rayzor

annotate src/min3d.c @ 5:5fcf72837b69

fixed the dosemu bit
author John Tsiombikas <nuclear@member.fsf.org>
date Sun, 06 Apr 2014 02:43:24 +0300
parents 9035507275d6
children a68dbf80d547
rev   line source
nuclear@1 1 #include <stdlib.h>
nuclear@5 2 #include <string.h>
nuclear@5 3 #include <math.h>
nuclear@1 4 #include "min3d.h"
nuclear@1 5 #include "m3dimpl.h"
nuclear@1 6
nuclear@1 7 #ifndef M_PI
nuclear@1 8 #define M_PI 3.141592653
nuclear@1 9 #endif
nuclear@1 10
nuclear@3 11 struct min3d_context *m3dctx;
nuclear@3 12
nuclear@1 13 int m3d_init(void)
nuclear@1 14 {
nuclear@1 15 if(!(m3dctx = malloc(sizeof *m3dctx))) {
nuclear@1 16 return -1;
nuclear@1 17 }
nuclear@1 18 memset(m3dctx, 0, sizeof *m3dctx);
nuclear@1 19
nuclear@1 20 m3d_matrix_mode(M3D_PROJECTION);
nuclear@1 21 m3d_load_identity();
nuclear@1 22 m3d_matrix_mode(M3D_MODELVIEW);
nuclear@1 23 m3d_load_identity();
nuclear@1 24 return 0;
nuclear@1 25 }
nuclear@1 26
nuclear@1 27 void m3d_shutdown(void)
nuclear@1 28 {
nuclear@1 29 free(m3dctx);
nuclear@1 30 }
nuclear@1 31
nuclear@1 32 void m3d_set_buffers(struct m3d_image *cbuf, uint16_t *zbuf)
nuclear@1 33 {
nuclear@1 34 m3dctx->cbuf = cbuf;
nuclear@1 35 m3dctx->zbuf = zbuf;
nuclear@1 36 }
nuclear@1 37
nuclear@1 38 void m3d_clear(unsigned int bmask)
nuclear@1 39 {
nuclear@1 40 int num_pixels = m3dctx->cbuf->xsz * m3dctx->cbuf->ysz;
nuclear@1 41 if(bmask & M3D_COLOR_BUFFER_BIT) {
nuclear@1 42 memset(m3dctx->cbuf->pixels, 0, num_pixels * 3);
nuclear@1 43 }
nuclear@1 44 if(bmask & M3D_DEPTH_BUFFER_BIT) {
nuclear@1 45 memset(m3dctx->zbuf, 0xff, num_pixels * sizeof *m3dctx->zbuf);
nuclear@1 46 }
nuclear@1 47 }
nuclear@1 48
nuclear@1 49
nuclear@1 50 void m3d_enable(int bit)
nuclear@1 51 {
nuclear@1 52 m3dctx->state |= (1 << bit);
nuclear@1 53 }
nuclear@1 54
nuclear@1 55 void m3d_disable(int bit)
nuclear@1 56 {
nuclear@1 57 m3dctx->state &= ~(1 << bit);
nuclear@1 58 }
nuclear@1 59
nuclear@1 60
nuclear@1 61 /* matrix stack */
nuclear@1 62 void m3d_matrix_mode(int mode)
nuclear@1 63 {
nuclear@1 64 m3dctx->mmode = mode;
nuclear@1 65 }
nuclear@1 66
nuclear@1 67 void m3d_load_identity(void)
nuclear@1 68 {
nuclear@1 69 static const float mid[] = {1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1};
nuclear@1 70 m3d_load_matrix(mid);
nuclear@1 71 }
nuclear@1 72
nuclear@1 73 void m3d_load_matrix(const float *m)
nuclear@1 74 {
nuclear@1 75 int top = m3dctx->mstack[m3dctx->mmode].top;
nuclear@1 76 memcpy(m3dctx->mstack[m3dctx->mmode].m[top], m, 16 * sizeof *m);
nuclear@1 77 }
nuclear@1 78
nuclear@1 79 #define M(i,j) (((i) << 2) + (j))
nuclear@1 80 void m3d_mult_matrix(const float *m2)
nuclear@1 81 {
nuclear@1 82 int i, j, top = m3dctx->mstack[m3dctx->mmode].top;
nuclear@1 83 float m1[16];
nuclear@1 84 float *dest = m3dctx->mstack[m3dctx->mmode].m[top];
nuclear@1 85
nuclear@1 86 memcpy(m1, dest, sizeof m1);
nuclear@1 87
nuclear@1 88 for(i=0; i<4; i++) {
nuclear@1 89 for(j=0; j<4; j++) {
nuclear@1 90 dest[M(i,j)] = m1[M(0,j)] * m2[M(i,0)] +
nuclear@1 91 m1[M(1,j)] * m2[M(i,1)] +
nuclear@1 92 m1[M(2,j)] * m2[M(i,2)] +
nuclear@1 93 m1[M(3,j)] * m2[M(i,3)];
nuclear@1 94 }
nuclear@1 95 }
nuclear@1 96 }
nuclear@1 97
nuclear@1 98 void m3d_translate(float x, float y, float z)
nuclear@1 99 {
nuclear@1 100 float m[] = {1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1};
nuclear@1 101 m[12] = x;
nuclear@1 102 m[13] = y;
nuclear@1 103 m[14] = z;
