opengl.h"
6 #include "mesh.h"
7 //#include "xform_node.h"
9 #define USE_OLDGL
11 bool Mesh::use_custom_sdr_attr = true;
12 int Mesh::global_sdr_loc[NUM_MESH_ATTR] = { 0, 1, 2, 3, 4, 5, 6 };
13 /*
14 (int)SDR_ATTR_VERTEX,
15 (int)SDR_ATTR_NORMAL,
16 (int)SDR_ATTR_TANGENT,
17 (int)SDR_ATTR_TEXCOORD,
18 (int)SDR_ATTR_COLOR,
19 -1, -1};
20 */
21 unsigned int Mesh::intersect_mode = ISECT_DEFAULT;
22 float Mesh::vertex_sel_dist = 0.01;
23 float Mesh::vis_vecsize = 1.0;
25 Mesh::Mesh()
26 {
27 clear();
29 glGenBuffers(NUM_MESH_ATTR + 1, buffer_objects);
31 for(int i=0; i<NUM_MESH_ATTR; i++) {
32 vattr[i].vbo = buffer_objects[i];
33 }
34 ibo = buffer_objects[NUM_MESH_ATTR];
35 wire_ibo = 0;
36 }
38 Mesh::~Mesh()
39 {
40 glDeleteBuffers(NUM_MESH_ATTR + 1, buffer_objects);
42 if(wire_ibo) {
43 glDeleteBuffers(1, &wire_ibo);
44 }
45 }
47 Mesh::Mesh(const Mesh &rhs)
48 {
49 clear();
51 glGenBuffers(NUM_MESH_ATTR + 1, buffer_objects);
53 for(int i=0; i<NUM_MESH_ATTR; i++) {
54 vattr[i].vbo = buffer_objects[i];
55 }
56 ibo = buffer_objects[NUM_MESH_ATTR];
57 wire_ibo = 0;
59 clone(rhs);
60 }
62 Mesh &Mesh::operator =(const Mesh &rhs)
63 {
64 if(&rhs != this) {
65 clone(rhs);
66 }
67 return *this;
68 }
70 bool Mesh::clone(const Mesh &m)
71 {
72 clear();
74 for(int i=0; i<NUM_MESH_ATTR; i++) {
75 if(m.has_attrib(i)) {
76 m.get_attrib_data(i); // force validation of the actual data on the source mesh
78 vattr[i].nelem = m.vattr[i].nelem;
79 vattr[i].data = m.vattr[i].data; // copy the actual data
80 vattr[i].data_valid = true;
81 }
82 }
84 if(m.is_indexed()) {
85 m.get_index_data(); // again, force validation
87 // copy the index data
88 idata = m.idata;
89 idata_valid = true;
90 }
92 name = m.name;
93 nverts = m.nverts;
94 nfaces = m.nfaces;
96 //bones = m.bones;
98 memcpy(cur_val, m.cur_val, sizeof cur_val);
100 aabb = m.aabb;
101 aabb_valid = m.aabb_valid;
102 bsph = m.bsph;
103 bsph_valid = m.bsph_valid;
105 hitface = m.hitface;
106 hitvert = m.hitvert;
108 intersect_mode = m.intersect_mode;
109 vertex_sel_dist = m.vertex_sel_dist;
110 vis_vecsize = m.vis_vecsize;
112 return true;
113 }
115 void Mesh::set_name(const char *name)
116 {
117 this->name = name;
118 }
120 const char *Mesh::get_name() const
121 {
122 return name.c_str();
123 }
125 bool Mesh::has_attrib(int attr) const
126 {
127 if(attr < 0 || attr >= NUM_MESH_ATTR) {
128 return false;
129 }
131 // if neither of these is valid, then nobody has set this attribute
132 return vattr[attr].vbo_valid || vattr[attr].data_valid;
133 }
135 bool Mesh::is_indexed() const
136 {
137 return ibo_valid || idata_valid;
138 }
140 void Mesh::clear()
141 {
142 //bones.clear();
144 for(int i=0; i<NUM_MESH_ATTR; i++) {
145 vattr[i].nelem = 0;
146 vattr[i].vbo_valid = false;
147 vattr[i].data_valid = false;
148 //vattr[i].sdr_loc = -1;
149 vattr[i].data.clear();
150 }
151 ibo_valid = idata_valid = false;
152 idata.clear();
154 wire_ibo_valid = false;
156 nverts = nfaces = 0;
158 bsph_valid = false;
159 aabb_valid = false;
160 }
162 float *Mesh::set_attrib_data(int attrib, int nelem, unsigned int num, const float *data)
163 {
164 if(attrib < 0 || attrib >= NUM_MESH_ATTR) {
165 fprintf(stderr, "%s: invalid attrib: %d\n", __FUNCTION__, attrib);
166 return 0;
167 }
169 if(nverts && num != nverts) {
170 fprintf(stderr, "%s: attribute count missmatch (%d instead of %d)\n", __FUNCTION__, num, nverts);
171 return 0;
172 }
173 nverts = num;
175 vattr[attrib].data.clear();
176 vattr[attrib].nelem = nelem;
177 vattr[attrib].data.resize(num * nelem);
179 if(data) {
180 memcpy(&vattr[attrib].data[0], data, num * nelem * sizeof *data);
181 }
183 vattr[attrib].data_valid = true;
184 vattr[attrib].vbo_valid = false;
185 return &vattr[attrib].data[0];
186 }
188 float *Mesh::get_attrib_data(int attrib)
189 {
190 if(attrib < 0 || attrib >= NUM_MESH_ATTR) {
191 fprintf(stderr, "%s: invalid attrib: %d\n", __FUNCTION__, attrib);
192 return 0;
193 }
195 vattr[attrib].vbo_valid = false;
196 return (float*)((const Mesh*)this)->get_attrib_data(attrib);
197 }
199 const float *Mesh::get_attrib_data(int attrib) const
