vrshoot

annotate libs/libjpeg/jccoefct.c @ 0:b2f14e535253

initial commit
author John Tsiombikas <nuclear@member.fsf.org>
date Sat, 01 Feb 2014 19:58:19 +0200
parents
children
rev   line source
nuclear@0 1 /*
nuclear@0 2 * jccoefct.c
nuclear@0 3 *
nuclear@0 4 * Copyright (C) 1994-1997, Thomas G. Lane.
nuclear@0 5 * This file is part of the Independent JPEG Group's software.
nuclear@0 6 * For conditions of distribution and use, see the accompanying README file.
nuclear@0 7 *
nuclear@0 8 * This file contains the coefficient buffer controller for compression.
nuclear@0 9 * This controller is the top level of the JPEG compressor proper.
nuclear@0 10 * The coefficient buffer lies between forward-DCT and entropy encoding steps.
nuclear@0 11 */
nuclear@0 12
nuclear@0 13 #define JPEG_INTERNALS
nuclear@0 14 #include "jinclude.h"
nuclear@0 15 #include "jpeglib.h"
nuclear@0 16
nuclear@0 17
nuclear@0 18 /* We use a full-image coefficient buffer when doing Huffman optimization,
nuclear@0 19 * and also for writing multiple-scan JPEG files. In all cases, the DCT
nuclear@0 20 * step is run during the first pass, and subsequent passes need only read
nuclear@0 21 * the buffered coefficients.
nuclear@0 22 */
nuclear@0 23 #ifdef ENTROPY_OPT_SUPPORTED
nuclear@0 24 #define FULL_COEF_BUFFER_SUPPORTED
nuclear@0 25 #else
nuclear@0 26 #ifdef C_MULTISCAN_FILES_SUPPORTED
nuclear@0 27 #define FULL_COEF_BUFFER_SUPPORTED
nuclear@0 28 #endif
nuclear@0 29 #endif
nuclear@0 30
nuclear@0 31
nuclear@0 32 /* Private buffer controller object */
nuclear@0 33
nuclear@0 34 typedef struct {
nuclear@0 35 struct jpeg_c_coef_controller pub; /* public fields */
nuclear@0 36
nuclear@0 37 JDIMENSION iMCU_row_num; /* iMCU row # within image */
nuclear@0 38 JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
nuclear@0 39 int MCU_vert_offset; /* counts MCU rows within iMCU row */
nuclear@0 40 int MCU_rows_per_iMCU_row; /* number of such rows needed */
nuclear@0 41
nuclear@0 42 /* For single-pass compression, it's sufficient to buffer just one MCU
nuclear@0 43 * (although this may prove a bit slow in practice). We allocate a
nuclear@0 44 * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
nuclear@0 45 * MCU constructed and sent. (On 80x86, the workspace is FAR even though
nuclear@0 46 * it's not really very big; this is to keep the module interfaces unchanged
nuclear@0 47 * when a large coefficient buffer is necessary.)
nuclear@0 48 * In multi-pass modes, this array points to the current MCU's blocks
nuclear@0 49 * within the virtual arrays.
nuclear@0 50 */
nuclear@0 51 JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
nuclear@0 52
nuclear@0 53 /* In multi-pass modes, we need a virtual block array for each component. */
nuclear@0 54 jvirt_barray_ptr whole_image[MAX_COMPONENTS];
nuclear@0 55 } my_coef_controller;
nuclear@0 56
nuclear@0 57 typedef my_coef_controller * my_coef_ptr;
nuclear@0 58
nuclear@0 59
nuclear@0 60 /* Forward declarations */
nuclear@0 61 METHODDEF(boolean) compress_data
nuclear@0 62 JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
nuclear@0 63 #ifdef FULL_COEF_BUFFER_SUPPORTED
nuclear@0 64 METHODDEF(boolean) compress_first_pass
nuclear@0 65 JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
nuclear@0 66 METHODDEF(boolean) compress_output
nuclear@0 67 JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
nuclear@0 68 #endif
nuclear@0 69
nuclear@0 70
nuclear@0 71 LOCAL(void)
nuclear@0 72 start_iMCU_row (j_compress_ptr cinfo)
nuclear@0 73 /* Reset within-iMCU-row counters for a new row */
nuclear@0 74 {
nuclear@0 75 my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
nuclear@0 76
nuclear@0 77 /* In an interleaved scan, an MCU row is the same as an iMCU row.