nuclear@1 104 m3d_mult_matrix(m);
nuclear@1 105 }
nuclear@1 106
nuclear@1 107 void m3d_rotate(float deg, float x, float y, float z)
nuclear@1 108 {
nuclear@1 109 float xform[] = {1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1};
nuclear@1 110
nuclear@1 111 float angle = M_PI * deg / 180.0f;
nuclear@1 112 float sina = sin(angle);
nuclear@1 113 float cosa = cos(angle);
nuclear@1 114 float one_minus_cosa = 1.0f - cosa;
nuclear@1 115 float nxsq = x * x;
nuclear@1 116 float nysq = y * y;
nuclear@1 117 float nzsq = z * z;
nuclear@1 118
nuclear@1 119 xform[0] = nxsq + (1.0f - nxsq) * cosa;
nuclear@1 120 xform[4] = x * y * one_minus_cosa - z * sina;
nuclear@1 121 xform[8] = x * z * one_minus_cosa + y * sina;
nuclear@1 122 xform[1] = x * y * one_minus_cosa + z * sina;
nuclear@1 123 xform[5] = nysq + (1.0 - nysq) * cosa;
nuclear@1 124 xform[9] = y * z * one_minus_cosa - x * sina;
nuclear@1 125 xform[2] = x * z * one_minus_cosa - y * sina;
nuclear@1 126 xform[6] = y * z * one_minus_cosa + x * sina;
nuclear@1 127 xform[10] = nzsq + (1.0 - nzsq) * cosa;
nuclear@1 128
nuclear@1 129 m3d_mult_matrix(xform);
nuclear@1 130 }
nuclear@1 131
nuclear@1 132 void m3d_scale(float x, float y, float z)
nuclear@1 133 {
nuclear@1 134 static float m[] = {1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1};
nuclear@1 135 m[0] = x;
nuclear@1 136 m[5] = y;
nuclear@1 137 m[10] = z;
nuclear@1 138 m3d_mult_matrix(m);
nuclear@1 139 }
nuclear@1 140
nuclear@1 141 void m3d_frustum(float left, float right, float bottom, float top, float nr, float fr)
nuclear@1 142 {
nuclear@1 143 float xform[] = {1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1};
nuclear@1 144
nuclear@1 145 float dx = right - left;
nuclear@1 146 float dy = top - bottom;
nuclear@1 147 float dz = fr - nr;
nuclear@1 148
nuclear@1 149 float a = (right + left) / dx;
nuclear@1 150 float b = (top + bottom) / dy;
nuclear@1 151 float c = -(fr + nr) / dz;
nuclear@1 152 float d = -2.0 * fr * nr / dz;
nuclear@1 153
nuclear@1 154 xform[0] = 2.0 * nr / dx;
nuclear@1 155 xform[5] = 2.0 * nr / dy;
nuclear@1 156 xform[8] = a;
nuclear@1 157 xform[9] = b;
nuclear@1 158 xform[10] = c;
nuclear@1 159 xform[11] = -1.0f;
nuclear@1 160 xform[14] = d;
nuclear@1 161
nuclear@1 162 m3d_mult_matrix(xform);
nuclear@1 163 }
nuclear@1 164
nuclear@1 165 void m3d_perspective(float vfov, float aspect, float nr, float fr)
nuclear@1 166 {
nuclear@1 167 float vfov_rad = M_PI * vfov / 180.0;
nuclear@1 168 float x = nr * tan(vfov_rad / 2.0);
nuclear@1 169 m3d_frustum(-aspect * x, aspect * x, -x, x, nr, fr);
nuclear@1 170 }
nuclear@1 171
nuclear@2 172 static void xform4(float *mat, float *vec)
nuclear@2 173 {
nuclear@2 174 float x = mat[0] * vec[0] + mat[1] * vec[1] + mat[2] * vec[2] + mat[3];
nuclear@2 175 float y = mat[4] * vec[0] + mat[5] * vec[1] + mat[6] * vec[2] + mat[7];
nuclear@2 176 float z = mat[8] * vec[0] + mat[9] * vec[1] + mat[10] * vec[2] + mat[11];
nuclear@2 177 float w = mat[12] * vec[0] + mat[13] * vec[1] + mat[14] * vec[2] + mat[15];
nuclear@2 178
nuclear@2 179 vec[0] = x;
nuclear@2 180 vec[1] = y;
nuclear@2 181 vec[2] = z;
nuclear@2 182 vec[3] = w;
nuclear@2 183 }
nuclear@2 184
nuclear@3 185 static int proc_prim(int prim, struct min3d_vertex *res, struct min3d_vertex *v)
nuclear@2 186 {
nuclear@3 187 int i;
nuclear@3 188 int vcount = prim;
nuclear@3 189 int mvtop, ptop;
nuclear@3 190 float *mvmat, *pmat;
nuclear@3 191
