vrshoot

annotate libs/assimp/ComputeUVMappingProcess.cpp @ 0:b2f14e535253

initial commit
author John Tsiombikas <nuclear@member.fsf.org>
date Sat, 01 Feb 2014 19:58:19 +0200
parents
children
rev   line source
nuclear@0 1 /*
nuclear@0 2 Open Asset Import Library (assimp)
nuclear@0 3 ----------------------------------------------------------------------
nuclear@0 4
nuclear@0 5 Copyright (c) 2006-2012, assimp team
nuclear@0 6 All rights reserved.
nuclear@0 7
nuclear@0 8 Redistribution and use of this software in source and binary forms,
nuclear@0 9 with or without modification, are permitted provided that the
nuclear@0 10 following conditions are met:
nuclear@0 11
nuclear@0 12 * Redistributions of source code must retain the above
nuclear@0 13 copyright notice, this list of conditions and the
nuclear@0 14 following disclaimer.
nuclear@0 15
nuclear@0 16 * Redistributions in binary form must reproduce the above
nuclear@0 17 copyright notice, this list of conditions and the
nuclear@0 18 following disclaimer in the documentation and/or other
nuclear@0 19 materials provided with the distribution.
nuclear@0 20
nuclear@0 21 * Neither the name of the assimp team, nor the names of its
nuclear@0 22 contributors may be used to endorse or promote products
nuclear@0 23 derived from this software without specific prior
nuclear@0 24 written permission of the assimp team.
nuclear@0 25
nuclear@0 26 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
nuclear@0 27 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
nuclear@0 28 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
nuclear@0 29 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
nuclear@0 30 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
nuclear@0 31 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
nuclear@0 32 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
nuclear@0 33 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
nuclear@0 34 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
nuclear@0 35 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
nuclear@0 36 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
nuclear@0 37
nuclear@0 38 ----------------------------------------------------------------------
nuclear@0 39 */
nuclear@0 40
nuclear@0 41 /** @file GenUVCoords step */
nuclear@0 42
nuclear@0 43
nuclear@0 44 #include "AssimpPCH.h"
nuclear@0 45 #include "ComputeUVMappingProcess.h"
nuclear@0 46 #include "ProcessHelper.h"
nuclear@0 47
nuclear@0 48 using namespace Assimp;
nuclear@0 49
nuclear@0 50 namespace {
nuclear@0 51
nuclear@0 52 const static aiVector3D base_axis_y(0.f,1.f,0.f);
nuclear@0 53 const static aiVector3D base_axis_x(1.f,0.f,0.f);
nuclear@0 54 const static aiVector3D base_axis_z(0.f,0.f,1.f);
nuclear@0 55 const static float angle_epsilon = 0.95f;
nuclear@0 56 }
nuclear@0 57
nuclear@0 58 // ------------------------------------------------------------------------------------------------
nuclear@0 59 // Constructor to be privately used by Importer
nuclear@0 60 ComputeUVMappingProcess::ComputeUVMappingProcess()
nuclear@0 61 {
nuclear@0 62 // nothing to do here
nuclear@0 63 }
nuclear@0 64
nuclear@0 65 // ------------------------------------------------------------------------------------------------
nuclear@0 66 // Destructor, private as well
nuclear@0 67 ComputeUVMappingProcess::~ComputeUVMappingProcess()
nuclear@0 68 {
nuclear@0 69 // nothing to do here
nuclear@0 70 }
nuclear@0 71
nuclear@0 72 // ------------------------------------------------------------------------------------------------
nuclear@0 73 // Returns whether the processing step is present in the given flag field.
