vrshoot

annotate libs/assimp/ConvertToLHProcess.cpp @ 0:b2f14e535253

initial commit
author John Tsiombikas <nuclear@member.fsf.org>
date Sat, 01 Feb 2014 19:58:19 +0200
parents
children
rev   line source
nuclear@0 1 /*
nuclear@0 2 ---------------------------------------------------------------------------
nuclear@0 3 Open Asset Import Library (assimp)
nuclear@0 4 ---------------------------------------------------------------------------
nuclear@0 5
nuclear@0 6 Copyright (c) 2006-2012, assimp team
nuclear@0 7
nuclear@0 8 All rights reserved.
nuclear@0 9
nuclear@0 10 Redistribution and use of this software in source and binary forms,
nuclear@0 11 with or without modification, are permitted provided that the following
nuclear@0 12 conditions are met:
nuclear@0 13
nuclear@0 14 * Redistributions of source code must retain the above
nuclear@0 15 copyright notice, this list of conditions and the
nuclear@0 16 following disclaimer.
nuclear@0 17
nuclear@0 18 * Redistributions in binary form must reproduce the above
nuclear@0 19 copyright notice, this list of conditions and the
nuclear@0 20 following disclaimer in the documentation and/or other
nuclear@0 21 materials provided with the distribution.
nuclear@0 22
nuclear@0 23 * Neither the name of the assimp team, nor the names of its
nuclear@0 24 contributors may be used to endorse or promote products
nuclear@0 25 derived from this software without specific prior
nuclear@0 26 written permission of the assimp team.
nuclear@0 27
nuclear@0 28 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
nuclear@0 29 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
nuclear@0 30 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
nuclear@0 31 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
nuclear@0 32 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
nuclear@0 33 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
nuclear@0 34 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
nuclear@0 35 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
nuclear@0 36 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
nuclear@0 37 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
nuclear@0 38 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
nuclear@0 39 ---------------------------------------------------------------------------
nuclear@0 40 */
nuclear@0 41
nuclear@0 42 /** @file MakeLeftHandedProcess.cpp
nuclear@0 43 * @brief Implementation of the post processing step to convert all
nuclear@0 44 * imported data to a left-handed coordinate system.
nuclear@0 45 *
nuclear@0 46 * Face order & UV flip are also implemented here, for the sake of a
nuclear@0 47 * better location.
nuclear@0 48 */
nuclear@0 49
nuclear@0 50 #include "AssimpPCH.h"
nuclear@0 51 #include "ConvertToLHProcess.h"
nuclear@0 52
nuclear@0 53 using namespace Assimp;
nuclear@0 54
nuclear@0 55 #ifndef ASSIMP_BUILD_NO_MAKELEFTHANDED_PROCESS
nuclear@0 56
nuclear@0 57 // ------------------------------------------------------------------------------------------------
nuclear@0 58 // Constructor to be privately used by Importer
nuclear@0 59 MakeLeftHandedProcess::MakeLeftHandedProcess()
nuclear@0 60 {}
nuclear@0 61
nuclear@0 62 // ------------------------------------------------------------------------------------------------
nuclear@0 63 // Destructor, private as well
nuclear@0 64 MakeLeftHandedProcess::~MakeLeftHandedProcess()
nuclear@0 65 {}
nuclear@0 66
nuclear@0 67 // ------------------------------------------------------------------------------------------------
nuclear@0 68 // Returns whether the processing step is present in the given flag field.
nuclear@0 69 bool MakeLeftHandedProcess::IsActive( unsigned int pFlags) const
nuclear@0 70 {
nuclear@0 71 return 0 != (pFlags & aiProcess_MakeLeftHanded);
nuclear@0 72 }
nuclear@0 73
nuclear@0 74 // ------------------------------------------------------------------------------------------------
nuclear@0 75 // Executes the post processing step on the given imported data.
