rayzor

annotate src/vmathmat.h @ 17:79609d482762

the renderer renders, also fixed an unnoticed matrix conversion problem between scenegraph and min3d
author John Tsiombikas <nuclear@member.fsf.org>
date Mon, 14 Apr 2014 07:34:45 +0300
parents 964f8ea5f095
children
rev   line source
nuclear@1 1 #ifndef VMATH_MATRIX_H_
nuclear@1 2 #define VMATH_MATRIX_H_
nuclear@1 3
nuclear@1 4 #include <math.h>
nuclear@1 5
nuclear@1 6 #ifndef M_PI
nuclear@1 7 #define M_PI 3.141592653
nuclear@1 8 #endif
nuclear@1 9
nuclear@1 10 class Vector3;
nuclear@1 11
nuclear@1 12 class Matrix4x4 {
nuclear@1 13 public:
nuclear@1 14 float m[4][4];
nuclear@1 15
nuclear@1 16 Matrix4x4()
nuclear@1 17 {
nuclear@1 18 set_identity();
nuclear@1 19 }
nuclear@1 20
nuclear@1 21 Matrix4x4(float m00, float m01, float m02, float m03,
nuclear@1 22 float m10, float m11, float m12, float m13,
nuclear@1 23 float m20, float m21, float m22, float m23,
nuclear@1 24 float m30, float m31, float m32, float m33)
nuclear@1 25 {
nuclear@1 26 m[0][0] = m00; m[0][1] = m01; m[0][2] = m02; m[0][3] = m03;
nuclear@1 27 m[1][0] = m10; m[1][1] = m11; m[1][2] = m12; m[1][3] = m13;
nuclear@1 28 m[2][0] = m20; m[2][1] = m21; m[2][2] = m22; m[2][3] = m23;
nuclear@1 29 m[3][0] = m30; m[3][1] = m31; m[3][2] = m32; m[3][3] = m33;
nuclear@1 30 }
nuclear@1 31
nuclear@1 32 inline void set_identity();
nuclear@1 33 inline void translate(float x, float y, float z);
nuclear@1 34 inline void rotate(float angle, float x, float y, float z);
nuclear@1 35 inline void scale(float x, float y, float z);
nuclear@1 36 inline void perspective(float vfov, float aspect, float znear, float zfar);
nuclear@13 37 void lookat(const Vector3 &pos, const Vector3 &targ, const Vector3 &up);
nuclear@1 38
nuclear@1 39 float *operator [](int idx) { return m[idx]; }
nuclear@1 40 const float *operator [](int idx) const { return m[idx]; }
nuclear@12 41
nuclear@12 42 void transpose();
nuclear@12 43
nuclear@12 44 float determinant() const;
nuclear@12 45 Matrix4x4 adjoint() const;
nuclear@12 46 Matrix4x4 inverse() const;
nuclear@1 47 };
nuclear@1 48
nuclear@1 49 inline Matrix4x4 operator *(const Matrix4x4 &a, const Matrix4x4 &b)
nuclear@1 50 {
nuclear@1 51 Matrix4x4 res;
nuclear@1 52 for(int i=0; i<4; i++) {
nuclear@1 53 for(int j=0; j<4; j++) {
nuclear@1 54 res[i][j] = a[i][0] * b[0][j] + a[i][1] * b[1][j] +
nuclear@1 55 a[i][2] * b[2][j] + a[i][3] * b[3][j];
nuclear@1 56 }
nuclear@1 57 }
nuclear@1 58 return res;
nuclear@1 59 }
nuclear@1 60
nuclear@12 61 inline Matrix4x4 operator *(const Matrix4x4 &mat, float scalar)
nuclear@12 62 {
nuclear@12 63 Matrix4x4 res;
nuclear@12 64
nuclear@12 65 for(int i=0; i<4; i++) {
nuclear@12 66 for(int j=0; j<4; j++) {