200 {
201 if(attrib < 0 || attrib >= NUM_MESH_ATTR) {
202 fprintf(stderr, "%s: invalid attrib: %d\n", __FUNCTION__, attrib);
203 return 0;
204 }
206 if(!vattr[attrib].data_valid) {
207 #if GL_ES_VERSION_2_0
208 fprintf(stderr, "%s: can't read back attrib data on CrippledGL ES\n", __FUNCTION__);
209 return 0;
210 #else
211 if(!vattr[attrib].vbo_valid) {
212 fprintf(stderr, "%s: unavailable attrib: %d\n", __FUNCTION__, attrib);
213 return 0;
214 }
216 // local data copy is unavailable, grab the data from the vbo
217 Mesh *m = (Mesh*)this;
218 m->vattr[attrib].data.resize(nverts * vattr[attrib].nelem);
220 glBindBuffer(GL_ARRAY_BUFFER, vattr[attrib].vbo);
221 void *data = glMapBuffer(GL_ARRAY_BUFFER, GL_READ_ONLY);
222 memcpy(&m->vattr[attrib].data[0], data, nverts * vattr[attrib].nelem * sizeof(float));
223 glUnmapBuffer(GL_ARRAY_BUFFER);
225 vattr[attrib].data_valid = true;
226 #endif
227 }
229 return &vattr[attrib].data[0];
230 }
232 void Mesh::set_attrib(int attrib, int idx, const Vec4 &v)
233 {
234 float *data = get_attrib_data(attrib);
235 if(data) {
236 data += idx * vattr[attrib].nelem;
237 for(int i=0; i<vattr[attrib].nelem; i++) {
238 data[i] = v[i];
239 }
240 }
241 }
243 Vec4 Mesh::get_attrib(int attrib, int idx) const
244 {
245 Vec4 v(0.0, 0.0, 0.0, 1.0);
246 const float *data = get_attrib_data(attrib);
247 if(data) {
248 data += idx * vattr[attrib].nelem;
249 for(int i=0; i<vattr[attrib].nelem; i++) {
250 v[i] = data[i];
251 }
252 }
253 return v;
254 }
256 int Mesh::get_attrib_count(int attrib) const
257 {
258 return has_attrib(attrib) ? nverts : 0;
259 }
262 unsigned int *Mesh::set_index_data(int num, const unsigned int *indices)
263 {
264 int nidx = nfaces * 3;
265 if(nidx && num != nidx) {
266 fprintf(stderr, "%s: index count missmatch (%d instead of %d)\n", __FUNCTION__, num, nidx);
267 return 0;
268 }
269 nfaces = num / 3;
271 idata.clear();
272 idata.resize(num);
274 if(indices) {
275 memcpy(&idata[0], indices, num * sizeof *indices);
276 }
278 idata_valid = true;
279 ibo_valid = false;
281 return &idata[0];
282 }
284 unsigned int *Mesh::get_index_data()
285 {
286 ibo_valid = false;
287 return (unsigned int*)((const Mesh*)this)->get_index_data();
288 }
290 const unsigned int *Mesh::get_index_data() const
291 {
292 if(!idata_valid) {
293 #if GL_ES_VERSION_2_0
294 fprintf(stderr, "%s: can't read back index data in CrippledGL ES\n", __FUNCTION__);
295 return 0;
296 #else
297 if(!ibo_valid) {
298 fprintf(stderr, "%s: indices unavailable\n", __FUNCTION__);
299 return 0;
300 }
302 // local data copy is unavailable, gram the data from the ibo
303 Mesh *m = (Mesh*)this;
304 int nidx = nfaces * 3;
305 m->idata.resize(nidx);
307 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo);
308 void *data = glMapBuffer(GL_ELEMENT_ARRAY_BUFFER, GL_READ_ONLY);
309 memcpy(&m->idata[0], data, nidx * sizeof(unsigned int));
310 glUnmapBuffer(GL_ELEMENT_ARRAY_BUFFER);
312 idata_valid = true;
313 #endif
314 }
316 return &idata[0];
317 }
319 int Mesh::get_index_count() const
320 {
321 return nfaces * 3;
322 }
324 void Mesh::append(const Mesh &mesh)
325 {
326 unsigned int idxoffs = nverts;
328 if(!nverts) {
329 clone(mesh);
330 return;
331 }
333 nverts += mesh.nverts;
334 nfaces += mesh.nfaces;
336 for(int i=0; i<NUM_MESH_ATTR; i++) {
337 if(has_attrib(i) && mesh.has_attrib(i)) {
338 // force validating the data arrays
339 get_attrib_data(i);
340 mesh.get_attrib_data(i);
342 // append the mesh data
343 vattr[i].data.insert(vattr[i].data.end(), mesh.vattr[i].data.begin(), mesh.vattr[i].data.end());
344 }
345 }
347 if(ibo_valid || idata_valid) {
348 // make index arrays valid
349 get_index_data();
350 mesh.get_index_data();
352 size_t orig_sz = idata.size();
354 idata.insert(idata.end(), mesh.idata.begin(), mesh.idata.end());
356 // fixup all the new indices
357 for(size_t i=orig_sz; i<idata.size(); i++) {
358 idata[i] += idxoffs;
359 }
360 }
362 // fuck everything
363 wire_ibo_valid = false;
364 aabb_valid = false;
365 bsph_valid = false;
366 }
368 // assemble a complete vertex by adding all the useful attributes
