rev |
line source |
nuclear@2
|
1 /*
|
nuclear@2
|
2 * jquant2.c
|
nuclear@2
|
3 *
|
nuclear@2
|
4 * Copyright (C) 1991-1996, Thomas G. Lane.
|
nuclear@2
|
5 * This file is part of the Independent JPEG Group's software.
|
nuclear@2
|
6 * For conditions of distribution and use, see the accompanying README file.
|
nuclear@2
|
7 *
|
nuclear@2
|
8 * This file contains 2-pass color quantization (color mapping) routines.
|
nuclear@2
|
9 * These routines provide selection of a custom color map for an image,
|
nuclear@2
|
10 * followed by mapping of the image to that color map, with optional
|
nuclear@2
|
11 * Floyd-Steinberg dithering.
|
nuclear@2
|
12 * It is also possible to use just the second pass to map to an arbitrary
|
nuclear@2
|
13 * externally-given color map.
|
nuclear@2
|
14 *
|
nuclear@2
|
15 * Note: ordered dithering is not supported, since there isn't any fast
|
nuclear@2
|
16 * way to compute intercolor distances; it's unclear that ordered dither's
|
nuclear@2
|
17 * fundamental assumptions even hold with an irregularly spaced color map.
|
nuclear@2
|
18 */
|
nuclear@2
|
19
|
nuclear@2
|
20 #define JPEG_INTERNALS
|
nuclear@2
|
21 #include "jinclude.h"
|
nuclear@2
|
22 #include "jpeglib.h"
|
nuclear@2
|
23
|
nuclear@2
|
24 #ifdef QUANT_2PASS_SUPPORTED
|
nuclear@2
|
25
|
nuclear@2
|
26
|
nuclear@2
|
27 /*
|
nuclear@2
|
28 * This module implements the well-known Heckbert paradigm for color
|
nuclear@2
|
29 * quantization. Most of the ideas used here can be traced back to
|
nuclear@2
|
30 * Heckbert's seminal paper
|
nuclear@2
|
31 * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display",
|
nuclear@2
|
32 * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
|
nuclear@2
|
33 *
|
nuclear@2
|
34 * In the first pass over the image, we accumulate a histogram showing the
|
nuclear@2
|
35 * usage count of each possible color. To keep the histogram to a reasonable
|
nuclear@2
|
36 * size, we reduce the precision of the input; typical practice is to retain
|
nuclear@2
|
37 * 5 or 6 bits per color, so that 8 or 4 different input values are counted
|
nuclear@2
|
38 * in the same histogram cell.
|
nuclear@2
|
39 *
|
nuclear@2
|
40 * Next, the color-selection step begins with a boxx representing the whole
|
nuclear@2
|
41 * color space, and repeatedly splits the "largest" remaining boxx until we
|
nuclear@2
|
42 * have as many boxxes as desired colors. Then the mean color in each
|
nuclear@2
|
43 * remaining boxx becomes one of the possible output colors.
|
nuclear@2
|
44 *
|
nuclear@2
|
45 * The second pass over the image maps each input pixel to the closest output
|
nuclear@2
|
46 * color (optionally after applying a Floyd-Steinberg dithering correction).
|
nuclear@2
|
47 * This mapping is logically trivial, but making it go fast enough requires
|
nuclear@2
|
48 * considerable care.
|
nuclear@2
|
49 *
|
nuclear@2
|
50 * Heckbert-style quantizers vary a good deal in their policies for choosing
|
nuclear@2
|
51 * the "largest" boxx and deciding where to cut it. The particular policies
|
nuclear@2
|
52 * used here have proved out well in experimental comparisons, but better ones
|
nuclear@2
|
53 * may yet be found.
|
nuclear@2
|
54 *
|
nuclear@2
|
55 * In earlier versions of the IJG code, this module quantized in YCbCr color
|
nuclear@2
|
56 * space, processing the raw upsampled data without a color conversion step.
|
nuclear@2
|
57 * This allowed the color conversion math to be done only once per colormap
|
nuclear@2
|
58 * entry, not once per pixel. However, that optimization precluded other
|
nuclear@2
|
59 * useful optimizations (such as merging color conversion with upsampling)
|
nuclear@2
|
60 * and it also interfered with desired capabilities such as quantizing to an
|
nuclear@2
|
61 * externally-supplied colormap. We have therefore abandoned that approach.
|
nuclear@2
|
62 * The present code works in the post-conversion color space, typically RGB.
|
nuclear@2
|
63 *
|
nuclear@2
|
64 * To improve the visual quality of the results, we actually work in scaled
|
nuclear@2
|
65 * RGB space, giving G distances more weight than R, and R in turn more than
|
nuclear@2
|
66 * B. To do everything in integer math, we must use integer scale factors.
|
nuclear@2
|
67 * The 2/3/1 scale factors used here correspond loosely to the relative
|
nuclear@2
|
68 * weights of the colors in the NTSC grayscale equation.
|
nuclear@2
|
69 * If you want to use this code to quantize a non-RGB color space, you'll
|
nuclear@2
|
70 * probably need to change these scale factors.
|
nuclear@2
|
71 */
|
nuclear@2
|
72
|
nuclear@2
|
73 #define R_SCALE 2 /* scale R distances by this much */
|
nuclear@2
|
74 #define G_SCALE 3 /* scale G distances by this much */
|
nuclear@2
|
75 #define B_SCALE 1 /* and B by this much */
|
nuclear@2
|
76
|
nuclear@2
|
77 /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
|
nuclear@2
|
78 * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B
|
nuclear@2
|
79 * and B,G,R orders. If you define some other weird order in jmorecfg.h,
|
nuclear@2
|
80 * you'll get compile errors until you extend this logic. In that case
|
nuclear@2
|
81 * you'll probably want to tweak the histogram sizes too.