nuclear@0 78 * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
nuclear@0 79 * But at the bottom of the image, process only what's left.
nuclear@0 80 */
nuclear@0 81 if (cinfo->comps_in_scan > 1) {
nuclear@0 82 coef->MCU_rows_per_iMCU_row = 1;
nuclear@0 83 } else {
nuclear@0 84 if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
nuclear@0 85 coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
nuclear@0 86 else
nuclear@0 87 coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
nuclear@0 88 }
nuclear@0 89
nuclear@0 90 coef->mcu_ctr = 0;
nuclear@0 91 coef->MCU_vert_offset = 0;
nuclear@0 92 }
nuclear@0 93
nuclear@0 94
nuclear@0 95 /*
nuclear@0 96 * Initialize for a processing pass.
nuclear@0 97 */
nuclear@0 98
nuclear@0 99 METHODDEF(void)
nuclear@0 100 start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
nuclear@0 101 {
nuclear@0 102 my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
nuclear@0 103
nuclear@0 104 coef->iMCU_row_num = 0;
nuclear@0 105 start_iMCU_row(cinfo);
nuclear@0 106
nuclear@0 107 switch (pass_mode) {
nuclear@0 108 case JBUF_PASS_THRU:
nuclear@0 109 if (coef->whole_image[0] != NULL)
nuclear@0 110 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
nuclear@0 111 coef->pub.compress_data = compress_data;
nuclear@0 112 break;
nuclear@0 113 #ifdef FULL_COEF_BUFFER_SUPPORTED
nuclear@0 114 case JBUF_SAVE_AND_PASS:
nuclear@0 115 if (coef->whole_image[0] == NULL)
nuclear@0 116 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
nuclear@0 117 coef->pub.compress_data = compress_first_pass;
nuclear@0 118 break;
nuclear@0 119 case JBUF_CRANK_DEST:
nuclear@0 120 if (coef->whole_image[0] == NULL)
nuclear@0 121 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
nuclear@0 122 coef->pub.compress_data = compress_output;
nuclear@0 123 break;
nuclear@0 124 #endif
nuclear@0 125 default:
nuclear@0 126 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
nuclear@0 127 break;
nuclear@0 128 }
nuclear@0 129 }
nuclear@0 130
nuclear@0 131
nuclear@0 132 /*
nuclear@0 133 * Process some data in the single-pass case.
nuclear@0 134 * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
nuclear@0 135 * per call, ie, v_samp_factor block rows for each component in the image.
nuclear@0 136 * Returns TRUE if the iMCU row is completed, FALSE if suspended.
nuclear@0 137 *
nuclear@0 138 * NB: input_buf contains a plane for each component in image,
nuclear@0 139 * which we index according to the component's SOF position.
nuclear@0 140 */
nuclear@0 141
nuclear@0 142 METHODDEF(boolean)
nuclear@0 143 compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
nuclear@0 144 {
nuclear@0 145 my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
nuclear@0 146 JDIMENSION MCU_col_num; /* index of current MCU within row */
nuclear@0 147 JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
nuclear@0 148 JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
nuclear@0 149 int blkn, bi, ci, yindex, yoffset, blockcnt;
nuclear@0 150 JDIMENSION ypos, xpos;
nuclear@0 151 jpeg_component_info *compptr;
nuclear@0 152
nuclear@0 153 /* Loop to write as much as one whole iMCU row */
nuclear@0 154 for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
nuclear@0 155 yoffset++) {
nuclear@0 156 for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
nuclear@0 157 MCU_col_num++) {
nuclear@0 158 /* Determine where data comes from in input_buf and do the DCT thing.