369 void Mesh::vertex(float x, float y, float z)
370 {
371 cur_val[MESH_ATTR_VERTEX] = Vec4(x, y, z, 1.0f);
372 vattr[MESH_ATTR_VERTEX].data_valid = true;
373 vattr[MESH_ATTR_VERTEX].nelem = 3;
375 for(int i=0; i<NUM_MESH_ATTR; i++) {
376 if(vattr[i].data_valid) {
377 for(int j=0; j<vattr[MESH_ATTR_VERTEX].nelem; j++) {
378 vattr[i].data.push_back(cur_val[i][j]);
379 }
380 }
381 vattr[i].vbo_valid = false;
382 }
384 if(idata_valid) {
385 idata.clear();
386 }
387 ibo_valid = idata_valid = false;
388 }
390 void Mesh::normal(float nx, float ny, float nz)
391 {
392 cur_val[MESH_ATTR_NORMAL] = Vec4(nx, ny, nz, 1.0f);
393 vattr[MESH_ATTR_NORMAL].data_valid = true;
394 vattr[MESH_ATTR_NORMAL].nelem = 3;
395 }
397 void Mesh::tangent(float tx, float ty, float tz)
398 {
399 cur_val[MESH_ATTR_TANGENT] = Vec4(tx, ty, tz, 1.0f);
400 vattr[MESH_ATTR_TANGENT].data_valid = true;
401 vattr[MESH_ATTR_TANGENT].nelem = 3;
402 }
404 void Mesh::texcoord(float u, float v, float w)
405 {
406 cur_val[MESH_ATTR_TEXCOORD] = Vec4(u, v, w, 1.0f);
407 vattr[MESH_ATTR_TEXCOORD].data_valid = true;
408 vattr[MESH_ATTR_TEXCOORD].nelem = 3;
409 }
411 void Mesh::boneweights(float w1, float w2, float w3, float w4)
412 {
413 cur_val[MESH_ATTR_BONEWEIGHTS] = Vec4(w1, w2, w3, w4);
414 vattr[MESH_ATTR_BONEWEIGHTS].data_valid = true;
415 vattr[MESH_ATTR_BONEWEIGHTS].nelem = 4;
416 }
418 void Mesh::boneidx(int idx1, int idx2, int idx3, int idx4)
419 {
420 cur_val[MESH_ATTR_BONEIDX] = Vec4(idx1, idx2, idx3, idx4);
421 vattr[MESH_ATTR_BONEIDX].data_valid = true;
422 vattr[MESH_ATTR_BONEIDX].nelem = 4;
423 }
425 int Mesh::get_poly_count() const
426 {
427 if(nfaces) {
428 return nfaces;
429 }
430 if(nverts) {
431 return nverts / 3;
432 }
433 return 0;
434 }
436 /// static function
437 void Mesh::set_attrib_location(int attr, int loc)
438 {
439 if(attr < 0 || attr >= NUM_MESH_ATTR) {
440 return;
441 }
442 Mesh::global_sdr_loc[attr] = loc;
443 }
445 /// static function
446 int Mesh::get_attrib_location(int attr)
447 {
448 if(attr < 0 || attr >= NUM_MESH_ATTR) {
449 return -1;
450 }
451 return Mesh::global_sdr_loc[attr];
452 }
454 /// static function
455 void Mesh::clear_attrib_locations()
456 {
457 for(int i=0; i<NUM_MESH_ATTR; i++) {
458 Mesh::global_sdr_loc[i] = -1;
459 }
460 }
462 /// static function
463 void Mesh::set_vis_vecsize(float sz)
464 {
465 Mesh::vis_vecsize = sz;
466 }
468 float Mesh::get_vis_vecsize()
469 {
470 return Mesh::vis_vecsize;
471 }
473 void Mesh::apply_xform(const Mat4 &xform)
474 {
475 Mat4 dir_xform = xform.upper3x3();
476 apply_xform(xform, dir_xform);
477 }
479 void Mesh::apply_xform(const Mat4 &xform, const Mat4 &dir_xform)
480 {
481 for(unsigned int i=0; i<nverts; i++) {
482 Vec4 v = get_attrib(MESH_ATTR_VERTEX, i);
483 set_attrib(MESH_ATTR_VERTEX, i, xform * v);
485 if(has_attrib(MESH_ATTR_NORMAL)) {
486 Vec3 n = get_attrib(MESH_ATTR_NORMAL, i).xyz();
487 set_attrib(MESH_ATTR_NORMAL, i, Vec4(dir_xform * n));
488 }
489 if(has_attrib(MESH_ATTR_TANGENT)) {
490 Vec3 t = get_attrib(MESH_ATTR_TANGENT, i).xyz();
491 set_attrib(MESH_ATTR_TANGENT, i, Vec4(dir_xform * t));
492 }
493 }
494 }
496 void Mesh::flip()
497 {
498 flip_faces();
499 flip_normals();
500 }
502 void Mesh::flip_faces()
503 {
504 if(is_indexed()) {
505 unsigned int *indices = get_index_data();
506 if(!indices) return;
508 int idxnum = get_index_count();
509 for(int i=0; i<idxnum; i+=3) {
510 unsigned int tmp = indices[i + 2];
511 indices[i + 2] = indices[i + 1];
512 indices[i + 1] = tmp;
513 }
515 } else {
516 Vec3 *verts = (Vec3*)get_attrib_data(MESH_ATTR_VERTEX);
517 if(!verts) return;
519 int vnum = get_attrib_count(MESH_ATTR_VERTEX);
520 for(int i=0; i<vnum; i+=3) {
521 Vec3 tmp = verts[i + 2];
522 verts[i + 2] = verts[i + 1];
523 verts[i + 1] = tmp;
524 }
525 }
526 }
528 void Mesh::flip_normals()
529 {
530 Vec3 *normals = (Vec3*)get_attrib_data(MESH_ATTR_NORMAL);
531 if(!normals) return;
533 int num = get_attrib_count(MESH_ATTR_NORMAL);
534 for(int i=0; i<num; i++) {
535 normals[i] = -normals[i];
536 }
537 }
539 /*
540 int Mesh::add_bone(XFormNode *bone)
541 {