nuclear@0 76 void MakeLeftHandedProcess::Execute( aiScene* pScene)
nuclear@0 77 {
nuclear@0 78 // Check for an existent root node to proceed
nuclear@0 79 ai_assert(pScene->mRootNode != NULL);
nuclear@0 80 DefaultLogger::get()->debug("MakeLeftHandedProcess begin");
nuclear@0 81
nuclear@0 82 // recursively convert all the nodes
nuclear@0 83 ProcessNode( pScene->mRootNode, aiMatrix4x4());
nuclear@0 84
nuclear@0 85 // process the meshes accordingly
nuclear@0 86 for( unsigned int a = 0; a < pScene->mNumMeshes; ++a)
nuclear@0 87 ProcessMesh( pScene->mMeshes[a]);
nuclear@0 88
nuclear@0 89 // process the materials accordingly
nuclear@0 90 for( unsigned int a = 0; a < pScene->mNumMaterials; ++a)
nuclear@0 91 ProcessMaterial( pScene->mMaterials[a]);
nuclear@0 92
nuclear@0 93 // transform all animation channels as well
nuclear@0 94 for( unsigned int a = 0; a < pScene->mNumAnimations; a++)
nuclear@0 95 {
nuclear@0 96 aiAnimation* anim = pScene->mAnimations[a];
nuclear@0 97 for( unsigned int b = 0; b < anim->mNumChannels; b++)
nuclear@0 98 {
nuclear@0 99 aiNodeAnim* nodeAnim = anim->mChannels[b];
nuclear@0 100 ProcessAnimation( nodeAnim);
nuclear@0 101 }
nuclear@0 102 }
nuclear@0 103 DefaultLogger::get()->debug("MakeLeftHandedProcess finished");
nuclear@0 104 }
nuclear@0 105
nuclear@0 106 // ------------------------------------------------------------------------------------------------
nuclear@0 107 // Recursively converts a node, all of its children and all of its meshes
nuclear@0 108 void MakeLeftHandedProcess::ProcessNode( aiNode* pNode, const aiMatrix4x4& pParentGlobalRotation)
nuclear@0 109 {
nuclear@0 110 // mirror all base vectors at the local Z axis
nuclear@0 111 pNode->mTransformation.c1 = -pNode->mTransformation.c1;
nuclear@0 112 pNode->mTransformation.c2 = -pNode->mTransformation.c2;
nuclear@0 113 pNode->mTransformation.c3 = -pNode->mTransformation.c3;
nuclear@0 114 pNode->mTransformation.c4 = -pNode->mTransformation.c4;
nuclear@0 115
nuclear@0 116 // now invert the Z axis again to keep the matrix determinant positive.
nuclear@0 117 // The local meshes will be inverted accordingly so that the result should look just fine again.
nuclear@0 118 pNode->mTransformation.a3 = -pNode->mTransformation.a3;
nuclear@0 119 pNode->mTransformation.b3 = -pNode->mTransformation.b3;
nuclear@0 120 pNode->mTransformation.c3 = -pNode->mTransformation.c3;
nuclear@0 121 pNode->mTransformation.d3 = -pNode->mTransformation.d3; // useless, but anyways...
nuclear@0 122
nuclear@0 123 // continue for all children
nuclear@0 124 for( size_t a = 0; a < pNode->mNumChildren; ++a)
nuclear@0 125 ProcessNode( pNode->mChildren[a], pParentGlobalRotation * pNode->mTransformation);
nuclear@0 126 }
nuclear@0 127
nuclear@0 128 // ------------------------------------------------------------------------------------------------
nuclear@0 129 // Converts a single mesh to left handed coordinates.
