libanim

annotate src/anim.h @ 20:3c2428cb38f7

added the option of lightweight pre-pass top-down recursive calculation of matrices instead of going through the existing lazy thread-specific caching algorithm.
author John Tsiombikas <nuclear@member.fsf.org>
date Mon, 09 Dec 2013 04:06:30 +0200
parents 2cf7284d2bbb
children 5993f405a1cb
rev   line source
nuclear@0 1 #ifndef LIBANIM_H_
nuclear@0 2 #define LIBANIM_H_
nuclear@0 3
nuclear@0 4 #include "config.h"
nuclear@0 5
nuclear@0 6 #include <pthread.h>
nuclear@0 7
nuclear@1 8 #include <vmath/vector.h>
nuclear@1 9 #include <vmath/quat.h>
nuclear@1 10 #include <vmath/matrix.h>
nuclear@0 11 #include "track.h"
nuclear@0 12
nuclear@0 13 enum {
nuclear@0 14 ANM_TRACK_POS_X,
nuclear@0 15 ANM_TRACK_POS_Y,
nuclear@0 16 ANM_TRACK_POS_Z,
nuclear@0 17
nuclear@0 18 ANM_TRACK_ROT_X,
nuclear@0 19 ANM_TRACK_ROT_Y,
nuclear@0 20 ANM_TRACK_ROT_Z,
nuclear@0 21 ANM_TRACK_ROT_W,
nuclear@0 22
nuclear@0 23 ANM_TRACK_SCL_X,
nuclear@0 24 ANM_TRACK_SCL_Y,
nuclear@0 25 ANM_TRACK_SCL_Z,
nuclear@0 26
nuclear@0 27 ANM_NUM_TRACKS
nuclear@0 28 };
nuclear@0 29
nuclear@0 30 struct anm_node {
nuclear@0 31 char *name;
nuclear@0 32
nuclear@0 33 struct anm_track tracks[ANM_NUM_TRACKS];
nuclear@0 34 vec3_t pivot;
nuclear@0 35
nuclear@0 36 /* matrix cache */
nuclear@0 37 struct mat_cache {
nuclear@0 38 mat4_t matrix, inv_matrix;
nuclear@0 39 anm_time_t time, inv_time;
nuclear@0 40 struct mat_cache *next;
nuclear@0 41 } *cache_list;
nuclear@0 42 pthread_key_t cache_key;
nuclear@0 43 pthread_mutex_t cache_list_lock;
nuclear@0 44
nuclear@20 45 /* matrix calculated by anm_eval functions (no locking, meant as a pre-pass) */
nuclear@20 46 mat4_t matrix;
nuclear@20 47
nuclear@0 48 struct anm_node *parent;
nuclear@0 49 struct anm_node *child;
nuclear@0 50 struct anm_node *next;
nuclear@0 51 };
nuclear@0 52
nuclear@0 53 #ifdef __cplusplus
nuclear@0 54 extern "C" {
nuclear@0 55 #endif
nuclear@0 56
nuclear@0 57 /* node constructor and destructor */
nuclear@0 58 int anm_init_node(struct anm_node *node);
nuclear@0 59 void anm_destroy_node(struct anm_node *node);
nuclear@0 60
nuclear@0 61 /* recursively destroy an animation node tree */
nuclear@0 62 void anm_destroy_node_tree(struct anm_node *tree);
nuclear@0 63
nuclear@0 64 /* helper functions to allocate/construct and destroy/free with
nuclear@0 65 * a single call. They call anm_init_node and anm_destroy_node
nuclear@0 66 * internally.