542 int idx = bones.size();
543 bones.push_back(bone);
544 return idx;
545 }
547 const XFormNode *Mesh::get_bone(int idx) const
548 {
549 if(idx < 0 || idx >= (int)bones.size()) {
550 return 0;
551 }
552 return bones[idx];
553 }
555 int Mesh::get_bones_count() const
556 {
557 return (int)bones.size();
558 }
559 */
561 bool Mesh::pre_draw() const
562 {
563 cur_sdr = 0;
564 glGetIntegerv(GL_CURRENT_PROGRAM, &cur_sdr);
566 ((Mesh*)this)->update_buffers();
568 if(!vattr[MESH_ATTR_VERTEX].vbo_valid) {
569 fprintf(stderr, "%s: invalid vertex buffer\n", __FUNCTION__);
570 return false;
571 }
573 if(cur_sdr && use_custom_sdr_attr) {
574 // rendering with shaders
575 if(global_sdr_loc[MESH_ATTR_VERTEX] == -1) {
576 fprintf(stderr, "%s: shader attribute location for vertices unset\n", __FUNCTION__);
577 return false;
578 }
580 for(int i=0; i<NUM_MESH_ATTR; i++) {
581 int loc = global_sdr_loc[i];
582 if(loc >= 0 && vattr[i].vbo_valid) {
583 glBindBuffer(GL_ARRAY_BUFFER, vattr[i].vbo);
584 glVertexAttribPointer(loc, vattr[i].nelem, GL_FLOAT, GL_FALSE, 0, 0);
585 glEnableVertexAttribArray(loc);
586 }
587 }
588 } else {
589 #ifndef GL_ES_VERSION_2_0
590 // rendering with fixed-function (not available in GLES2)
591 glBindBuffer(GL_ARRAY_BUFFER, vattr[MESH_ATTR_VERTEX].vbo);
592 glVertexPointer(vattr[MESH_ATTR_VERTEX].nelem, GL_FLOAT, 0, 0);
593 glEnableClientState(GL_VERTEX_ARRAY);
595 if(vattr[MESH_ATTR_NORMAL].vbo_valid) {
596 glBindBuffer(GL_ARRAY_BUFFER, vattr[MESH_ATTR_NORMAL].vbo);
597 glNormalPointer(GL_FLOAT, 0, 0);
598 glEnableClientState(GL_NORMAL_ARRAY);
599 }
600 if(vattr[MESH_ATTR_TEXCOORD].vbo_valid) {
601 glBindBuffer(GL_ARRAY_BUFFER, vattr[MESH_ATTR_TEXCOORD].vbo);
602 glTexCoordPointer(vattr[MESH_ATTR_TEXCOORD].nelem, GL_FLOAT, 0, 0);
603 glEnableClientState(GL_TEXTURE_COORD_ARRAY);
604 }
605 if(vattr[MESH_ATTR_COLOR].vbo_valid) {
606 glBindBuffer(GL_ARRAY_BUFFER, vattr[MESH_ATTR_COLOR].vbo);
607 glColorPointer(vattr[MESH_ATTR_COLOR].nelem, GL_FLOAT, 0, 0);
608 glEnableClientState(GL_COLOR_ARRAY);
609 }
610 #endif
611 }
612 glBindBuffer(GL_ARRAY_BUFFER, 0);
614 return true;
615 }
617 void Mesh::draw() const
618 {
619 if(!pre_draw()) return;
621 if(ibo_valid) {
622 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo);
623 glDrawElements(GL_TRIANGLES, nfaces * 3, GL_UNSIGNED_INT, 0);
624 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
625 } else {
626 glDrawArrays(GL_TRIANGLES, 0, nverts);
627 }
629 post_draw();
630 }
632 void Mesh::post_draw() const
633 {
634 if(cur_sdr && use_custom_sdr_attr) {
635 // rendered with shaders
636 for(int i=0; i<NUM_MESH_ATTR; i++) {
637 int loc = global_sdr_loc[i];
638 if(loc >= 0 && vattr[i].vbo_valid) {
639 glDisableVertexAttribArray(loc);
640 }
641 }
642 } else {
643 #ifndef GL_ES_VERSION_2_0
644 // rendered with fixed-function
645 glDisableClientState(GL_VERTEX_ARRAY);
646 if(vattr[MESH_ATTR_NORMAL].vbo_valid) {
647 glDisableClientState(GL_NORMAL_ARRAY);
648 }
649 if(vattr[MESH_ATTR_TEXCOORD].vbo_valid) {
650 glDisableClientState(GL_TEXTURE_COORD_ARRAY);
651 }
652 if(vattr[MESH_ATTR_COLOR].vbo_valid) {
653 glDisableClientState(GL_COLOR_ARRAY);
654 }
655 #endif
656 }
657 }
659 void Mesh::draw_wire() const
660 {
661 if(!pre_draw()) return;
663 ((Mesh*)this)->update_wire_ibo();
665 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, wire_ibo);
666 glDrawElements(GL_LINES, nfaces * 6, GL_UNSIGNED_INT, 0);
667 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
669 post_draw();
670 }
672 void Mesh::draw_vertices() const
673 {
674 if(!pre_draw()) return;
676 glDrawArrays(GL_POINTS, 0, nverts);
678 post_draw();
679 }
681 void Mesh::draw_normals() const
682 {
683 #ifdef USE_OLDGL
684 int cur_sdr = 0;
685 glGetIntegerv(GL_CURRENT_PROGRAM, &cur_sdr);
687 Vec3 *varr = (Vec3*)get_attrib_data(MESH_ATTR_VERTEX);
688 Vec3 *norm = (Vec3*)get_attrib_data(MESH_ATTR_NORMAL);
689 if(!varr || !norm) {
690 return;
691 }
693 glBegin(GL_LINES);
694 if(cur_sdr && use_custom_sdr_attr) {
695 int vert_loc = global_sdr_loc[MESH_ATTR_VERTEX];
696 if(vert_loc < 0) {
697 glEnd();
698 return;
699 }