nuclear@0 130 void MakeLeftHandedProcess::ProcessMesh( aiMesh* pMesh)
nuclear@0 131 {
nuclear@0 132 // mirror positions, normals and stuff along the Z axis
nuclear@0 133 for( size_t a = 0; a < pMesh->mNumVertices; ++a)
nuclear@0 134 {
nuclear@0 135 pMesh->mVertices[a].z *= -1.0f;
nuclear@0 136 if( pMesh->HasNormals())
nuclear@0 137 pMesh->mNormals[a].z *= -1.0f;
nuclear@0 138 if( pMesh->HasTangentsAndBitangents())
nuclear@0 139 {
nuclear@0 140 pMesh->mTangents[a].z *= -1.0f;
nuclear@0 141 pMesh->mBitangents[a].z *= -1.0f;
nuclear@0 142 }
nuclear@0 143 }
nuclear@0 144
nuclear@0 145 // mirror offset matrices of all bones
nuclear@0 146 for( size_t a = 0; a < pMesh->mNumBones; ++a)
nuclear@0 147 {
nuclear@0 148 aiBone* bone = pMesh->mBones[a];
nuclear@0 149 bone->mOffsetMatrix.a3 = -bone->mOffsetMatrix.a3;
nuclear@0 150 bone->mOffsetMatrix.b3 = -bone->mOffsetMatrix.b3;
nuclear@0 151 bone->mOffsetMatrix.d3 = -bone->mOffsetMatrix.d3;
nuclear@0 152 bone->mOffsetMatrix.c1 = -bone->mOffsetMatrix.c1;
nuclear@0 153 bone->mOffsetMatrix.c2 = -bone->mOffsetMatrix.c2;
nuclear@0 154 bone->mOffsetMatrix.c4 = -bone->mOffsetMatrix.c4;
nuclear@0 155 }
nuclear@0 156
nuclear@0 157 // mirror bitangents as well as they're derived from the texture coords
nuclear@0 158 if( pMesh->HasTangentsAndBitangents())
nuclear@0 159 {
nuclear@0 160 for( unsigned int a = 0; a < pMesh->mNumVertices; a++)
nuclear@0 161 pMesh->mBitangents[a] *= -1.0f;
nuclear@0 162 }
nuclear@0 163 }
nuclear@0 164
nuclear@0 165 // ------------------------------------------------------------------------------------------------
nuclear@0 166 // Converts a single material to left handed coordinates.
nuclear@0 167 void MakeLeftHandedProcess::ProcessMaterial( aiMaterial* _mat)
nuclear@0 168 {
nuclear@0 169 aiMaterial* mat = (aiMaterial*)_mat;
nuclear@0 170 for (unsigned int a = 0; a < mat->mNumProperties;++a) {
nuclear@0 171 aiMaterialProperty* prop = mat->mProperties[a];
nuclear@0 172
nuclear@0 173 // Mapping axis for UV mappings?
nuclear@0 174 if (!::strcmp( prop->mKey.data, "$tex.mapaxis")) {
nuclear@0 175 ai_assert( prop->mDataLength >= sizeof(aiVector3D)); /* something is wrong with the validation if we end up here */
nuclear@0 176 aiVector3D* pff = (aiVector3D*)prop->mData;
nuclear@0 177
nuclear@0 178 pff->z *= -1.f;
nuclear@0 179 }
nuclear@0 180 }
nuclear@0 181 }
nuclear@0 182
nuclear@0 183 // ------------------------------------------------------------------------------------------------
nuclear@0 184 // Converts the given animation to LH coordinates.