nuclear@0 74 bool ComputeUVMappingProcess::IsActive( unsigned int pFlags) const
nuclear@0 75 {
nuclear@0 76 return (pFlags & aiProcess_GenUVCoords) != 0;
nuclear@0 77 }
nuclear@0 78
nuclear@0 79 // ------------------------------------------------------------------------------------------------
nuclear@0 80 // Check whether a ray intersects a plane and find the intersection point
nuclear@0 81 inline bool PlaneIntersect(const aiRay& ray, const aiVector3D& planePos,
nuclear@0 82 const aiVector3D& planeNormal, aiVector3D& pos)
nuclear@0 83 {
nuclear@0 84 const float b = planeNormal * (planePos - ray.pos);
nuclear@0 85 float h = ray.dir * planeNormal;
nuclear@0 86 if ((h < 10e-5f && h > -10e-5f) || (h = b/h) < 0)
nuclear@0 87 return false;
nuclear@0 88
nuclear@0 89 pos = ray.pos + (ray.dir * h);
nuclear@0 90 return true;
nuclear@0 91 }
nuclear@0 92
nuclear@0 93 // ------------------------------------------------------------------------------------------------
nuclear@0 94 // Find the first empty UV channel in a mesh
nuclear@0 95 inline unsigned int FindEmptyUVChannel (aiMesh* mesh)
nuclear@0 96 {
nuclear@0 97 for (unsigned int m = 0; m < AI_MAX_NUMBER_OF_TEXTURECOORDS;++m)
nuclear@0 98 if (!mesh->mTextureCoords[m])return m;
nuclear@0 99
nuclear@0 100 DefaultLogger::get()->error("Unable to compute UV coordinates, no free UV slot found");
nuclear@0 101 return UINT_MAX;
nuclear@0 102 }
nuclear@0 103
nuclear@0 104 // ------------------------------------------------------------------------------------------------
nuclear@0 105 // Try to remove UV seams
nuclear@0 106 void RemoveUVSeams (aiMesh* mesh, aiVector3D* out)
nuclear@0 107 {
nuclear@0 108 // TODO: just a very rough algorithm. I think it could be done
nuclear@0 109 // much easier, but I don't know how and am currently too tired to
nuclear@0 110 // to think about a better solution.
nuclear@0 111
nuclear@0 112 const static float LOWER_LIMIT = 0.1f;
nuclear@0 113 const static float UPPER_LIMIT = 0.9f;
nuclear@0 114
nuclear@0 115 const static float LOWER_EPSILON = 10e-3f;
nuclear@0 116 const static float UPPER_EPSILON = 1.f-10e-3f;
nuclear@0 117
nuclear@0 118 for (unsigned int fidx = 0; fidx < mesh->mNumFaces;++fidx)
nuclear@0 119 {
nuclear@0 120 const aiFace& face = mesh->mFaces[fidx];
nuclear@0 121 if (face.mNumIndices < 3) continue; // triangles and polygons only, please
nuclear@0 122
nuclear@0 123 unsigned int small = face.mNumIndices, large = small;
nuclear@0 124 bool zero = false, one = false, round_to_zero = false;
nuclear@0 125
nuclear@0 126 // Check whether this face lies on a UV seam. We can just guess,
nuclear@0 127 // but the assumption that a face with at least one very small
nuclear@0 128 // on the one side and one very large U coord on the other side
nuclear@0 129 // lies on a UV seam should work for most cases.
nuclear@0 130 for (unsigned int n = 0; n < face.mNumIndices;++n)
nuclear@0 131 {
nuclear@0 132 if (out[face.mIndices[n]].x < LOWER_LIMIT)
nuclear@0 133 {
nuclear@0 134 small = n;
nuclear@0 135
nuclear@0 136 // If we have a U value very close to 0 we can't
nuclear@0 137 // round the others to 0, too.
nuclear@0 138 if (out[face.mIndices[n]].x <= LOWER_EPSILON)
nuclear@0 139 zero = true;
nuclear@0 140 else round_to_zero = true;
nuclear@0 141 }
nuclear@0 142 if (out[face.mIndices[n]].x > UPPER_LIMIT)
nuclear@0 143 {
nuclear@0 144 large = n;
nuclear@0 145
nuclear@0 146 // If we have a U value very close to 1 we can't
nuclear@0 147 // round the others to 1, too.