701 for(size_t i=0; i<nverts; i++) {
702 glVertexAttrib3f(vert_loc, varr[i].x, varr[i].y, varr[i].z);
703 Vec3 end = varr[i] + norm[i] * vis_vecsize;
704 glVertexAttrib3f(vert_loc, end.x, end.y, end.z);
705 }
706 } else {
707 for(size_t i=0; i<nverts; i++) {
708 glVertex3f(varr[i].x, varr[i].y, varr[i].z);
709 Vec3 end = varr[i] + norm[i] * vis_vecsize;
710 glVertex3f(end.x, end.y, end.z);
711 }
712 }
713 glEnd();
714 #endif // USE_OLDGL
715 }
717 void Mesh::draw_tangents() const
718 {
719 #ifdef USE_OLDGL
720 int cur_sdr = 0;
721 glGetIntegerv(GL_CURRENT_PROGRAM, &cur_sdr);
723 Vec3 *varr = (Vec3*)get_attrib_data(MESH_ATTR_VERTEX);
724 Vec3 *tang = (Vec3*)get_attrib_data(MESH_ATTR_TANGENT);
725 if(!varr || !tang) {
726 return;
727 }
729 glBegin(GL_LINES);
730 if(cur_sdr && use_custom_sdr_attr) {
731 int vert_loc = global_sdr_loc[MESH_ATTR_VERTEX];
732 if(vert_loc < 0) {
733 glEnd();
734 return;
735 }
737 for(size_t i=0; i<nverts; i++) {
738 glVertexAttrib3f(vert_loc, varr[i].x, varr[i].y, varr[i].z);
739 Vec3 end = varr[i] + tang[i] * vis_vecsize;
740 glVertexAttrib3f(vert_loc, end.x, end.y, end.z);
741 }
742 } else {
743 for(size_t i=0; i<nverts; i++) {
744 glVertex3f(varr[i].x, varr[i].y, varr[i].z);
745 Vec3 end = varr[i] + tang[i] * vis_vecsize;
746 glVertex3f(end.x, end.y, end.z);
747 }
748 }
749 glEnd();
750 #endif // USE_OLDGL
751 }
753 void Mesh::get_aabbox(Vec3 *vmin, Vec3 *vmax) const
754 {
755 if(!aabb_valid) {
756 ((Mesh*)this)->calc_aabb();
757 }
758 *vmin = aabb.min;
759 *vmax = aabb.max;
760 }
762 const AABox &Mesh::get_aabbox() const
763 {
764 if(!aabb_valid) {
765 ((Mesh*)this)->calc_aabb();
766 }
767 return aabb;
768 }
770 float Mesh::get_bsphere(Vec3 *center, float *rad) const
771 {
772 if(!bsph_valid) {
773 ((Mesh*)this)->calc_bsph();
774 }
775 *center = bsph.center;
776 *rad = bsph.radius;
777 return bsph.radius;
778 }
780 const Sphere &Mesh::get_bsphere() const
781 {
782 if(!bsph_valid) {
783 ((Mesh*)this)->calc_bsph();
784 }
785 return bsph;
786 }
788 /// static function
789 void Mesh::set_intersect_mode(unsigned int mode)
790 {
791 Mesh::intersect_mode = mode;
792 }
794 /// static function
795 unsigned int Mesh::get_intersect_mode()
796 {
797 return Mesh::intersect_mode;
798 }
800 /// static function
801 void Mesh::set_vertex_select_distance(float dist)
802 {
803 Mesh::vertex_sel_dist = dist;
804 }
806 /// static function
807 float Mesh::get_vertex_select_distance()
808 {
809 return Mesh::vertex_sel_dist;
810 }
812 bool Mesh::intersect(const Ray &ray, HitPoint *hit) const
813 {
814 assert((Mesh::intersect_mode & (ISECT_VERTICES | ISECT_FACE)) != (ISECT_VERTICES | ISECT_FACE));
816 const Vec3 *varr = (Vec3*)get_attrib_data(MESH_ATTR_VERTEX);
817 const Vec3 *narr = (Vec3*)get_attrib_data(MESH_ATTR_NORMAL);
818 if(!varr) {
819 return false;
820 }
821 const unsigned int *idxarr = get_index_data();
823 // first test with the bounding box
824 AABox box;
825 get_aabbox(&box.min, &box.max);
826 if(!box.intersect(ray)) {
827 return false;
828 }
830 HitPoint nearest_hit;
831 nearest_hit.dist = FLT_MAX;
832 nearest_hit.obj = 0;
834 if(Mesh::intersect_mode & ISECT_VERTICES) {
835 // we asked for "intersections" with the vertices of the mesh
836 long nearest_vidx = -1;
837 float thres_sq = Mesh::vertex_sel_dist * Mesh::vertex_sel_dist;
839 for(unsigned int i=0; i<nverts; i++) {
841 if((Mesh::intersect_mode & ISECT_FRONT) && dot(narr[i], ray.dir) > 0) {
842 continue;
843 }
845 // project the vertex onto the ray line
846 float t = dot(varr[i] - ray.origin, ray.dir);
847 Vec3 vproj = ray.origin + ray.dir * t;
849 float dist_sq = length_sq(vproj - varr[i]);
850 if(dist_sq < thres_sq) {
851 if(!hit) {
852 return true;
853 }
854 if(t < nearest_hit.dist) {
855 nearest_hit.dist = t;
856 nearest_vidx = i;
857 }
858 }
859 }
861 if(nearest_vidx != -1) {
862 hitvert = varr[nearest_vidx];
863 nearest_hit.obj = &hitvert;
864 }
866 } else {
867 // regular intersection test with polygons
869 for(unsigned int i=0; i<nfaces; i++) {
870 Triangle face(i, varr, idxarr);
872 // ignore back-facing polygons if the mode flags include ISECT_FRONT