|
nuclear@2
|
82 */
|
nuclear@2
|
83
|
nuclear@2
|
84 #if RGB_RED == 0
|
nuclear@2
|
85 #define C0_SCALE R_SCALE
|
nuclear@2
|
86 #endif
|
nuclear@2
|
87 #if RGB_BLUE == 0
|
nuclear@2
|
88 #define C0_SCALE B_SCALE
|
nuclear@2
|
89 #endif
|
nuclear@2
|
90 #if RGB_GREEN == 1
|
nuclear@2
|
91 #define C1_SCALE G_SCALE
|
nuclear@2
|
92 #endif
|
nuclear@2
|
93 #if RGB_RED == 2
|
nuclear@2
|
94 #define C2_SCALE R_SCALE
|
nuclear@2
|
95 #endif
|
nuclear@2
|
96 #if RGB_BLUE == 2
|
nuclear@2
|
97 #define C2_SCALE B_SCALE
|
nuclear@2
|
98 #endif
|
nuclear@2
|
99
|
nuclear@2
|
100
|
nuclear@2
|
101 /*
|
nuclear@2
|
102 * First we have the histogram data structure and routines for creating it.
|
nuclear@2
|
103 *
|
nuclear@2
|
104 * The number of bits of precision can be adjusted by changing these symbols.
|
nuclear@2
|
105 * We recommend keeping 6 bits for G and 5 each for R and B.
|
nuclear@2
|
106 * If you have plenty of memory and cycles, 6 bits all around gives marginally
|
nuclear@2
|
107 * better results; if you are short of memory, 5 bits all around will save
|
nuclear@2
|
108 * some space but degrade the results.
|
nuclear@2
|
109 * To maintain a fully accurate histogram, we'd need to allocate a "long"
|
nuclear@2
|
110 * (preferably unsigned long) for each cell. In practice this is overkill;
|
nuclear@2
|
111 * we can get by with 16 bits per cell. Few of the cell counts will overflow,
|
nuclear@2
|
112 * and clamping those that do overflow to the maximum value will give close-
|
nuclear@2
|
113 * enough results. This reduces the recommended histogram size from 256Kb
|
nuclear@2
|
114 * to 128Kb, which is a useful savings on PC-class machines.
|
nuclear@2
|
115 * (In the second pass the histogram space is re-used for pixel mapping data;
|
nuclear@2
|
116 * in that capacity, each cell must be able to store zero to the number of
|
nuclear@2
|
117 * desired colors. 16 bits/cell is plenty for that too.)
|
nuclear@2
|
118 * Since the JPEG code is intended to run in small memory model on 80x86
|
nuclear@2
|
119 * machines, we can't just allocate the histogram in one chunk. Instead
|
nuclear@2
|
120 * of a true 3-D array, we use a row of pointers to 2-D arrays. Each
|
nuclear@2
|
121 * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
|
nuclear@2
|
122 * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that
|
nuclear@2
|
123 * on 80x86 machines, the pointer row is in near memory but the actual
|
nuclear@2
|
124 * arrays are in far memory (same arrangement as we use for image arrays).
|
nuclear@2
|
125 */
|
nuclear@2
|
126
|
nuclear@2
|
127 #define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */
|
nuclear@2
|
128
|
nuclear@2
|
129 /* These will do the right thing for either R,G,B or B,G,R color order,
|
nuclear@2
|
130 * but you may not like the results for other color orders.
|
nuclear@2
|
131 */
|
nuclear@2
|
132 #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */
|
nuclear@2
|
133 #define HIST_C1_BITS 6 /* bits of precision in G histogram */
|
nuclear@2
|
134 #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */
|
nuclear@2
|
135
|
nuclear@2
|
136 /* Number of elements along histogram axes. */
|
nuclear@2
|
137 #define HIST_C0_ELEMS (1<<HIST_C0_BITS)
|
nuclear@2
|
138 #define HIST_C1_ELEMS (1<<HIST_C1_BITS)
|
nuclear@2
|
139 #define HIST_C2_ELEMS (1<<HIST_C2_BITS)
|
nuclear@2
|
140
|
nuclear@2
|
141 /* These are the amounts to shift an input value to get a histogram index. */
|
nuclear@2
|
142 #define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS)
|
nuclear@2
|
143 #define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS)
|
nuclear@2
|
144 #define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS)
|
nuclear@2
|
145
|
nuclear@2
|
146
|
nuclear@2
|
147 typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */
|
nuclear@2
|
148
|
nuclear@2
|
149 typedef histcell FAR * histptr; /* for pointers to histogram cells */
|
nuclear@2
|
150
|
nuclear@2
|
151 typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
|
nuclear@2
|
152 typedef hist1d FAR * hist2d; /* type for the 2nd-level pointers */
|
nuclear@2
|
153 typedef hist2d * hist3d; /* type for top-level pointer */
|
nuclear@2
|
154
|
nuclear@2
|
155
|
nuclear@2
|
156 /* Declarations for Floyd-Steinberg dithering.
|
nuclear@2
|
157 *
|
nuclear@2
|
158 * Errors are accumulated into the array fserrors[], at a resolution of
|
nuclear@2
|
159 * 1/16th of a pixel count. The error at a given pixel is propagated
|
nuclear@2
|
160 * to its not-yet-processed neighbors using the standard F-S fractions,
|
nuclear@2
|
161 * ... (here) 7/16
|
nuclear@2
|
162 * 3/16 5/16 1/16
|
nuclear@2
|
163 * We work left-to-right on even rows, right-to-left on odd rows.