nuclear@0 185 void MakeLeftHandedProcess::ProcessAnimation( aiNodeAnim* pAnim)
nuclear@0 186 {
nuclear@0 187 // position keys
nuclear@0 188 for( unsigned int a = 0; a < pAnim->mNumPositionKeys; a++)
nuclear@0 189 pAnim->mPositionKeys[a].mValue.z *= -1.0f;
nuclear@0 190
nuclear@0 191 // rotation keys
nuclear@0 192 for( unsigned int a = 0; a < pAnim->mNumRotationKeys; a++)
nuclear@0 193 {
nuclear@0 194 /* That's the safe version, but the float errors add up. So we try the short version instead
nuclear@0 195 aiMatrix3x3 rotmat = pAnim->mRotationKeys[a].mValue.GetMatrix();
nuclear@0 196 rotmat.a3 = -rotmat.a3; rotmat.b3 = -rotmat.b3;
nuclear@0 197 rotmat.c1 = -rotmat.c1; rotmat.c2 = -rotmat.c2;
nuclear@0 198 aiQuaternion rotquat( rotmat);
nuclear@0 199 pAnim->mRotationKeys[a].mValue = rotquat;
nuclear@0 200 */
nuclear@0 201 pAnim->mRotationKeys[a].mValue.x *= -1.0f;
nuclear@0 202 pAnim->mRotationKeys[a].mValue.y *= -1.0f;
nuclear@0 203 }
nuclear@0 204 }
nuclear@0 205
nuclear@0 206 #endif // !! ASSIMP_BUILD_NO_MAKELEFTHANDED_PROCESS
nuclear@0 207 #ifndef ASSIMP_BUILD_NO_FLIPUVS_PROCESS
nuclear@0 208 // # FlipUVsProcess
nuclear@0 209
nuclear@0 210 // ------------------------------------------------------------------------------------------------
nuclear@0 211 // Constructor to be privately used by Importer
nuclear@0 212 FlipUVsProcess::FlipUVsProcess()
nuclear@0 213 {}
nuclear@0 214
nuclear@0 215 // ------------------------------------------------------------------------------------------------
nuclear@0 216 // Destructor, private as well
nuclear@0 217 FlipUVsProcess::~FlipUVsProcess()
nuclear@0 218 {}
nuclear@0 219
nuclear@0 220 // ------------------------------------------------------------------------------------------------
nuclear@0 221 // Returns whether the processing step is present in the given flag field.
nuclear@0 222 bool FlipUVsProcess::IsActive( unsigned int pFlags) const
nuclear@0 223 {
nuclear@0 224 return 0 != (pFlags & aiProcess_FlipUVs);
nuclear@0 225 }
nuclear@0 226
nuclear@0 227 // ------------------------------------------------------------------------------------------------
nuclear@0 228 // Executes the post processing step on the given imported data.
nuclear@0 229 void FlipUVsProcess::Execute( aiScene* pScene)
nuclear@0 230 {
nuclear@0 231 DefaultLogger::get()->debug("FlipUVsProcess begin");
nuclear@0 232 for (unsigned int i = 0; i < pScene->mNumMeshes;++i)
nuclear@0 233 ProcessMesh(pScene->mMeshes[i]);
nuclear@0 234
nuclear@0 235 for (unsigned int i = 0; i < pScene->mNumMaterials;++i)
nuclear@0 236 ProcessMaterial(pScene->mMaterials[i]);
nuclear@0 237 DefaultLogger::get()->debug("FlipUVsProcess finished");
nuclear@0 238 }
nuclear@0 239
nuclear@0 240 // ------------------------------------------------------------------------------------------------
nuclear@0 241 // Converts a single material
nuclear@0 242 void FlipUVsProcess::ProcessMaterial (aiMaterial* _mat)
nuclear@0 243 {
nuclear@0 244 aiMaterial* mat = (aiMaterial*)_mat;
nuclear@0 245 for (unsigned int a = 0; a < mat->mNumProperties;++a) {
nuclear@0 246 aiMaterialProperty* prop = mat->mProperties[a];
nuclear@0 247
nuclear@0 248 // UV transformation key?