873 if((Mesh::intersect_mode & ISECT_FRONT) && dot(face.get_normal(), ray.dir) > 0) {
874 continue;
875 }
877 HitPoint fhit;
878 if(face.intersect(ray, hit ? &fhit : 0)) {
879 if(!hit) {
880 return true;
881 }
882 if(fhit.dist < nearest_hit.dist) {
883 nearest_hit = fhit;
884 hitface = face;
885 }
886 }
887 }
888 }
890 if(nearest_hit.obj) {
891 if(hit) {
892 *hit = nearest_hit;
894 // if we are interested in the mesh and not the faces set obj to this
895 if(Mesh::intersect_mode & ISECT_FACE) {
896 hit->obj = &hitface;
897 } else if(Mesh::intersect_mode & ISECT_VERTICES) {
898 hit->obj = &hitvert;
899 } else {
900 hit->obj = this;
901 }
902 }
903 return true;
904 }
905 return false;
906 }
909 // texture coordinate manipulation
910 void Mesh::texcoord_apply_xform(const Mat4 &xform)
911 {
912 if(!has_attrib(MESH_ATTR_TEXCOORD)) {
913 return;
914 }
916 for(unsigned int i=0; i<nverts; i++) {
917 Vec4 tc = get_attrib(MESH_ATTR_TEXCOORD, i);
918 set_attrib(MESH_ATTR_TEXCOORD, i, xform * tc);
919 }
920 }
922 void Mesh::texcoord_gen_plane(const Vec3 &norm, const Vec3 &tang)
923 {
924 if(!nverts) return;
926 if(!has_attrib(MESH_ATTR_TEXCOORD)) {
927 // allocate texture coordinate attribute array
928 set_attrib_data(MESH_ATTR_TEXCOORD, 2, nverts);
929 }
931 Vec3 n = normalize(norm);
932 Vec3 b = normalize(cross(n, tang));
933 Vec3 t = cross(b, n);
935 for(unsigned int i=0; i<nverts; i++) {
936 Vec3 pos = get_attrib(MESH_ATTR_VERTEX, i).xyz();
938 // distance along the tangent direction
939 float u = dot(pos, t);
940 // distance along the bitangent direction
941 float v = dot(pos, b);
943 set_attrib(MESH_ATTR_TEXCOORD, i, Vec4(u, v, 0, 1));
944 }
945 }
947 void Mesh::texcoord_gen_box()
948 {
949 if(!nverts || !has_attrib(MESH_ATTR_NORMAL)) return;
951 if(!has_attrib(MESH_ATTR_TEXCOORD)) {
952 // allocate texture coordinate attribute array
953 set_attrib_data(MESH_ATTR_TEXCOORD, 2, nverts);
954 }
956 for(unsigned int i=0; i<nverts; i++) {
957 Vec3 pos = Vec3(get_attrib(MESH_ATTR_VERTEX, i)) * 0.5 + Vec3(0.5, 0.5, 0.5);
958 Vec3 norm = get_attrib(MESH_ATTR_NORMAL, i).xyz();
960 float abs_nx = fabs(norm.x);
961 float abs_ny = fabs(norm.y);
962 float abs_nz = fabs(norm.z);
963 int dom = abs_nx > abs_ny && abs_nx > abs_nz ? 0 : (abs_ny > abs_nz ? 1 : 2);
965 float uv[2], *uvptr = uv;
966 for(int j=0; j<3; j++) {
967 if(j == dom) continue; // skip dominant axis
969 *uvptr++ = pos[j];
970 }
971 set_attrib(MESH_ATTR_TEXCOORD, i, Vec4(uv[0], uv[1], 0, 1));
972 }
973 }
975 void Mesh::texcoord_gen_cylinder()
976 {
977 if(!nverts) return;
979 if(!has_attrib(MESH_ATTR_TEXCOORD)) {
980 // allocate texture coordinate attribute array
981 set_attrib_data(MESH_ATTR_TEXCOORD, 2, nverts);
982 }
984 for(unsigned int i=0; i<nverts; i++) {
985 Vec3 pos = get_attrib(MESH_ATTR_VERTEX, i).xyz();
987 float rho = sqrt(pos.x * pos.x + pos.z * pos.z);
988 float theta = rho == 0.0 ? 0.0 : atan2(pos.z / rho, pos.x / rho);
990 float u = theta / (2.0 * M_PI) + 0.5;
991 float v = pos.y;
993 set_attrib(MESH_ATTR_TEXCOORD, i, Vec4(u, v, 0, 1));
994 }
995 }
998 bool Mesh::dump(const char *fname) const
999 {
1000 FILE *fp = fopen(fname, "wb");
1001 if(fp) {
1002 bool res = dump(fp);
1003 fclose(fp);
1004 return res;
1006 return false;
1009 bool Mesh::dump(FILE *fp) const
1011 if(!has_attrib(MESH_ATTR_VERTEX)) {
1012 return false;
1015 fprintf(fp, "VERTEX ATTRIBUTES\n");
1016 static const char *label[] = { "pos", "nor", "tan", "tex", "col", "bw", "bid" };
1017 static const char *elemfmt[] = { 0, " %s(%g)", " %s(%g, %g)", " %s(%g, %g, %g)", " %s(%g, %g, %g, %g)", 0 };
1019 for(int i=0; i<(int)nverts; i++) {
1020 fprintf(fp, "%5u:", i);
1021 for(int j=0; j<NUM_MESH_ATTR; j++) {
1022 if(has_attrib(j)) {
1023 Vec4 v = get_attrib(j, i);
1024 int nelem = vattr[j].nelem;
1025 fprintf(fp, elemfmt[nelem], label[j], v.x, v.y, v.z, v.w);
1028 fputc('\n', fp);
1031 if(is_indexed()) {
1032 const unsigned int *idx = get_index_data();
1033 int numidx = get_index_count();
1034 int numtri = numidx / 3;
1035 assert(numidx % 3 == 0);
1037 fprintf(fp, "FACES\n");