nuclear@0 148 if (out[face.mIndices[n]].x >= UPPER_EPSILON)
nuclear@0 149 one = true;
nuclear@0 150 }
nuclear@0 151 }
nuclear@0 152 if (small != face.mNumIndices && large != face.mNumIndices)
nuclear@0 153 {
nuclear@0 154 for (unsigned int n = 0; n < face.mNumIndices;++n)
nuclear@0 155 {
nuclear@0 156 // If the u value is over the upper limit and no other u
nuclear@0 157 // value of that face is 0, round it to 0
nuclear@0 158 if (out[face.mIndices[n]].x > UPPER_LIMIT && !zero)
nuclear@0 159 out[face.mIndices[n]].x = 0.f;
nuclear@0 160
nuclear@0 161 // If the u value is below the lower limit and no other u
nuclear@0 162 // value of that face is 1, round it to 1
nuclear@0 163 else if (out[face.mIndices[n]].x < LOWER_LIMIT && !one)
nuclear@0 164 out[face.mIndices[n]].x = 1.f;
nuclear@0 165
nuclear@0 166 // The face contains both 0 and 1 as UV coords. This can occur
nuclear@0 167 // for faces which have an edge that lies directly on the seam.
nuclear@0 168 // Due to numerical inaccuracies one U coord becomes 0, the
nuclear@0 169 // other 1. But we do still have a third UV coord to determine
nuclear@0 170 // to which side we must round to.
nuclear@0 171 else if (one && zero)
nuclear@0 172 {
nuclear@0 173 if (round_to_zero && out[face.mIndices[n]].x >= UPPER_EPSILON)
nuclear@0 174 out[face.mIndices[n]].x = 0.f;
nuclear@0 175 else if (!round_to_zero && out[face.mIndices[n]].x <= LOWER_EPSILON)
nuclear@0 176 out[face.mIndices[n]].x = 1.f;
nuclear@0 177 }
nuclear@0 178 }
nuclear@0 179 }
nuclear@0 180 }
nuclear@0 181 }
nuclear@0 182
nuclear@0 183 // ------------------------------------------------------------------------------------------------
nuclear@0 184 void ComputeUVMappingProcess::ComputeSphereMapping(aiMesh* mesh,const aiVector3D& axis, aiVector3D* out)
nuclear@0 185 {
nuclear@0 186 aiVector3D center, min, max;
nuclear@0 187 FindMeshCenter(mesh, center, min, max);
nuclear@0 188
nuclear@0 189 // If the axis is one of x,y,z run a faster code path. It's worth the extra effort ...
nuclear@0 190 // currently the mapping axis will always be one of x,y,z, except if the
nuclear@0 191 // PretransformVertices step is used (it transforms the meshes into worldspace,
nuclear@0 192 // thus changing the mapping axis)
nuclear@0 193 if (axis * base_axis_x >= angle_epsilon) {
nuclear@0 194
nuclear@0 195 // For each point get a normalized projection vector in the sphere,
nuclear@0 196 // get its longitude and latitude and map them to their respective
nuclear@0 197 // UV axes. Problems occur around the poles ... unsolvable.
nuclear@0 198 //
nuclear@0 199 // The spherical coordinate system looks like this:
nuclear@0 200 // x = cos(lon)*cos(lat)
nuclear@0 201 // y = sin(lon)*cos(lat)
nuclear@0 202 // z = sin(lat)
nuclear@0 203 //
nuclear@0 204 // Thus we can derive:
nuclear@0 205 // lat = arcsin (z)
nuclear@0 206 // lon = arctan (y/x)
nuclear@0 207 for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
nuclear@0 208 const aiVector3D diff = (mesh->mVertices[pnt]-center).Normalize();
nuclear@0 209 out[pnt] = aiVector3D((atan2 (diff.z, diff.y) + AI_MATH_PI_F ) / AI_MATH_TWO_PI_F,
nuclear@0 210 (asin (diff.x) + AI_MATH_HALF_PI_F) / AI_MATH_PI_F, 0.f);
nuclear@0 211 }
nuclear@0 212 }
nuclear@0 213 else if (axis * base_axis_y >= angle_epsilon) {
nuclear@0 214 // ... just the same again
nuclear@0 215 for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
nuclear@0 216 const aiVector3D diff = (mesh->mVertices[pnt]-center).Normalize();
nuclear@0 217 out[pnt] = aiVector3D((atan2 (diff.x, diff.z) + AI_MATH_PI_F ) / AI_MATH_TWO_PI_F,
nuclear@0 218 (asin (diff.y) + AI_MATH_HALF_PI_F) / AI_MATH_PI_F, 0.f);
nuclear@0 219 }
nuclear@0 220 }