nuclear@0 159 * Each call on forward_DCT processes a horizontal row of DCT blocks
nuclear@0 160 * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
nuclear@0 161 * sequentially. Dummy blocks at the right or bottom edge are filled in
nuclear@0 162 * specially. The data in them does not matter for image reconstruction,
nuclear@0 163 * so we fill them with values that will encode to the smallest amount of
nuclear@0 164 * data, viz: all zeroes in the AC entries, DC entries equal to previous
nuclear@0 165 * block's DC value. (Thanks to Thomas Kinsman for this idea.)
nuclear@0 166 */
nuclear@0 167 blkn = 0;
nuclear@0 168 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
nuclear@0 169 compptr = cinfo->cur_comp_info[ci];
nuclear@0 170 blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
nuclear@0 171 : compptr->last_col_width;
nuclear@0 172 xpos = MCU_col_num * compptr->MCU_sample_width;
nuclear@0 173 ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */
nuclear@0 174 for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
nuclear@0 175 if (coef->iMCU_row_num < last_iMCU_row ||
nuclear@0 176 yoffset+yindex < compptr->last_row_height) {
nuclear@0 177 (*cinfo->fdct->forward_DCT) (cinfo, compptr,
nuclear@0 178 input_buf[compptr->component_index],
nuclear@0 179 coef->MCU_buffer[blkn],
nuclear@0 180 ypos, xpos, (JDIMENSION) blockcnt);
nuclear@0 181 if (blockcnt < compptr->MCU_width) {
nuclear@0 182 /* Create some dummy blocks at the right edge of the image. */
nuclear@0 183 jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt],
nuclear@0 184 (compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
nuclear@0 185 for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
nuclear@0 186 coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
nuclear@0 187 }
nuclear@0 188 }
nuclear@0 189 } else {
nuclear@0 190 /* Create a row of dummy blocks at the bottom of the image. */
nuclear@0 191 jzero_far((void FAR *) coef->MCU_buffer[blkn],
nuclear@0 192 compptr->MCU_width * SIZEOF(JBLOCK));
nuclear@0 193 for (bi = 0; bi < compptr->MCU_width; bi++) {
nuclear@0 194 coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
nuclear@0 195 }
nuclear@0 196 }
nuclear@0 197 blkn += compptr->MCU_width;
nuclear@0 198 ypos += DCTSIZE;
nuclear@0 199 }
nuclear@0 200 }
nuclear@0 201 /* Try to write the MCU. In event of a suspension failure, we will
nuclear@0 202 * re-DCT the MCU on restart (a bit inefficient, could be fixed...)
nuclear@0 203 */
nuclear@0 204 if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
nuclear@0 205 /* Suspension forced; update state counters and exit */
nuclear@0 206 coef->MCU_vert_offset = yoffset;
nuclear@0 207 coef->mcu_ctr = MCU_col_num;
nuclear@0 208 return FALSE;
nuclear@0 209 }
nuclear@0 210 }
nuclear@0 211 /* Completed an MCU row, but perhaps not an iMCU row */
nuclear@0 212 coef->mcu_ctr = 0;
nuclear@0 213 }
nuclear@0 214 /* Completed the iMCU row, advance counters for next one */
nuclear@0 215 coef->iMCU_row_num++;
nuclear@0 216 start_iMCU_row(cinfo);
nuclear@0 217 return TRUE;
nuclear@0 218 }
nuclear@0 219
nuclear@0 220
nuclear@0 221 #ifdef FULL_COEF_BUFFER_SUPPORTED
nuclear@0 222
nuclear@0 223 /*
nuclear@0 224 * Process some data in the first pass of a multi-pass case.
nuclear@0 225 * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
nuclear@0 226 * per call, ie, v_samp_factor block rows for each component in the image.
nuclear@0 227 * This amount of data is read from the source buffer, DCT'd and quantized,
nuclear@0 228 * and saved into the virtual arrays. We also generate suitable dummy blocks
nuclear@0 229 * as needed at the right and lower edges. (The dummy blocks are constructed
nuclear@0 230 * in the virtual arrays, which have been padded appropriately.) This makes
nuclear@0 231 * it possible for subsequent passes not to worry about real vs. dummy blocks.