1039 for(int i=0; i<numtri; i++) {
1040 fprintf(fp, "%5d: %d %d %d\n", i, idx[0], idx[1], idx[2]);
1041 idx += 3;
1044 return true;
1047 bool Mesh::dump_obj(const char *fname) const
1049 FILE *fp = fopen(fname, "wb");
1050 if(fp) {
1051 bool res = dump_obj(fp);
1052 fclose(fp);
1053 return res;
1055 return false;
1058 bool Mesh::dump_obj(FILE *fp) const
1060 if(!has_attrib(MESH_ATTR_VERTEX)) {
1061 return false;
1064 for(int i=0; i<(int)nverts; i++) {
1065 Vec4 v = get_attrib(MESH_ATTR_VERTEX, i);
1066 fprintf(fp, "v %g %g %g\n", v.x, v.y, v.z);
1069 if(has_attrib(MESH_ATTR_NORMAL)) {
1070 for(int i=0; i<(int)nverts; i++) {
1071 Vec4 v = get_attrib(MESH_ATTR_NORMAL, i);
1072 fprintf(fp, "vn %g %g %g\n", v.x, v.y, v.z);
1076 if(has_attrib(MESH_ATTR_TEXCOORD)) {
1077 for(int i=0; i<(int)nverts; i++) {
1078 Vec4 v = get_attrib(MESH_ATTR_TEXCOORD, i);
1079 fprintf(fp, "vt %g %g\n", v.x, v.y);
1083 if(is_indexed()) {
1084 const unsigned int *idxptr = get_index_data();
1085 int numidx = get_index_count();
1086 int numtri = numidx / 3;
1087 assert(numidx % 3 == 0);
1089 for(int i=0; i<numtri; i++) {
1090 fputc('f', fp);
1091 for(int j=0; j<3; j++) {
1092 unsigned int idx = *idxptr++ + 1;
1093 fprintf(fp, " %u/%u/%u", idx, idx, idx);
1095 fputc('\n', fp);
1097 } else {
1098 int numtri = nverts / 3;
1099 unsigned int idx = 1;
1100 for(int i=0; i<numtri; i++) {
1101 fputc('f', fp);
1102 for(int j=0; j<3; j++) {
1103 fprintf(fp, " %u/%u/%u", idx, idx, idx);
1104 ++idx;
1106 fputc('\n', fp);
1109 return true;
1112 // ------ private member functions ------
1114 void Mesh::calc_aabb()
1116 // the cast is to force calling the const version which doesn't invalidate
1117 if(!((const Mesh*)this)->get_attrib_data(MESH_ATTR_VERTEX)) {
1118 return;
1121 aabb.min = Vec3(FLT_MAX, FLT_MAX, FLT_MAX);
1122 aabb.max = -aabb.min;
1124 for(unsigned int i=0; i<nverts; i++) {
1125 Vec4 v = get_attrib(MESH_ATTR_VERTEX, i);
1126 for(int j=0; j<3; j++) {
1127 if(v[j] < aabb.min[j]) {
1128 aabb.min[j] = v[j];
1130 if(v[j] > aabb.max[j]) {
1131 aabb.max[j] = v[j];
1135 aabb_valid = true;
1138 void Mesh::calc_bsph()
1140 // the cast is to force calling the const version which doesn't invalidate
1141 if(!((const Mesh*)this)->get_attrib_data(MESH_ATTR_VERTEX)) {
1142 return;
1145 Vec3 v;
1146 bsph.center = Vec3(0, 0, 0);
1148 // first find the center
1149 for(unsigned int i=0; i<nverts; i++) {
1150 v = get_attrib(MESH_ATTR_VERTEX, i).xyz();
1151 bsph.center += v;
1153 bsph.center /= (float)nverts;
1155 bsph.radius = 0.0f;
1156 for(unsigned int i=0; i<nverts; i++) {
1157 v = get_attrib(MESH_ATTR_VERTEX, i).xyz();
1158 float dist_sq = length_sq(v - bsph.center);
1159 if(dist_sq > bsph.radius) {
1160 bsph.radius = dist_sq;
1163 bsph.radius = sqrt(bsph.radius);
1165 bsph_valid = true;
1168 void Mesh::update_buffers()
1170 for(int i=0; i<NUM_MESH_ATTR; i++) {
1171 if(has_attrib(i) && !vattr[i].vbo_valid) {
1172 glBindBuffer(GL_ARRAY_BUFFER, vattr[i].vbo);
1173 glBufferData(GL_ARRAY_BUFFER, nverts * vattr[i].nelem * sizeof(float), &vattr[i].data[0], GL_STATIC_DRAW);
1174 vattr[i].vbo_valid = true;
1177 glBindBuffer(GL_ARRAY_BUFFER, 0);
1179 if(idata_valid && !ibo_valid) {
1180 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo);
1181 glBufferData(GL_ELEMENT_ARRAY_BUFFER, nfaces * 3 * sizeof(unsigned int), &idata[0], GL_STATIC_DRAW);
1182 ibo_valid = true;
1184 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
1187 void Mesh::update_wire_ibo()
1189 update_buffers();
1191 if(wire_ibo_valid) {
1192 return;
1195 if(!wire_ibo) {
1196 glGenBuffers(1, &wire_ibo);
1199 unsigned int *wire_idxarr = new unsigned int[nfaces * 6];
1200 unsigned int *dest = wire_idxarr;
1202 if(ibo_valid) {
1203 // we're dealing with an indexed mesh
1204 const unsigned int *idxarr = ((const Mesh*)this)->get_index_data();
1206 for(unsigned int i=0; i<nfaces; i++) {
1207 *dest++ = idxarr[0];
1208 *dest++ = idxarr[1];
1209 *dest++ = idxarr[1];
1210 *dest++ = idxarr[2];
1211 *dest++ = idxarr[2];
1212 *dest++ = idxarr[0];
1213 idxarr += 3;
1215 } else {
1216 // not an indexed mesh ...