nuclear@0 221 else if (axis * base_axis_z >= angle_epsilon) {
nuclear@0 222 // ... just the same again
nuclear@0 223 for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
nuclear@0 224 const aiVector3D diff = (mesh->mVertices[pnt]-center).Normalize();
nuclear@0 225 out[pnt] = aiVector3D((atan2 (diff.y, diff.x) + AI_MATH_PI_F ) / AI_MATH_TWO_PI_F,
nuclear@0 226 (asin (diff.z) + AI_MATH_HALF_PI_F) / AI_MATH_PI_F, 0.f);
nuclear@0 227 }
nuclear@0 228 }
nuclear@0 229 // slower code path in case the mapping axis is not one of the coordinate system axes
nuclear@0 230 else {
nuclear@0 231 aiMatrix4x4 mTrafo;
nuclear@0 232 aiMatrix4x4::FromToMatrix(axis,base_axis_y,mTrafo);
nuclear@0 233
nuclear@0 234 // again the same, except we're applying a transformation now
nuclear@0 235 for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
nuclear@0 236 const aiVector3D diff = ((mTrafo*mesh->mVertices[pnt])-center).Normalize();
nuclear@0 237 out[pnt] = aiVector3D((atan2 (diff.y, diff.x) + AI_MATH_PI_F ) / AI_MATH_TWO_PI_F,
nuclear@0 238 (asin (diff.z) + AI_MATH_HALF_PI_F) / AI_MATH_PI_F, 0.f);
nuclear@0 239 }
nuclear@0 240 }
nuclear@0 241
nuclear@0 242
nuclear@0 243 // Now find and remove UV seams. A seam occurs if a face has a tcoord
nuclear@0 244 // close to zero on the one side, and a tcoord close to one on the
nuclear@0 245 // other side.
nuclear@0 246 RemoveUVSeams(mesh,out);
nuclear@0 247 }
nuclear@0 248
nuclear@0 249 // ------------------------------------------------------------------------------------------------
nuclear@0 250 void ComputeUVMappingProcess::ComputeCylinderMapping(aiMesh* mesh,const aiVector3D& axis, aiVector3D* out)
nuclear@0 251 {
nuclear@0 252 aiVector3D center, min, max;
nuclear@0 253
nuclear@0 254 // If the axis is one of x,y,z run a faster code path. It's worth the extra effort ...
nuclear@0 255 // currently the mapping axis will always be one of x,y,z, except if the
nuclear@0 256 // PretransformVertices step is used (it transforms the meshes into worldspace,
nuclear@0 257 // thus changing the mapping axis)
nuclear@0 258 if (axis * base_axis_x >= angle_epsilon) {
nuclear@0 259 FindMeshCenter(mesh, center, min, max);
nuclear@0 260 const float diff = max.x - min.x;
nuclear@0 261
nuclear@0 262 // If the main axis is 'z', the z coordinate of a point 'p' is mapped
nuclear@0 263 // directly to the texture V axis. The other axis is derived from
nuclear@0 264 // the angle between ( p.x - c.x, p.y - c.y ) and (1,0), where
nuclear@0 265 // 'c' is the center point of the mesh.
nuclear@0 266 for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
nuclear@0 267 const aiVector3D& pos = mesh->mVertices[pnt];
nuclear@0 268 aiVector3D& uv = out[pnt];
nuclear@0 269
nuclear@0 270 uv.y = (pos.x - min.x) / diff;
nuclear@0 271 uv.x = (atan2 ( pos.z - center.z, pos.y - center.y) +(float)AI_MATH_PI ) / (float)AI_MATH_TWO_PI;
nuclear@0 272 }
nuclear@0 273 }
nuclear@0 274 else if (axis * base_axis_y >= angle_epsilon) {
nuclear@0 275 FindMeshCenter(mesh, center, min, max);
nuclear@0 276 const float diff = max.y - min.y;
nuclear@0 277
nuclear@0 278 // just the same ...
nuclear@0 279 for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
nuclear@0 280 const aiVector3D& pos = mesh->mVertices[pnt];
nuclear@0 281 aiVector3D& uv = out[pnt];
nuclear@0 282
nuclear@0 283 uv.y = (pos.y - min.y) / diff;
nuclear@0 284 uv.x = (atan2 ( pos.x - center.x, pos.z - center.z) +(float)AI_MATH_PI ) / (float)AI_MATH_TWO_PI;
nuclear@0 285 }
nuclear@0 286 }
nuclear@0 287 else if (axis * base_axis_z >= angle_epsilon) {
nuclear@0 288 FindMeshCenter(mesh, center, min, max);
nuclear@0 289 const float diff = max.z - min.z;
nuclear@0 290
nuclear@0 291 // just the same ...