nuclear@0 232 *
nuclear@0 233 * We must also emit the data to the entropy encoder. This is conveniently
nuclear@0 234 * done by calling compress_output() after we've loaded the current strip
nuclear@0 235 * of the virtual arrays.
nuclear@0 236 *
nuclear@0 237 * NB: input_buf contains a plane for each component in image. All
nuclear@0 238 * components are DCT'd and loaded into the virtual arrays in this pass.
nuclear@0 239 * However, it may be that only a subset of the components are emitted to
nuclear@0 240 * the entropy encoder during this first pass; be careful about looking
nuclear@0 241 * at the scan-dependent variables (MCU dimensions, etc).
nuclear@0 242 */
nuclear@0 243
nuclear@0 244 METHODDEF(boolean)
nuclear@0 245 compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
nuclear@0 246 {
nuclear@0 247 my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
nuclear@0 248 JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
nuclear@0 249 JDIMENSION blocks_across, MCUs_across, MCUindex;
nuclear@0 250 int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
nuclear@0 251 JCOEF lastDC;
nuclear@0 252 jpeg_component_info *compptr;
nuclear@0 253 JBLOCKARRAY buffer;
nuclear@0 254 JBLOCKROW thisblockrow, lastblockrow;
nuclear@0 255
nuclear@0 256 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
nuclear@0 257 ci++, compptr++) {
nuclear@0 258 /* Align the virtual buffer for this component. */
nuclear@0 259 buffer = (*cinfo->mem->access_virt_barray)
nuclear@0 260 ((j_common_ptr) cinfo, coef->whole_image[ci],
nuclear@0 261 coef->iMCU_row_num * compptr->v_samp_factor,
nuclear@0 262 (JDIMENSION) compptr->v_samp_factor, TRUE);
nuclear@0 263 /* Count non-dummy DCT block rows in this iMCU row. */
nuclear@0 264 if (coef->iMCU_row_num < last_iMCU_row)
nuclear@0 265 block_rows = compptr->v_samp_factor;
nuclear@0 266 else {
nuclear@0 267 /* NB: can't use last_row_height here, since may not be set! */
nuclear@0 268 block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
nuclear@0 269 if (block_rows == 0) block_rows = compptr->v_samp_factor;
nuclear@0 270 }
nuclear@0 271 blocks_across = compptr->width_in_blocks;
nuclear@0 272 h_samp_factor = compptr->h_samp_factor;
nuclear@0 273 /* Count number of dummy blocks to be added at the right margin. */
nuclear@0 274 ndummy = (int) (blocks_across % h_samp_factor);
nuclear@0 275 if (ndummy > 0)
nuclear@0 276 ndummy = h_samp_factor - ndummy;
nuclear@0 277 /* Perform DCT for all non-dummy blocks in this iMCU row. Each call
nuclear@0 278 * on forward_DCT processes a complete horizontal row of DCT blocks.
nuclear@0 279 */
nuclear@0 280 for (block_row = 0; block_row < block_rows; block_row++) {
nuclear@0 281 thisblockrow = buffer[block_row];
nuclear@0 282 (*cinfo->fdct->forward_DCT) (cinfo, compptr,
nuclear@0 283 input_buf[ci], thisblockrow,
nuclear@0 284 (JDIMENSION) (block_row * DCTSIZE),
nuclear@0 285 (JDIMENSION) 0, blocks_across);
nuclear@0 286 if (ndummy > 0) {
nuclear@0 287 /* Create dummy blocks at the right edge of the image. */
nuclear@0 288 thisblockrow += blocks_across; /* => first dummy block */
nuclear@0 289 jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
nuclear@0 290 lastDC = thisblockrow[-1][0];
nuclear@0 291 for (bi = 0; bi < ndummy; bi++) {
nuclear@0 292 thisblockrow[bi][0] = lastDC;
nuclear@0 293 }
nuclear@0 294 }
nuclear@0 295 }
nuclear@0 296 /* If at end of image, create dummy block rows as needed.