|
nuclear@2
|
164 *
|
nuclear@2
|
165 * We can get away with a single array (holding one row's worth of errors)
|
nuclear@2
|
166 * by using it to store the current row's errors at pixel columns not yet
|
nuclear@2
|
167 * processed, but the next row's errors at columns already processed. We
|
nuclear@2
|
168 * need only a few extra variables to hold the errors immediately around the
|
nuclear@2
|
169 * current column. (If we are lucky, those variables are in registers, but
|
nuclear@2
|
170 * even if not, they're probably cheaper to access than array elements are.)
|
nuclear@2
|
171 *
|
nuclear@2
|
172 * The fserrors[] array has (#columns + 2) entries; the extra entry at
|
nuclear@2
|
173 * each end saves us from special-casing the first and last pixels.
|
nuclear@2
|
174 * Each entry is three values long, one value for each color component.
|
nuclear@2
|
175 *
|
nuclear@2
|
176 * Note: on a wide image, we might not have enough room in a PC's near data
|
nuclear@2
|
177 * segment to hold the error array; so it is allocated with alloc_large.
|
nuclear@2
|
178 */
|
nuclear@2
|
179
|
nuclear@2
|
180 #if BITS_IN_JSAMPLE == 8
|
nuclear@2
|
181 typedef INT16 FSERROR; /* 16 bits should be enough */
|
nuclear@2
|
182 typedef int LOCFSERROR; /* use 'int' for calculation temps */
|
nuclear@2
|
183 #else
|
nuclear@2
|
184 typedef INT32 FSERROR; /* may need more than 16 bits */
|
nuclear@2
|
185 typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
|
nuclear@2
|
186 #endif
|
nuclear@2
|
187
|
nuclear@2
|
188 typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
|
nuclear@2
|
189
|
nuclear@2
|
190
|
nuclear@2
|
191 /* Private subobject */
|
nuclear@2
|
192
|
nuclear@2
|
193 typedef struct {
|
nuclear@2
|
194 struct jpeg_color_quantizer pub; /* public fields */
|
nuclear@2
|
195
|
nuclear@2
|
196 /* Space for the eventually created colormap is stashed here */
|
nuclear@2
|
197 JSAMPARRAY sv_colormap; /* colormap allocated at init time */
|
nuclear@2
|
198 int desired; /* desired # of colors = size of colormap */
|
nuclear@2
|
199
|
nuclear@2
|
200 /* Variables for accumulating image statistics */
|
nuclear@2
|
201 hist3d histogram; /* pointer to the histogram */
|
nuclear@2
|
202
|
nuclear@2
|
203 boolean needs_zeroed; /* TRUE if next pass must zero histogram */
|
nuclear@2
|
204
|
nuclear@2
|
205 /* Variables for Floyd-Steinberg dithering */
|
nuclear@2
|
206 FSERRPTR fserrors; /* accumulated errors */
|
nuclear@2
|
207 boolean on_odd_row; /* flag to remember which row we are on */
|
nuclear@2
|
208 int * error_limiter; /* table for clamping the applied error */
|
nuclear@2
|
209 } my_cquantizer;
|
nuclear@2
|
210
|
nuclear@2
|
211 typedef my_cquantizer * my_cquantize_ptr;
|
nuclear@2
|
212
|
nuclear@2
|
213
|
nuclear@2
|
214 /*
|
nuclear@2
|
215 * Prescan some rows of pixels.
|
nuclear@2
|
216 * In this module the prescan simply updates the histogram, which has been
|
nuclear@2
|
217 * initialized to zeroes by start_pass.
|
nuclear@2
|
218 * An output_buf parameter is required by the method signature, but no data
|
nuclear@2
|
219 * is actually output (in fact the buffer controller is probably passing a
|
nuclear@2
|
220 * NULL pointer).
|
nuclear@2
|
221 */
|
nuclear@2
|
222
|
nuclear@2
|
223 METHODDEF(void)
|
nuclear@2
|
224 prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
nuclear@2
|
225 JSAMPARRAY output_buf, int num_rows)
|
nuclear@2
|
226 {
|
nuclear@2
|
227 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
nuclear@2
|
228 register JSAMPROW ptr;
|
nuclear@2
|
229 register histptr histp;
|
nuclear@2
|
230 register hist3d histogram = cquantize->histogram;
|
nuclear@2
|
231 int row;
|
nuclear@2
|
232 JDIMENSION col;
|
nuclear@2
|
233 JDIMENSION width = cinfo->output_width;
|
nuclear@2
|
234
|
nuclear@2
|
235 for (row = 0; row < num_rows; row++) {
|
nuclear@2
|
236 ptr = input_buf[row];
|
nuclear@2
|
237 for (col = width; col > 0; col--) {
|
nuclear@2
|
238 /* get pixel value and index into the histogram */
|
nuclear@2
|
239 histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
|
nuclear@2
|
240 [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
|
nuclear@2
|
241 [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
|
nuclear@2
|
242 /* increment, check for overflow and undo increment if so. */
|
nuclear@2
|
243 if (++(*histp) <= 0)
|
nuclear@2
|
244 (*histp)--;
|
nuclear@2
|
245 ptr += 3;
|
nuclear@2
|
246 }
|
nuclear@2
|
247 }
|
nuclear@2
|
248 }
|
nuclear@2
|
249
|
nuclear@2
|
250
|
nuclear@2
|
251 /*
|
nuclear@2
|
252 * Next we have the really interesting routines: selection of a colormap
|
nuclear@2
|
253 * given the completed histogram.