1217 for(unsigned int i=0; i<nfaces; i++) {
1218 int vidx = i * 3;
1219 *dest++ = vidx;
1220 *dest++ = vidx + 1;
1221 *dest++ = vidx + 1;
1222 *dest++ = vidx + 2;
1223 *dest++ = vidx + 2;
1224 *dest++ = vidx;
1228 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, wire_ibo);
1229 glBufferData(GL_ELEMENT_ARRAY_BUFFER, nfaces * 6 * sizeof(unsigned int), wire_idxarr, GL_STATIC_DRAW);
1230 delete [] wire_idxarr;
1231 wire_ibo_valid = true;
1232 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
1236 // ------ class Triangle ------
1237 Triangle::Triangle()
1239 normal_valid = false;
1240 id = -1;
1243 Triangle::Triangle(const Vec3 &v0, const Vec3 &v1, const Vec3 &v2)
1245 v[0] = v0;
1246 v[1] = v1;
1247 v[2] = v2;
1248 normal_valid = false;
1249 id = -1;
1252 Triangle::Triangle(int n, const Vec3 *varr, const unsigned int *idxarr)
1254 if(idxarr) {
1255 v[0] = varr[idxarr[n * 3]];
1256 v[1] = varr[idxarr[n * 3 + 1]];
1257 v[2] = varr[idxarr[n * 3 + 2]];
1258 } else {
1259 v[0] = varr[n * 3];
1260 v[1] = varr[n * 3 + 1];
1261 v[2] = varr[n * 3 + 2];
1263 normal_valid = false;
1264 id = n;
1267 void Triangle::calc_normal()
1269 normal = normalize(cross(v[1] - v[0], v[2] - v[0]));
1270 normal_valid = true;
1273 const Vec3 &Triangle::get_normal() const
1275 if(!normal_valid) {
1276 ((Triangle*)this)->calc_normal();
1278 return normal;
1281 void Triangle::transform(const Mat4 &xform)
1283 v[0] = xform * v[0];
1284 v[1] = xform * v[1];
1285 v[2] = xform * v[2];
1286 normal_valid = false;
1289 void Triangle::draw() const
1291 Vec3 n[3];
1292 n[0] = n[1] = n[2] = get_normal();
1294 int vloc = Mesh::get_attrib_location(MESH_ATTR_VERTEX);
1295 int nloc = Mesh::get_attrib_location(MESH_ATTR_NORMAL);
1297 glEnableVertexAttribArray(vloc);
1298 glVertexAttribPointer(vloc, 3, GL_FLOAT, GL_FALSE, 0, &v[0].x);
1299 glVertexAttribPointer(nloc, 3, GL_FLOAT, GL_FALSE, 0, &n[0].x);
1301 glDrawArrays(GL_TRIANGLES, 0, 3);
1303 glDisableVertexAttribArray(vloc);
1304 glDisableVertexAttribArray(nloc);
1307 void Triangle::draw_wire() const
1309 static const int idxarr[] = {0, 1, 1, 2, 2, 0};
1310 int vloc = Mesh::get_attrib_location(MESH_ATTR_VERTEX);
1312 glEnableVertexAttribArray(vloc);
1313 glVertexAttribPointer(vloc, 3, GL_FLOAT, GL_FALSE, 0, &v[0].x);
1315 glDrawElements(GL_LINES, 6, GL_UNSIGNED_INT, idxarr);
1317 glDisableVertexAttribArray(vloc);
1320 Vec3 Triangle::calc_barycentric(const Vec3 &pos) const
1322 Vec3 norm = get_normal();
1324 float area_sq = fabs(dot(cross(v[1] - v[0], v[2] - v[0]), norm));
1325 if(area_sq < 1e-5) {
1326 return Vec3(0, 0, 0);
1329 float asq0 = fabs(dot(cross(v[1] - pos, v[2] - pos), norm));
1330 float asq1 = fabs(dot(cross(v[2] - pos, v[0] - pos), norm));
1331 float asq2 = fabs(dot(cross(v[0] - pos, v[1] - pos), norm));
1333 return Vec3(asq0 / area_sq, asq1 / area_sq, asq2 / area_sq);
1336 bool Triangle::intersect(const Ray &ray, HitPoint *hit) const
1338 Vec3 normal = get_normal();
1340 float ndotdir = dot(ray.dir, normal);
1341 if(fabs(ndotdir) < 1e-4) {
1342 return false;
1345 Vec3 vertdir = v[0] - ray.origin;
1346 float t = dot(normal, vertdir) / ndotdir;
1348 Vec3 pos = ray.origin + ray.dir * t;
1349 Vec3 bary = calc_barycentric(pos);
1351 if(bary.x + bary.y + bary.z > 1.00001) {
1352 return false;
1355 if(hit) {
1356 hit->dist = t;
1357 hit->pos = ray.origin + ray.dir * t;
1358 hit->normal = normal;
1359 hit->obj = this;
1361 return true;