nuclear@0 292 for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
nuclear@0 293 const aiVector3D& pos = mesh->mVertices[pnt];
nuclear@0 294 aiVector3D& uv = out[pnt];
nuclear@0 295
nuclear@0 296 uv.y = (pos.z - min.z) / diff;
nuclear@0 297 uv.x = (atan2 ( pos.y - center.y, pos.x - center.x) +(float)AI_MATH_PI ) / (float)AI_MATH_TWO_PI;
nuclear@0 298 }
nuclear@0 299 }
nuclear@0 300 // slower code path in case the mapping axis is not one of the coordinate system axes
nuclear@0 301 else {
nuclear@0 302 aiMatrix4x4 mTrafo;
nuclear@0 303 aiMatrix4x4::FromToMatrix(axis,base_axis_y,mTrafo);
nuclear@0 304 FindMeshCenterTransformed(mesh, center, min, max,mTrafo);
nuclear@0 305 const float diff = max.y - min.y;
nuclear@0 306
nuclear@0 307 // again the same, except we're applying a transformation now
nuclear@0 308 for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt){
nuclear@0 309 const aiVector3D pos = mTrafo* mesh->mVertices[pnt];
nuclear@0 310 aiVector3D& uv = out[pnt];
nuclear@0 311
nuclear@0 312 uv.y = (pos.y - min.y) / diff;
nuclear@0 313 uv.x = (atan2 ( pos.x - center.x, pos.z - center.z) +(float)AI_MATH_PI ) / (float)AI_MATH_TWO_PI;
nuclear@0 314 }
nuclear@0 315 }
nuclear@0 316
nuclear@0 317 // Now find and remove UV seams. A seam occurs if a face has a tcoord
nuclear@0 318 // close to zero on the one side, and a tcoord close to one on the
nuclear@0 319 // other side.
nuclear@0 320 RemoveUVSeams(mesh,out);
nuclear@0 321 }
nuclear@0 322
nuclear@0 323 // ------------------------------------------------------------------------------------------------
nuclear@0 324 void ComputeUVMappingProcess::ComputePlaneMapping(aiMesh* mesh,const aiVector3D& axis, aiVector3D* out)
nuclear@0 325 {
nuclear@0 326 float diffu,diffv;
nuclear@0 327 aiVector3D center, min, max;
nuclear@0 328
nuclear@0 329 // If the axis is one of x,y,z run a faster code path. It's worth the extra effort ...
nuclear@0 330 // currently the mapping axis will always be one of x,y,z, except if the
nuclear@0 331 // PretransformVertices step is used (it transforms the meshes into worldspace,
nuclear@0 332 // thus changing the mapping axis)
nuclear@0 333 if (axis * base_axis_x >= angle_epsilon) {
nuclear@0 334 FindMeshCenter(mesh, center, min, max);
nuclear@0 335 diffu = max.z - min.z;
nuclear@0 336 diffv = max.y - min.y;
nuclear@0 337
nuclear@0 338 for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
nuclear@0 339 const aiVector3D& pos = mesh->mVertices[pnt];
nuclear@0 340 out[pnt].Set((pos.z - min.z) / diffu,(pos.y - min.y) / diffv,0.f);
nuclear@0 341 }
nuclear@0 342 }
nuclear@0 343 else if (axis * base_axis_y >= angle_epsilon) {
nuclear@0 344 FindMeshCenter(mesh, center, min, max);
nuclear@0 345 diffu = max.x - min.x;
nuclear@0 346 diffv = max.z - min.z;
nuclear@0 347
nuclear@0 348 for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
nuclear@0 349 const aiVector3D& pos = mesh->mVertices[pnt];
nuclear@0 350 out[pnt].Set((pos.x - min.x) / diffu,(pos.z - min.z) / diffv,0.f);
nuclear@0 351 }
nuclear@0 352 }
nuclear@0 353 else if (axis * base_axis_z >= angle_epsilon) {
nuclear@0 354 FindMeshCenter(mesh, center, min, max);