nuclear@12 67 res.m[i][j] = mat.m[i][j] * scalar;
nuclear@12 68 }
nuclear@12 69 }
nuclear@12 70 return res;
nuclear@12 71 }
nuclear@12 72
nuclear@1 73 inline void Matrix4x4::set_identity()
nuclear@1 74 {
nuclear@1 75 m[0][0] = m[1][1] = m[2][2] = m[3][3] = 1.0;
nuclear@1 76 m[0][1] = m[0][2] = m[0][3] = m[1][2] = m[1][3] = m[2][3] = 0.0;
nuclear@1 77 m[1][0] = m[2][0] = m[3][0] = m[2][1] = m[3][1] = m[3][2] = 0.0;
nuclear@1 78 }
nuclear@1 79
nuclear@1 80 inline void Matrix4x4::translate(float x, float y, float z)
nuclear@1 81 {
nuclear@1 82 Matrix4x4 m(1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1);
nuclear@1 83 *this = *this * m;
nuclear@1 84 }
nuclear@1 85
nuclear@1 86 inline void Matrix4x4::rotate(float angle, float x, float y, float z)
nuclear@1 87 {
nuclear@1 88 float sina = (float)sin(angle);
nuclear@1 89 float cosa = (float)cos(angle);
nuclear@1 90 float rcosa = 1.0f - cosa;
nuclear@1 91 float nxsq = x * x;
nuclear@1 92 float nysq = y * y;
nuclear@1 93 float nzsq = z * z;
nuclear@1 94
nuclear@1 95 Matrix4x4 m;
nuclear@1 96 m[0][0] = nxsq + (1.0f - nxsq) * cosa;
nuclear@1 97 m[0][1] = x * y * rcosa - z * sina;
nuclear@1 98 m[0][2] = x * z * rcosa + y * sina;
nuclear@1 99
nuclear@1 100 m[1][0] = x * y * rcosa + z * sina;
nuclear@1 101 m[1][1] = nysq + (1.0f - nysq) * cosa;
nuclear@1 102 m[1][2] = y * z * rcosa - x * sina;
nuclear@1 103
nuclear@1 104 m[2][0] = x * z * rcosa - y * sina;
nuclear@1 105 m[2][1] = y * z * rcosa + x * sina;
nuclear@1 106 m[2][2] = nzsq + (1.0f - nzsq) * cosa;
nuclear@1 107
nuclear@1 108 *this = *this * m;
nuclear@1 109 }
nuclear@1 110
nuclear@1 111 inline void Matrix4x4::scale(float x, float y, float z)
nuclear@1 112 {
nuclear@1 113 Matrix4x4 m(x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1);
nuclear@1 114 *this = *this * m;
nuclear@1 115 }
nuclear@1 116
nuclear@1 117 inline void Matrix4x4::perspective(float vfov, float aspect, float znear, float zfar)
nuclear@1 118 {
nuclear@1 119 float f = 1.0f / tan(vfov * 0.5f);
nuclear@1 120 float dz = znear - zfar;
nuclear@1 121
nuclear@1 122 Matrix4x4 m;
nuclear@1 123 m[0][0] = f / aspect;
nuclear@1 124 m[1][1] = f;
nuclear@1 125 m[2][2] = (zfar + znear) / dz;
nuclear@1 126 m[3][2] = -1.0f;
nuclear@1 127 m[2][3] = 2.0f * zfar * znear / dz;
nuclear@1 128 m[3][3] = 0.0f;
nuclear@1 129
nuclear@1 130 *this = *this * m;
nuclear@1 131 }
nuclear@1 132
nuclear@17 133 inline Matrix4x4 normal_matrix(const Matrix4x4 &m)
nuclear@17 134 {
nuclear@17 135 return Matrix4x4(m[0][0], m[0][1], m[0][2], 0,
nuclear@17 136 m[1][0], m[1][1], m[1][2], 0,
nuclear@17 137 m[2][0], m[2][1], m[2][2], 0,
nuclear@17 138 m[3][0], m[3][1], m[3][2], 1);
nuclear@17 139 }
nuclear@17 140
nuclear@1 141 #endif // VMATH_MATRIX_H_