|
nuclear@2
|
254 * These routines work with a list of "boxxes", each representing a rectangular
|
nuclear@2
|
255 * subset of the input color space (to histogram precision).
|
nuclear@2
|
256 */
|
nuclear@2
|
257
|
nuclear@2
|
258 typedef struct {
|
nuclear@2
|
259 /* The bounds of the boxx (inclusive); expressed as histogram indexes */
|
nuclear@2
|
260 int c0min, c0max;
|
nuclear@2
|
261 int c1min, c1max;
|
nuclear@2
|
262 int c2min, c2max;
|
nuclear@2
|
263 /* The volume (actually 2-norm) of the boxx */
|
nuclear@2
|
264 INT32 volume;
|
nuclear@2
|
265 /* The number of nonzero histogram cells within this boxx */
|
nuclear@2
|
266 long colorcount;
|
nuclear@2
|
267 } boxx;
|
nuclear@2
|
268
|
nuclear@2
|
269 typedef boxx * boxxptr;
|
nuclear@2
|
270
|
nuclear@2
|
271
|
nuclear@2
|
272 LOCAL(boxxptr)
|
nuclear@2
|
273 find_biggest_color_pop (boxxptr boxxlist, int numboxxes)
|
nuclear@2
|
274 /* Find the splittable boxx with the largest color population */
|
nuclear@2
|
275 /* Returns NULL if no splittable boxxes remain */
|
nuclear@2
|
276 {
|
nuclear@2
|
277 register boxxptr boxxp;
|
nuclear@2
|
278 register int i;
|
nuclear@2
|
279 register long maxc = 0;
|
nuclear@2
|
280 boxxptr which = NULL;
|
nuclear@2
|
281
|
nuclear@2
|
282 for (i = 0, boxxp = boxxlist; i < numboxxes; i++, boxxp++) {
|
nuclear@2
|
283 if (boxxp->colorcount > maxc && boxxp->volume > 0) {
|
nuclear@2
|
284 which = boxxp;
|
nuclear@2
|
285 maxc = boxxp->colorcount;
|
nuclear@2
|
286 }
|
nuclear@2
|
287 }
|
nuclear@2
|
288 return which;
|
nuclear@2
|
289 }
|
nuclear@2
|
290
|
nuclear@2
|
291
|
nuclear@2
|
292 LOCAL(boxxptr)
|
nuclear@2
|
293 find_biggest_volume (boxxptr boxxlist, int numboxxes)
|
nuclear@2
|
294 /* Find the splittable boxx with the largest (scaled) volume */
|
nuclear@2
|
295 /* Returns NULL if no splittable boxxes remain */
|
nuclear@2
|
296 {
|
nuclear@2
|
297 register boxxptr boxxp;
|
nuclear@2
|
298 register int i;
|
nuclear@2
|
299 register INT32 maxv = 0;
|
nuclear@2
|
300 boxxptr which = NULL;
|
nuclear@2
|
301
|
nuclear@2
|
302 for (i = 0, boxxp = boxxlist; i < numboxxes; i++, boxxp++) {
|
nuclear@2
|
303 if (boxxp->volume > maxv) {
|
nuclear@2
|
304 which = boxxp;
|
nuclear@2
|
305 maxv = boxxp->volume;
|
nuclear@2
|
306 }
|
nuclear@2
|
307 }
|
nuclear@2
|
308 return which;
|
nuclear@2
|
309 }
|
nuclear@2
|
310
|
nuclear@2
|
311
|
nuclear@2
|
312 LOCAL(void)
|
nuclear@2
|
313 update_boxx (j_decompress_ptr cinfo, boxxptr boxxp)
|
nuclear@2
|
314 /* Shrink the min/max bounds of a boxx to enclose only nonzero elements, */
|
nuclear@2
|
315 /* and recompute its volume and population */
|
nuclear@2
|
316 {
|
nuclear@2
|
317 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
nuclear@2
|
318 hist3d histogram = cquantize->histogram;
|
nuclear@2
|
319 histptr histp;
|
nuclear@2
|
320 int c0,c1,c2;
|
nuclear@2
|
321 int c0min,c0max,c1min,c1max,c2min,c2max;
|
nuclear@2
|
322 INT32 dist0,dist1,dist2;
|
nuclear@2
|
323 long ccount;
|
nuclear@2
|
324
|
nuclear@2
|
325 c0min = boxxp->c0min; c0max = boxxp->c0max;
|
nuclear@2
|
326 c1min = boxxp->c1min; c1max = boxxp->c1max;
|
nuclear@2
|
327 c2min = boxxp->c2min; c2max = boxxp->c2max;
|
nuclear@2
|
328
|
nuclear@2
|
329 if (c0max > c0min)
|
nuclear@2
|
330 for (c0 = c0min; c0 <= c0max; c0++)
|
nuclear@2
|
331 for (c1 = c1min; c1 <= c1max; c1++) {
|
nuclear@2
|
332 histp = & histogram[c0][c1][c2min];
|
nuclear@2
|
333 for (c2 = c2min; c2 <= c2max; c2++)
|
nuclear@2
|
334 if (*histp++ != 0) {
|
nuclear@2
|
335 boxxp->c0min = c0min = c0;
|
nuclear@2
|
336 goto have_c0min;
|
nuclear@2
|
337 }
|
nuclear@2
|
338 }
|
nuclear@2
|
339 have_c0min:
|
nuclear@2
|
340 if (c0max > c0min)
|
nuclear@2
|
341 for (c0 = c0max; c0 >= c0min; c0--)
|
nuclear@2
|
342 for (c1 = c1min; c1 <= c1max; c1++) {
|
nuclear@2
|
343 histp = & histogram[c0][c1][c2min];
|
nuclear@2
|
344 for (c2 = c2min; c2 <= c2max; c2++)
|
nuclear@2