nuclear@0 355 diffu = max.y - min.y;
nuclear@0 356 diffv = max.z - min.z;
nuclear@0 357
nuclear@0 358 for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
nuclear@0 359 const aiVector3D& pos = mesh->mVertices[pnt];
nuclear@0 360 out[pnt].Set((pos.y - min.y) / diffu,(pos.x - min.x) / diffv,0.f);
nuclear@0 361 }
nuclear@0 362 }
nuclear@0 363 // slower code path in case the mapping axis is not one of the coordinate system axes
nuclear@0 364 else
nuclear@0 365 {
nuclear@0 366 aiMatrix4x4 mTrafo;
nuclear@0 367 aiMatrix4x4::FromToMatrix(axis,base_axis_y,mTrafo);
nuclear@0 368 FindMeshCenterTransformed(mesh, center, min, max,mTrafo);
nuclear@0 369 diffu = max.x - min.x;
nuclear@0 370 diffv = max.z - min.z;
nuclear@0 371
nuclear@0 372 // again the same, except we're applying a transformation now
nuclear@0 373 for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
nuclear@0 374 const aiVector3D pos = mTrafo * mesh->mVertices[pnt];
nuclear@0 375 out[pnt].Set((pos.x - min.x) / diffu,(pos.z - min.z) / diffv,0.f);
nuclear@0 376 }
nuclear@0 377 }
nuclear@0 378
nuclear@0 379 // shouldn't be necessary to remove UV seams ...
nuclear@0 380 }
nuclear@0 381
nuclear@0 382 // ------------------------------------------------------------------------------------------------
nuclear@0 383 void ComputeUVMappingProcess::ComputeBoxMapping(aiMesh* /*mesh*/, aiVector3D* /*out*/)
nuclear@0 384 {
nuclear@0 385 DefaultLogger::get()->error("Mapping type currently not implemented");
nuclear@0 386 }
nuclear@0 387
nuclear@0 388 // ------------------------------------------------------------------------------------------------
nuclear@0 389 void ComputeUVMappingProcess::Execute( aiScene* pScene)
nuclear@0 390 {
nuclear@0 391 DefaultLogger::get()->debug("GenUVCoordsProcess begin");
nuclear@0 392 char buffer[1024];
nuclear@0 393
nuclear@0 394 if (pScene->mFlags & AI_SCENE_FLAGS_NON_VERBOSE_FORMAT)
nuclear@0 395 throw DeadlyImportError("Post-processing order mismatch: expecting pseudo-indexed (\"verbose\") vertices here");
nuclear@0 396
nuclear@0 397 std::list<MappingInfo> mappingStack;
nuclear@0 398
nuclear@0 399 /* Iterate through all materials and search for non-UV mapped textures
nuclear@0 400 */
nuclear@0 401 for (unsigned int i = 0; i < pScene->mNumMaterials;++i)
nuclear@0 402 {
nuclear@0 403 mappingStack.clear();
nuclear@0 404 aiMaterial* mat = pScene->mMaterials[i];
nuclear@0 405 for (unsigned int a = 0; a < mat->mNumProperties;++a)
nuclear@0 406 {
nuclear@0 407 aiMaterialProperty* prop = mat->mProperties[a];
nuclear@0 408 if (!::strcmp( prop->mKey.data, "$tex.mapping"))
nuclear@0 409 {
nuclear@0 410 aiTextureMapping& mapping = *((aiTextureMapping*)prop->mData);
nuclear@0 411 if (aiTextureMapping_UV != mapping)
nuclear@0 412 {
nuclear@0 413 if (!DefaultLogger::isNullLogger())
nuclear@0 414 {
nuclear@0 415 sprintf(buffer, "Found non-UV mapped texture (%s,%i). Mapping type: %s",
nuclear@0 416 TextureTypeToString((aiTextureType)prop->mSemantic),prop->mIndex,
nuclear@0 417 MappingTypeToString(mapping));
nuclear@0 418
nuclear@0 419 DefaultLogger::get()->info(buffer);
nuclear@0 420 }
nuclear@0 421
nuclear@0 422 if (aiTextureMapping_OTHER == mapping)