nuclear@0 297 * The tricky part here is that within each MCU, we want the DC values
nuclear@0 298 * of the dummy blocks to match the last real block's DC value.
nuclear@0 299 * This squeezes a few more bytes out of the resulting file...
nuclear@0 300 */
nuclear@0 301 if (coef->iMCU_row_num == last_iMCU_row) {
nuclear@0 302 blocks_across += ndummy; /* include lower right corner */
nuclear@0 303 MCUs_across = blocks_across / h_samp_factor;
nuclear@0 304 for (block_row = block_rows; block_row < compptr->v_samp_factor;
nuclear@0 305 block_row++) {
nuclear@0 306 thisblockrow = buffer[block_row];
nuclear@0 307 lastblockrow = buffer[block_row-1];
nuclear@0 308 jzero_far((void FAR *) thisblockrow,
nuclear@0 309 (size_t) (blocks_across * SIZEOF(JBLOCK)));
nuclear@0 310 for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
nuclear@0 311 lastDC = lastblockrow[h_samp_factor-1][0];
nuclear@0 312 for (bi = 0; bi < h_samp_factor; bi++) {
nuclear@0 313 thisblockrow[bi][0] = lastDC;
nuclear@0 314 }
nuclear@0 315 thisblockrow += h_samp_factor; /* advance to next MCU in row */
nuclear@0 316 lastblockrow += h_samp_factor;
nuclear@0 317 }
nuclear@0 318 }
nuclear@0 319 }
nuclear@0 320 }
nuclear@0 321 /* NB: compress_output will increment iMCU_row_num if successful.
nuclear@0 322 * A suspension return will result in redoing all the work above next time.
nuclear@0 323 */
nuclear@0 324
nuclear@0 325 /* Emit data to the entropy encoder, sharing code with subsequent passes */
nuclear@0 326 return compress_output(cinfo, input_buf);
nuclear@0 327 }
nuclear@0 328
nuclear@0 329
nuclear@0 330 /*
nuclear@0 331 * Process some data in subsequent passes of a multi-pass case.
nuclear@0 332 * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
nuclear@0 333 * per call, ie, v_samp_factor block rows for each component in the scan.
nuclear@0 334 * The data is obtained from the virtual arrays and fed to the entropy coder.
nuclear@0 335 * Returns TRUE if the iMCU row is completed, FALSE if suspended.
nuclear@0 336 *
nuclear@0 337 * NB: input_buf is ignored; it is likely to be a NULL pointer.
nuclear@0 338 */
nuclear@0 339
nuclear@0 340 METHODDEF(boolean)
nuclear@0 341 compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
nuclear@0 342 {
nuclear@0 343 my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
nuclear@0 344 JDIMENSION MCU_col_num; /* index of current MCU within row */
nuclear@0 345 int blkn, ci, xindex, yindex, yoffset;
nuclear@0 346 JDIMENSION start_col;
nuclear@0 347 JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
nuclear@0 348 JBLOCKROW buffer_ptr;
nuclear@0 349 jpeg_component_info *compptr;
nuclear@0 350
nuclear@0 351 /* Align the virtual buffers for the components used in this scan.
nuclear@0 352 * NB: during first pass, this is safe only because the buffers will
nuclear@0 353 * already be aligned properly, so jmemmgr.c won't need to do any I/O.