|
345 if (*histp++ != 0) {
|
nuclear@2
|
346 boxxp->c0max = c0max = c0;
|
nuclear@2
|
347 goto have_c0max;
|
nuclear@2
|
348 }
|
nuclear@2
|
349 }
|
nuclear@2
|
350 have_c0max:
|
nuclear@2
|
351 if (c1max > c1min)
|
nuclear@2
|
352 for (c1 = c1min; c1 <= c1max; c1++)
|
nuclear@2
|
353 for (c0 = c0min; c0 <= c0max; c0++) {
|
nuclear@2
|
354 histp = & histogram[c0][c1][c2min];
|
nuclear@2
|
355 for (c2 = c2min; c2 <= c2max; c2++)
|
nuclear@2
|
356 if (*histp++ != 0) {
|
nuclear@2
|
357 boxxp->c1min = c1min = c1;
|
nuclear@2
|
358 goto have_c1min;
|
nuclear@2
|
359 }
|
nuclear@2
|
360 }
|
nuclear@2
|
361 have_c1min:
|
nuclear@2
|
362 if (c1max > c1min)
|
nuclear@2
|
363 for (c1 = c1max; c1 >= c1min; c1--)
|
nuclear@2
|
364 for (c0 = c0min; c0 <= c0max; c0++) {
|
nuclear@2
|
365 histp = & histogram[c0][c1][c2min];
|
nuclear@2
|
366 for (c2 = c2min; c2 <= c2max; c2++)
|
nuclear@2
|
367 if (*histp++ != 0) {
|
nuclear@2
|
368 boxxp->c1max = c1max = c1;
|
nuclear@2
|
369 goto have_c1max;
|
nuclear@2
|
370 }
|
nuclear@2
|
371 }
|
nuclear@2
|
372 have_c1max:
|
nuclear@2
|
373 if (c2max > c2min)
|
nuclear@2
|
374 for (c2 = c2min; c2 <= c2max; c2++)
|
nuclear@2
|
375 for (c0 = c0min; c0 <= c0max; c0++) {
|
nuclear@2
|
376 histp = & histogram[c0][c1min][c2];
|
nuclear@2
|
377 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
|
nuclear@2
|
378 if (*histp != 0) {
|
nuclear@2
|
379 boxxp->c2min = c2min = c2;
|
nuclear@2
|
380 goto have_c2min;
|
nuclear@2
|
381 }
|
nuclear@2
|
382 }
|
nuclear@2
|
383 have_c2min:
|
nuclear@2
|
384 if (c2max > c2min)
|
nuclear@2
|
385 for (c2 = c2max; c2 >= c2min; c2--)
|
nuclear@2
|
386 for (c0 = c0min; c0 <= c0max; c0++) {
|
nuclear@2
|
387 histp = & histogram[c0][c1min][c2];
|
nuclear@2
|
388 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
|
nuclear@2
|
389 if (*histp != 0) {
|
nuclear@2
|
390 boxxp->c2max = c2max = c2;
|
nuclear@2
|
391 goto have_c2max;
|
nuclear@2
|
392 }
|
nuclear@2
|
393 }
|
nuclear@2
|
394 have_c2max:
|
nuclear@2
|
395
|
nuclear@2
|
396 /* Update boxx volume.
|
nuclear@2
|
397 * We use 2-norm rather than real volume here; this biases the method
|
nuclear@2
|
398 * against making long narrow boxxes, and it has the side benefit that
|
nuclear@2
|
399 * a boxx is splittable iff norm > 0.
|
nuclear@2
|
400 * Since the differences are expressed in histogram-cell units,
|
nuclear@2
|
401 * we have to shift back to JSAMPLE units to get consistent distances;
|
nuclear@2
|
402 * after which, we scale according to the selected distance scale factors.
|
nuclear@2
|
403 */
|
nuclear@2
|
404 dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
|
nuclear@2
|
405 dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
|
nuclear@2
|
406 dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
|
nuclear@2
|
407 boxxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
|
nuclear@2
|
408
|
nuclear@2
|
409 /* Now scan remaining volume of boxx and compute population */
|
nuclear@2
|
410 ccount = 0;
|
nuclear@2
|
411 for (c0 = c0min; c0 <= c0max; c0++)
|
nuclear@2
|
412 for (c1 = c1min; c1 <= c1max; c1++) {
|
nuclear@2
|
413 histp = & histogram[c0][c1][c2min];
|
nuclear@2
|
414 for (c2 = c2min; c2 <= c2max; c2++, histp++)
|
nuclear@2
|
415 if (*histp != 0) {
|
nuclear@2
|
416 ccount++;
|
nuclear@2
|
417 }
|
nuclear@2
|
418 }
|
nuclear@2
|
419 boxxp->colorcount = ccount;
|
nuclear@2
|
420 }
|
nuclear@2
|
421
|
nuclear@2
|
422
|
nuclear@2
|
423 LOCAL(int)
|
nuclear@2
|
424 median_cut (j_decompress_ptr cinfo, boxxptr boxxlist, int numboxxes,
|
nuclear@2
|
425 int desired_colors)
|
nuclear@2
|
426 /* Repeatedly select and split the largest boxx until we have enough boxxes */
|
nuclear@2
|
427 {
|
nuclear@2
|
428 int n,lb;
|
nuclear@2
|
429 int c0,c1,c2,cmax;
|
nuclear@2
|
430 register boxxptr b1,b2;
|
nuclear@2
|
431
|
nuclear@2
|
432 while (numboxxes < desired_colors) {
|
nuclear@2
|
433 /* Select boxx to split.