nuclear@0 249 if (!::strcmp( prop->mKey.data, "$tex.uvtrafo")) {
nuclear@0 250 ai_assert( prop->mDataLength >= sizeof(aiUVTransform)); /* something is wrong with the validation if we end up here */
nuclear@0 251 aiUVTransform* uv = (aiUVTransform*)prop->mData;
nuclear@0 252
nuclear@0 253 // just flip it, that's everything
nuclear@0 254 uv->mTranslation.y *= -1.f;
nuclear@0 255 uv->mRotation *= -1.f;
nuclear@0 256 }
nuclear@0 257 }
nuclear@0 258 }
nuclear@0 259
nuclear@0 260 // ------------------------------------------------------------------------------------------------
nuclear@0 261 // Converts a single mesh
nuclear@0 262 void FlipUVsProcess::ProcessMesh( aiMesh* pMesh)
nuclear@0 263 {
nuclear@0 264 // mirror texture y coordinate
nuclear@0 265 for( unsigned int a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; a++) {
nuclear@0 266 if( !pMesh->HasTextureCoords( a))
nuclear@0 267 break;
nuclear@0 268
nuclear@0 269 for( unsigned int b = 0; b < pMesh->mNumVertices; b++)
nuclear@0 270 pMesh->mTextureCoords[a][b].y = 1.0f - pMesh->mTextureCoords[a][b].y;
nuclear@0 271 }
nuclear@0 272 }
nuclear@0 273
nuclear@0 274 #endif // !ASSIMP_BUILD_NO_FLIPUVS_PROCESS
nuclear@0 275 #ifndef ASSIMP_BUILD_NO_FLIPWINDING_PROCESS
nuclear@0 276 // # FlipWindingOrderProcess
nuclear@0 277
nuclear@0 278 // ------------------------------------------------------------------------------------------------
nuclear@0 279 // Constructor to be privately used by Importer
nuclear@0 280 FlipWindingOrderProcess::FlipWindingOrderProcess()
nuclear@0 281 {}
nuclear@0 282
nuclear@0 283 // ------------------------------------------------------------------------------------------------
nuclear@0 284 // Destructor, private as well
nuclear@0 285 FlipWindingOrderProcess::~FlipWindingOrderProcess()
nuclear@0 286 {}
nuclear@0 287
nuclear@0 288 // ------------------------------------------------------------------------------------------------
nuclear@0 289 // Returns whether the processing step is present in the given flag field.
nuclear@0 290 bool FlipWindingOrderProcess::IsActive( unsigned int pFlags) const
nuclear@0 291 {
nuclear@0 292 return 0 != (pFlags & aiProcess_FlipWindingOrder);
nuclear@0 293 }
nuclear@0 294
nuclear@0 295 // ------------------------------------------------------------------------------------------------
nuclear@0 296 // Executes the post processing step on the given imported data.
nuclear@0 297 void FlipWindingOrderProcess::Execute( aiScene* pScene)
nuclear@0 298 {
nuclear@0 299 DefaultLogger::get()->debug("FlipWindingOrderProcess begin");
nuclear@0 300 for (unsigned int i = 0; i < pScene->mNumMeshes;++i)
nuclear@0 301 ProcessMesh(pScene->mMeshes[i]);
nuclear@0 302 DefaultLogger::get()->debug("FlipWindingOrderProcess finished");
nuclear@0 303 }
nuclear@0 304
nuclear@0 305 // ------------------------------------------------------------------------------------------------
nuclear@0 306 // Converts a single mesh
nuclear@0 307 void FlipWindingOrderProcess::ProcessMesh( aiMesh* pMesh)
nuclear@0 308 {
nuclear@0 309 // invert the order of all faces in this mesh
nuclear@0 310 for( unsigned int a = 0; a < pMesh->mNumFaces; a++)
nuclear@0 311 {
nuclear@0 312 aiFace& face = pMesh->mFaces[a];
nuclear@0 313 for( unsigned int b = 0; b < face.mNumIndices / 2; b++)
nuclear@0 314 std::swap( face.mIndices[b], face.mIndices[ face.mNumIndices - 1 - b]);
nuclear@0 315 }
nuclear@0 316 }
nuclear@0 317
nuclear@0 318 #endif // !! ASSIMP_BUILD_NO_FLIPWINDING_PROCESS