nuclear@3 192 mvtop = m3dctx->mstack[M3D_MODELVIEW].top;
nuclear@3 193 mvmat = m3dctx->mstack[M3D_MODELVIEW].m[mvtop];
nuclear@3 194 ptop = m3dctx->mstack[M3D_PROJECTION].top;
nuclear@3 195 pmat = m3dctx->mstack[M3D_PROJECTION].m[ptop];
nuclear@3 196
nuclear@3 197 /* transform to view space */
nuclear@3 198 for(i=0; i<vcount; i++) {
nuclear@3 199 res[i] = v[i];
nuclear@3 200 xform4(mvmat, res[i].pos);
nuclear@3 201 /* TODO: normal */
nuclear@3 202 }
nuclear@3 203
nuclear@3 204 /* TODO: lighting */
nuclear@3 205
nuclear@3 206 /* project */
nuclear@3 207 for(i=0; i<vcount; i++) {
nuclear@3 208 xform4(pmat, res[i].pos);
nuclear@3 209 }
nuclear@3 210
nuclear@3 211 /* clip */
nuclear@3 212 switch(prim) {
nuclear@3 213 case M3D_POINTS:
nuclear@3 214 {
nuclear@3 215 float w = res[0].pos[3];
nuclear@3 216 if(res[0].pos[2] < -w || res[0].pos[2] >= w ||
nuclear@3 217 res[0].pos[0] / w < -1 || res[0].pos[0] / w >= 1 ||
nuclear@3 218 res[0].pos[1] / w < -1 || res[0].pos[1] / w >= 1) {
nuclear@3 219 vcount = 0;
nuclear@3 220 }
nuclear@3 221 }
nuclear@3 222 break;
nuclear@3 223
nuclear@3 224 default:
nuclear@3 225 break; /* TODO */
nuclear@3 226 }
nuclear@3 227
nuclear@3 228 /* perspective division */
nuclear@3 229 for(i=0; i<vcount; i++) {
nuclear@3 230 res[i].pos[0] = res[i].pos[3];
nuclear@3 231 res[i].pos[1] = res[i].pos[3];
nuclear@3 232 res[i].pos[2] = res[i].pos[3];
nuclear@3 233 }
nuclear@3 234 return vcount;
nuclear@2 235 }
nuclear@2 236
nuclear@1 237 /* drawing */
nuclear@5 238 void m3d_vertex_array(const float *varr)
nuclear@5 239 {
nuclear@5 240 m3dctx->vert_array = varr;
nuclear@5 241 }
nuclear@5 242
nuclear@5 243 void m3d_normal_array(const float *narr)
nuclear@5 244 {
nuclear@5 245 m3dctx->norm_array = narr;
nuclear@5 246 }
nuclear@5 247
nuclear@5 248 void m3d_color_array(const float *carr)
nuclear@5 249 {
nuclear@5 250 m3dctx->col_array = carr;
nuclear@5 251 }
nuclear@5 252
nuclear@5 253 void m3d_texcoord_array(const float *tcarr)
nuclear@5 254 {
nuclear@5 255 m3dctx->tc_array = tcarr;
nuclear@5 256 }
nuclear@5 257
nuclear@5 258
nuclear@5 259 void m3d_draw(int prim, int vcount)
nuclear@1 260 {
nuclear@3 261 int i;
nuclear@3 262 struct min3d_vertex v[4];
nuclear@3 263 struct min3d_vertex resv[16];
nuclear@5 264 const float *varr = m3dctx->vert_array;
nuclear@5 265 const float *carr = m3dctx->col_array;
nuclear@5 266
nuclear@5 267 if(!varr) return;
nuclear@3 268
nuclear@3 269 for(i=0; i<vcount; i++) {
nuclear@3 270 int idx = i % prim;
nuclear@3 271
nuclear@3 272 v[idx].pos[0] = *varr++;
nuclear@3 273 v[idx].pos[1] = *varr++;
nuclear@3 274 v[idx].pos[2] = *varr++;
nuclear@5 275 v[idx].color[0] = carr ? *carr++ : m3dctx->cur_color[0];
nuclear@5 276 v[idx].color[1] = carr ? *carr++ : m3dctx->cur_color[1];
nuclear@5 277 v[idx].color[2] = carr ? *carr++ : m3dctx->cur_color[2];
nuclear@3 278
nuclear@3 279 if(idx == prim - 1) {
nuclear@3 280 int resnum = proc_prim(prim, resv, v);
nuclear@3 281 switch(resnum) {
nuclear@3 282 case 1:
nuclear@3 283 draw_point(resv);
nuclear@3 284 break;
nuclear@3 285
nuclear@3 286 case '2':
nuclear@3 287 draw_line(resv);
nuclear@3 288 break;
nuclear@3 289
nuclear@3 290 default:
nuclear@3 291 draw_poly(resv, resnum);
nuclear@3 292 }
nuclear@3 293 }
nuclear@3 294 }
nuclear@1 295 }
nuclear@1 296
nuclear@5 297 void m3d_draw_indexed(int prim, const int *idxarr, int icount)
nuclear@1 298 {
nuclear@1 299 /* TODO */
nuclear@1 300 }
nuclear@1 301