|
nuclear@2
|
434 * Current algorithm: by population for first half, then by volume.
|
nuclear@2
|
435 */
|
nuclear@2
|
436 if (numboxxes*2 <= desired_colors) {
|
nuclear@2
|
437 b1 = find_biggest_color_pop(boxxlist, numboxxes);
|
nuclear@2
|
438 } else {
|
nuclear@2
|
439 b1 = find_biggest_volume(boxxlist, numboxxes);
|
nuclear@2
|
440 }
|
nuclear@2
|
441 if (b1 == NULL) /* no splittable boxxes left! */
|
nuclear@2
|
442 break;
|
nuclear@2
|
443 b2 = &boxxlist[numboxxes]; /* where new boxx will go */
|
nuclear@2
|
444 /* Copy the color bounds to the new boxx. */
|
nuclear@2
|
445 b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
|
nuclear@2
|
446 b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
|
nuclear@2
|
447 /* Choose which axis to split the boxx on.
|
nuclear@2
|
448 * Current algorithm: longest scaled axis.
|
nuclear@2
|
449 * See notes in update_boxx about scaling distances.
|
nuclear@2
|
450 */
|
nuclear@2
|
451 c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
|
nuclear@2
|
452 c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
|
nuclear@2
|
453 c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
|
nuclear@2
|
454 /* We want to break any ties in favor of green, then red, blue last.
|
nuclear@2
|
455 * This code does the right thing for R,G,B or B,G,R color orders only.
|
nuclear@2
|
456 */
|
nuclear@2
|
457 #if RGB_RED == 0
|
nuclear@2
|
458 cmax = c1; n = 1;
|
nuclear@2
|
459 if (c0 > cmax) { cmax = c0; n = 0; }
|
nuclear@2
|
460 if (c2 > cmax) { n = 2; }
|
nuclear@2
|
461 #else
|
nuclear@2
|
462 cmax = c1; n = 1;
|
nuclear@2
|
463 if (c2 > cmax) { cmax = c2; n = 2; }
|
nuclear@2
|
464 if (c0 > cmax) { n = 0; }
|
nuclear@2
|
465 #endif
|
nuclear@2
|
466 /* Choose split point along selected axis, and update boxx bounds.
|
nuclear@2
|
467 * Current algorithm: split at halfway point.
|
nuclear@2
|
468 * (Since the boxx has been shrunk to minimum volume,
|
nuclear@2
|
469 * any split will produce two nonempty subboxxes.)
|
nuclear@2
|
470 * Note that lb value is max for lower boxx, so must be < old max.
|
nuclear@2
|
471 */
|
nuclear@2
|
472 switch (n) {
|
nuclear@2
|
473 case 0:
|
nuclear@2
|
474 lb = (b1->c0max + b1->c0min) / 2;
|
nuclear@2
|
475 b1->c0max = lb;
|
nuclear@2
|
476 b2->c0min = lb+1;
|
nuclear@2
|
477 break;
|
nuclear@2
|
478 case 1:
|
nuclear@2
|
479 lb = (b1->c1max + b1->c1min) / 2;
|
nuclear@2
|
480 b1->c1max = lb;
|
nuclear@2
|
481 b2->c1min = lb+1;
|
nuclear@2
|
482 break;
|
nuclear@2
|
483 case 2:
|
nuclear@2
|
484 lb = (b1->c2max + b1->c2min) / 2;
|
nuclear@2
|
485 b1->c2max = lb;
|
nuclear@2
|
486 b2->c2min = lb+1;
|
nuclear@2
|
487 break;
|
nuclear@2
|
488 }
|
nuclear@2
|
489 /* Update stats for boxxes */
|
nuclear@2
|
490 update_boxx(cinfo, b1);
|
nuclear@2
|
491 update_boxx(cinfo, b2);
|
nuclear@2
|
492 numboxxes++;
|
nuclear@2
|
493 }
|
nuclear@2
|
494 return numboxxes;
|
nuclear@2
|
495 }
|
nuclear@2
|
496
|
nuclear@2
|
497
|
nuclear@2
|
498 LOCAL(void)
|
nuclear@2
|
499 compute_color (j_decompress_ptr cinfo, boxxptr boxxp, int icolor)
|
nuclear@2
|
500 /* Compute representative color for a boxx, put it in colormap[icolor] */
|
nuclear@2
|
501 {
|
nuclear@2
|
502 /* Current algorithm: mean weighted by pixels (not colors) */
|
nuclear@2
|
503 /* Note it is important to get the rounding correct! */
|
nuclear@2
|
504 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
nuclear@2
|
505 hist3d histogram = cquantize->histogram;
|
nuclear@2
|
506 histptr histp;
|
nuclear@2
|
507 int c0,c1,c2;
|
nuclear@2
|
508 int c0min,c0max,c1min,c1max,c2min,c2max;
|
nuclear@2
|
509 long count;
|
nuclear@2
|
510 long total = 0;
|
nuclear@2
|
511 long c0total = 0;
|
nuclear@2
|
512 long c1total = 0;
|
nuclear@2
|
513 long c2total = 0;
|
nuclear@2
|
514
|
nuclear@2
|
515 c0min = boxxp->c0min; c0max = boxxp->c0max;
|
nuclear@2
|
516 c1min = boxxp->c1min; c1max = boxxp->c1max;
|
nuclear@2
|
517 c2min = boxxp->c2min; c2max = boxxp->c2max;
|
nuclear@2
|
518
|
nuclear@2
|
519 for (c0 = c0min; c0 <= c0max; c0++)
|
nuclear@2
|
520 for (c1 = c1min; c1 <= c1max; c1++) {
|
nuclear@2
|
521 histp = & histogram[c0][c1][c2min];
|
nuclear@2
|
522 for (c2 = c2min; c2 <= c2max; c2++) {
|
nuclear@2
|
523 if ((count = *histp++) != 0) {
|
nuclear@2
|
524 total += count;
|
nuclear@2
|