nuclear@0 354 */
nuclear@0 355 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
nuclear@0 356 compptr = cinfo->cur_comp_info[ci];
nuclear@0 357 buffer[ci] = (*cinfo->mem->access_virt_barray)
nuclear@0 358 ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
nuclear@0 359 coef->iMCU_row_num * compptr->v_samp_factor,
nuclear@0 360 (JDIMENSION) compptr->v_samp_factor, FALSE);
nuclear@0 361 }
nuclear@0 362
nuclear@0 363 /* Loop to process one whole iMCU row */
nuclear@0 364 for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
nuclear@0 365 yoffset++) {
nuclear@0 366 for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
nuclear@0 367 MCU_col_num++) {
nuclear@0 368 /* Construct list of pointers to DCT blocks belonging to this MCU */
nuclear@0 369 blkn = 0; /* index of current DCT block within MCU */
nuclear@0 370 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
nuclear@0 371 compptr = cinfo->cur_comp_info[ci];
nuclear@0 372 start_col = MCU_col_num * compptr->MCU_width;
nuclear@0 373 for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
nuclear@0 374 buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
nuclear@0 375 for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
nuclear@0 376 coef->MCU_buffer[blkn++] = buffer_ptr++;
nuclear@0 377 }
nuclear@0 378 }
nuclear@0 379 }
nuclear@0 380 /* Try to write the MCU. */
nuclear@0 381 if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
nuclear@0 382 /* Suspension forced; update state counters and exit */
nuclear@0 383 coef->MCU_vert_offset = yoffset;
nuclear@0 384 coef->mcu_ctr = MCU_col_num;
nuclear@0 385 return FALSE;
nuclear@0 386 }
nuclear@0 387 }
nuclear@0 388 /* Completed an MCU row, but perhaps not an iMCU row */
nuclear@0 389 coef->mcu_ctr = 0;
nuclear@0 390 }
nuclear@0 391 /* Completed the iMCU row, advance counters for next one */
nuclear@0 392 coef->iMCU_row_num++;
nuclear@0 393 start_iMCU_row(cinfo);
nuclear@0 394 return TRUE;
nuclear@0 395 }
nuclear@0 396
nuclear@0 397 #endif /* FULL_COEF_BUFFER_SUPPORTED */
nuclear@0 398
nuclear@0 399
nuclear@0 400 /*
nuclear@0 401 * Initialize coefficient buffer controller.
nuclear@0 402 */
nuclear@0 403
nuclear@0 404 GLOBAL(void)
nuclear@0 405 jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
nuclear@0 406 {
nuclear@0 407 my_coef_ptr coef;
nuclear@0 408
nuclear@0 409 coef = (my_coef_ptr)
nuclear@0 410 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
nuclear@0 411 SIZEOF(my_coef_controller));
nuclear@0 412 cinfo->coef = (struct jpeg_c_coef_controller *) coef;
nuclear@0 413 coef->pub.start_pass = start_pass_coef;
nuclear@0 414
nuclear@0 415 /* Create the coefficient buffer. */
nuclear@0 416 if (need_full_buffer) {
nuclear@0 417 #ifdef FULL_COEF_BUFFER_SUPPORTED
nuclear@0 418 /* Allocate a full-image virtual array for each component, */
nuclear@0 419 /* padded to a multiple of samp_factor DCT blocks in each direction. */
nuclear@0 420 int ci;
nuclear@0 421 jpeg_component_info *compptr;
nuclear@0 422
nuclear@0 423 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
nuclear@0 424 ci++, compptr++) {
nuclear@0 425 coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
nuclear@0 426 ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
nuclear@0 427 (JDIMENSION) jround_up((long) compptr->width_in_blocks,
nuclear@0 428 (long) compptr->h_samp_factor),
nuclear@0 429 (JDIMENSION) jround_up((long) compptr->height_in_blocks,
nuclear@0 430 (long) compptr->v_samp_factor),
nuclear@0 431 (JDIMENSION) compptr->v_samp_factor);
nuclear@0 432 }
nuclear@0 433 #else
nuclear@0 434 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
nuclear@0 435 #endif
nuclear@0 436 } else {
nuclear@0 437 /* We only need a single-MCU buffer. */
nuclear@0 438 JBLOCKROW buffer;
nuclear@0 439 int i;
nuclear@0 440
nuclear@0 441 buffer = (JBLOCKROW)
nuclear@0 442 (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
nuclear@0 443 C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
nuclear@0 444 for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
nuclear@0 445 coef->MCU_buffer[i] = buffer + i;
nuclear@0 446 }
nuclear@0 447 coef->whole_image[0] = NULL; /* flag for no virtual arrays */
nuclear@0 448 }
nuclear@0 449 }