nuclear@0 423 continue;
nuclear@0 424
nuclear@0 425 MappingInfo info (mapping);
nuclear@0 426
nuclear@0 427 // Get further properties - currently only the major axis
nuclear@0 428 for (unsigned int a2 = 0; a2 < mat->mNumProperties;++a2)
nuclear@0 429 {
nuclear@0 430 aiMaterialProperty* prop2 = mat->mProperties[a2];
nuclear@0 431 if (prop2->mSemantic != prop->mSemantic || prop2->mIndex != prop->mIndex)
nuclear@0 432 continue;
nuclear@0 433
nuclear@0 434 if ( !::strcmp( prop2->mKey.data, "$tex.mapaxis")) {
nuclear@0 435 info.axis = *((aiVector3D*)prop2->mData);
nuclear@0 436 break;
nuclear@0 437 }
nuclear@0 438 }
nuclear@0 439
nuclear@0 440 unsigned int idx;
nuclear@0 441
nuclear@0 442 // Check whether we have this mapping mode already
nuclear@0 443 std::list<MappingInfo>::iterator it = std::find (mappingStack.begin(),mappingStack.end(), info);
nuclear@0 444 if (mappingStack.end() != it)
nuclear@0 445 {
nuclear@0 446 idx = (*it).uv;
nuclear@0 447 }
nuclear@0 448 else
nuclear@0 449 {
nuclear@0 450 /* We have found a non-UV mapped texture. Now
nuclear@0 451 * we need to find all meshes using this material
nuclear@0 452 * that we can compute UV channels for them.
nuclear@0 453 */
nuclear@0 454 for (unsigned int m = 0; m < pScene->mNumMeshes;++m)
nuclear@0 455 {
nuclear@0 456 aiMesh* mesh = pScene->mMeshes[m];
nuclear@0 457 unsigned int outIdx;
nuclear@0 458 if ( mesh->mMaterialIndex != i || ( outIdx = FindEmptyUVChannel(mesh) ) == UINT_MAX ||
nuclear@0 459 !mesh->mNumVertices)
nuclear@0 460 {
nuclear@0 461 continue;
nuclear@0 462 }
nuclear@0 463
nuclear@0 464 // Allocate output storage
nuclear@0 465 aiVector3D* p = mesh->mTextureCoords[outIdx] = new aiVector3D[mesh->mNumVertices];
nuclear@0 466
nuclear@0 467 switch (mapping)
nuclear@0 468 {
nuclear@0 469 case aiTextureMapping_SPHERE:
nuclear@0 470 ComputeSphereMapping(mesh,info.axis,p);
nuclear@0 471 break;
nuclear@0 472 case aiTextureMapping_CYLINDER:
nuclear@0 473 ComputeCylinderMapping(mesh,info.axis,p);
nuclear@0 474 break;
nuclear@0 475 case aiTextureMapping_PLANE:
nuclear@0 476 ComputePlaneMapping(mesh,info.axis,p);
nuclear@0 477 break;
nuclear@0 478 case aiTextureMapping_BOX:
nuclear@0 479 ComputeBoxMapping(mesh,p);
nuclear@0 480 break;
nuclear@0 481 default:
nuclear@0 482 ai_assert(false);
nuclear@0 483 }
nuclear@0 484 if (m && idx != outIdx)
nuclear@0 485 {
nuclear@0 486 DefaultLogger::get()->warn("UV index mismatch. Not all meshes assigned to "
nuclear@0 487 "this material have equal numbers of UV channels. The UV index stored in "
nuclear@0 488 "the material structure does therefore not apply for all meshes. ");
nuclear@0 489 }
nuclear@0 490 idx = outIdx;
nuclear@0 491 }
nuclear@0 492 info.uv = idx;
nuclear@0 493 mappingStack.push_back(info);
nuclear@0 494 }
nuclear@0 495
nuclear@0 496 // Update the material property list
nuclear@0 497 mapping = aiTextureMapping_UV;
nuclear@0 498 ((aiMaterial*)mat)->AddProperty(&idx,1,AI_MATKEY_UVWSRC(prop->mSemantic,prop->mIndex));
nuclear@0 499 }
nuclear@0 500 }
nuclear@0 501 }
nuclear@0 502 }
nuclear@0 503 DefaultLogger::get()->debug("GenUVCoordsProcess finished");
nuclear@0 504 }