525 c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
|
nuclear@2
|
526 c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
|
nuclear@2
|
527 c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
|
nuclear@2
|
528 }
|
nuclear@2
|
529 }
|
nuclear@2
|
530 }
|
nuclear@2
|
531
|
nuclear@2
|
532 cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
|
nuclear@2
|
533 cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
|
nuclear@2
|
534 cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
|
nuclear@2
|
535 }
|
nuclear@2
|
536
|
nuclear@2
|
537
|
nuclear@2
|
538 LOCAL(void)
|
nuclear@2
|
539 select_colors (j_decompress_ptr cinfo, int desired_colors)
|
nuclear@2
|
540 /* Master routine for color selection */
|
nuclear@2
|
541 {
|
nuclear@2
|
542 boxxptr boxxlist;
|
nuclear@2
|
543 int numboxxes;
|
nuclear@2
|
544 int i;
|
nuclear@2
|
545
|
nuclear@2
|
546 /* Allocate workspace for boxx list */
|
nuclear@2
|
547 boxxlist = (boxxptr) (*cinfo->mem->alloc_small)
|
nuclear@2
|
548 ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(boxx));
|
nuclear@2
|
549 /* Initialize one boxx containing whole space */
|
nuclear@2
|
550 numboxxes = 1;
|
nuclear@2
|
551 boxxlist[0].c0min = 0;
|
nuclear@2
|
552 boxxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
|
nuclear@2
|
553 boxxlist[0].c1min = 0;
|
nuclear@2
|
554 boxxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
|
nuclear@2
|
555 boxxlist[0].c2min = 0;
|
nuclear@2
|
556 boxxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
|
nuclear@2
|
557 /* Shrink it to actually-used volume and set its statistics */
|
nuclear@2
|
558 update_boxx(cinfo, & boxxlist[0]);
|
nuclear@2
|
559 /* Perform median-cut to produce final boxx list */
|
nuclear@2
|
560 numboxxes = median_cut(cinfo, boxxlist, numboxxes, desired_colors);
|
nuclear@2
|
561 /* Compute the representative color for each boxx, fill colormap */
|
nuclear@2
|
562 for (i = 0; i < numboxxes; i++)
|
nuclear@2
|
563 compute_color(cinfo, & boxxlist[i], i);
|
nuclear@2
|
564 cinfo->actual_number_of_colors = numboxxes;
|
nuclear@2
|
565 TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxxes);
|
nuclear@2
|
566 }
|
nuclear@2
|
567
|
nuclear@2
|
568
|
nuclear@2
|
569 /*
|
nuclear@2
|
570 * These routines are concerned with the time-critical task of mapping input
|
nuclear@2
|
571 * colors to the nearest color in the selected colormap.
|
nuclear@2
|
572 *
|
nuclear@2
|
573 * We re-use the histogram space as an "inverse color map", essentially a
|
nuclear@2
|
574 * cache for the results of nearest-color searches. All colors within a
|
nuclear@2
|
575 * histogram cell will be mapped to the same colormap entry, namely the one
|
nuclear@2
|
576 * closest to the cell's center. This may not be quite the closest entry to
|
nuclear@2
|
577 * the actual input color, but it's almost as good. A zero in the cache
|
nuclear@2
|
578 * indicates we haven't found the nearest color for that cell yet; the array
|
nuclear@2
|
579 * is cleared to zeroes before starting the mapping pass. When we find the
|
nuclear@2
|
580 * nearest color for a cell, its colormap index plus one is recorded in the
|
nuclear@2
|
581 * cache for future use. The pass2 scanning routines call fill_inverse_cmap
|
nuclear@2
|
582 * when they need to use an unfilled entry in the cache.
|
nuclear@2
|
583 *
|
nuclear@2
|
584 * Our method of efficiently finding nearest colors is based on the "locally
|
nuclear@2
|
585 * sorted search" idea described by Heckbert and on the incremental distance
|
nuclear@2
|
586 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
|
nuclear@2
|
587 * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
|
nuclear@2
|
588 * the distances from a given colormap entry to each cell of the histogram can
|
nuclear@2
|
589 * be computed quickly using an incremental method: the differences between
|
nuclear@2
|
590 * distances to adjacent cells themselves differ by a constant. This allows a
|
nuclear@2
|
591 * fairly fast implementation of the "brute force" approach of computing the
|
nuclear@2
|
592 * distance from every colormap entry to every histogram cell. Unfortunately,
|
nuclear@2
|
593 * it needs a work array to hold the best-distance-so-far for each histogram
|
nuclear@2
|
594 * cell (because the inner loop has to be over cells, not colormap entries).