nuclear@0 67 */
nuclear@0 68 struct anm_node *anm_create_node(void);
nuclear@0 69 void anm_free_node(struct anm_node *node);
nuclear@0 70
nuclear@0 71 /* recursively destroy and free the nodes of a node tree */
nuclear@0 72 void anm_free_node_tree(struct anm_node *tree);
nuclear@0 73
nuclear@0 74 int anm_set_node_name(struct anm_node *node, const char *name);
nuclear@0 75 const char *anm_get_node_name(struct anm_node *node);
nuclear@0 76
nuclear@0 77 void anm_set_interpolator(struct anm_node *node, enum anm_interpolator in);
nuclear@0 78 void anm_set_extrapolator(struct anm_node *node, enum anm_extrapolator ex);
nuclear@0 79
nuclear@0 80 /* link and unlink nodes with parent/child relations */
nuclear@0 81 void anm_link_node(struct anm_node *parent, struct anm_node *child);
nuclear@0 82 int anm_unlink_node(struct anm_node *parent, struct anm_node *child);
nuclear@0 83
nuclear@0 84 void anm_set_position(struct anm_node *node, vec3_t pos, anm_time_t tm);
nuclear@0 85 vec3_t anm_get_node_position(struct anm_node *node, anm_time_t tm);
nuclear@0 86
nuclear@0 87 void anm_set_rotation(struct anm_node *node, quat_t rot, anm_time_t tm);
nuclear@0 88 quat_t anm_get_node_rotation(struct anm_node *node, anm_time_t tm);
nuclear@0 89
nuclear@0 90 void anm_set_scaling(struct anm_node *node, vec3_t scl, anm_time_t tm);
nuclear@0 91 vec3_t anm_get_node_scaling(struct anm_node *node, anm_time_t tm);
nuclear@0 92
nuclear@0 93 /* these three return the full p/r/s taking hierarchy into account */
nuclear@0 94 vec3_t anm_get_position(struct anm_node *node, anm_time_t tm);
nuclear@0 95 quat_t anm_get_rotation(struct anm_node *node, anm_time_t tm);
nuclear@0 96 vec3_t anm_get_scaling(struct anm_node *node, anm_time_t tm);
nuclear@0 97
nuclear@0 98 void anm_set_pivot(struct anm_node *node, vec3_t pivot);
nuclear@0 99 vec3_t anm_get_pivot(struct anm_node *node);
nuclear@0 100
nuclear@20 101 /* those return the start and end times of the whole tree */
nuclear@20 102 anm_time_t anm_get_start_time(struct anm_node *node);
nuclear@20 103 anm_time_t anm_get_end_time(struct anm_node *node);
nuclear@20 104
nuclear@5 105 /* these calculate the matrix and inverse matrix of this node alone */
nuclear@5 106 void anm_get_node_matrix(struct anm_node *node, mat4_t mat, anm_time_t tm);
nuclear@5 107 void anm_get_node_inv_matrix(struct anm_node *node, mat4_t mat, anm_time_t tm);
nuclear@5 108
nuclear@20 109 /* ---- top-down matrix calculation interface ---- */
nuclear@20 110
nuclear@20 111 /* calculate and set the matrix of this node */
nuclear@20 112 void anm_eval_node(struct anm_node *node, anm_time_t tm);
nuclear@20 113 /* calculate and set the matrix of this node and all its children recursively */
nuclear@20 114 void anm_eval(struct anm_node *node, anm_time_t tm);
nuclear@20 115
nuclear@20 116
nuclear@20 117 /* ---- bottom-up lazy matrix calculation interface ---- */
nuclear@20 118
nuclear@5 119 /* These calculate the matrix and inverse matrix of this node taking hierarchy
nuclear@5 120 * into account. The results are cached in thread-specific storage and returned
nuclear@5 121 * if there's no change in time or tracks from the last query...
nuclear@5 122 */
nuclear@0 123 void anm_get_matrix(struct anm_node *node, mat4_t mat, anm_time_t tm);
nuclear@0 124 void anm_get_inv_matrix(struct anm_node *node, mat4_t mat, anm_time_t tm);
nuclear@0 125
nuclear@0 126 #ifdef __cplusplus
nuclear@0 127 }
nuclear@0 128 #endif
nuclear@0 129
nuclear@0 130 #endif /* LIBANIM_H_ */