|
nuclear@2
|
595 * The work array elements have to be INT32s, so the work array would need
|
nuclear@2
|
596 * 256Kb at our recommended precision. This is not feasible in DOS machines.
|
nuclear@2
|
597 *
|
nuclear@2
|
598 * To get around these problems, we apply Thomas' method to compute the
|
nuclear@2
|
599 * nearest colors for only the cells within a small subboxx of the histogram.
|
nuclear@2
|
600 * The work array need be only as big as the subboxx, so the memory usage
|
nuclear@2
|
601 * problem is solved. Furthermore, we need not fill subboxxes that are never
|
nuclear@2
|
602 * referenced in pass2; many images use only part of the color gamut, so a
|
nuclear@2
|
603 * fair amount of work is saved. An additional advantage of this
|
nuclear@2
|
604 * approach is that we can apply Heckbert's locality criterion to quickly
|
nuclear@2
|
605 * eliminate colormap entries that are far away from the subboxx; typically
|
nuclear@2
|
606 * three-fourths of the colormap entries are rejected by Heckbert's criterion,
|
nuclear@2
|
607 * and we need not compute their distances to individual cells in the subboxx.
|
nuclear@2
|
608 * The speed of this approach is heavily influenced by the subboxx size: too
|
nuclear@2
|
609 * small means too much overhead, too big loses because Heckbert's criterion
|
nuclear@2
|
610 * can't eliminate as many colormap entries. Empirically the best subboxx
|
nuclear@2
|
611 * size seems to be about 1/512th of the histogram (1/8th in each direction).
|
nuclear@2
|
612 *
|
nuclear@2
|
613 * Thomas' article also describes a refined method which is asymptotically
|
nuclear@2
|
614 * faster than the brute-force method, but it is also far more complex and
|
nuclear@2
|
615 * cannot efficiently be applied to small subboxxes. It is therefore not
|
nuclear@2
|
616 * useful for programs intended to be portable to DOS machines. On machines
|
nuclear@2
|
617 * with plenty of memory, filling the whole histogram in one shot with Thomas'
|
nuclear@2
|
618 * refined method might be faster than the present code --- but then again,
|
nuclear@2
|
619 * it might not be any faster, and it's certainly more complicated.
|
nuclear@2
|
620 */
|
nuclear@2
|
621
|
nuclear@2
|
622
|
nuclear@2
|
623 /* log2(histogram cells in update boxx) for each axis; this can be adjusted */
|
nuclear@2
|
624 #define BOX_C0_LOG (HIST_C0_BITS-3)
|
nuclear@2
|
625 #define BOX_C1_LOG (HIST_C1_BITS-3)
|
nuclear@2
|
626 #define BOX_C2_LOG (HIST_C2_BITS-3)
|
nuclear@2
|
627
|
nuclear@2
|
628 #define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update boxx */
|
nuclear@2
|
629 #define BOX_C1_ELEMS (1<<BOX_C1_LOG)
|
nuclear@2
|
630 #define BOX_C2_ELEMS (1<<BOX_C2_LOG)
|
nuclear@2
|
631
|
nuclear@2
|
632 #define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG)
|
nuclear@2
|
633 #define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG)
|
nuclear@2
|
634 #define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG)
|
nuclear@2
|
635
|
nuclear@2
|
636
|
nuclear@2
|
637 /*
|
nuclear@2
|
638 * The next three routines implement inverse colormap filling. They could
|
nuclear@2
|
639 * all be folded into one big routine, but splitting them up this way saves
|
nuclear@2
|
640 * some stack space (the mindist[] and bestdist[] arrays need not coexist)
|
nuclear@2
|
641 * and may allow some compilers to produce better code by registerizing more
|
nuclear@2
|
642 * inner-loop variables.
|
nuclear@2
|
643 */
|
nuclear@2
|
644
|
nuclear@2
|
645 LOCAL(int)
|
nuclear@2
|
646 find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
|
nuclear@2
|
647 JSAMPLE colorlist[])
|
nuclear@2
|
648 /* Locate the colormap entries close enough to an update boxx to be candidates
|
nuclear@2
|
649 * for the nearest entry to some cell(s) in the update boxx. The update boxx
|
nuclear@2
|
650 * is specified by the center coordinates of its first cell. The number of
|
nuclear@2
|
651 * candidate colormap entries is returned, and their colormap indexes are
|
nuclear@2
|
652 * placed in colorlist[].
|
nuclear@2
|
653 * This routine uses Heckbert's "locally sorted search" criterion to select
|
nuclear@2
|
654 * the colors that need further consideration.
|
nuclear@2
|
655 */
|
nuclear@2
|
656 {
|
nuclear@2
|
657 int numcolors = cinfo->actual_number_of_colors;
|
nuclear@2
|
658 int maxc0, maxc1, maxc2;
|
nuclear@2
|
659 int centerc0, centerc1, centerc2;
|
nuclear@2
|
660 int i, x, ncolors;
|
nuclear@2
|
661 INT32 minmaxdist, min_dist, max_dist, tdist;
|
nuclear@2
|
662 INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
|
nuclear@2
|
663
|
nuclear@2
|
664 /* Compute true coordinates of update boxx's upper corner and center.
|
nuclear@2
|
665 * Actually we compute the coordinates of the center of the upper-corner
|
nuclear@2
|
666 * histogram cell, which are the upper bounds of the volume we care about.
|
nuclear@2
|
667 * Note that since ">>" rounds down, the "center" values may be closer to
|
nuclear@2
|
668 * min than to max; hence comparisons to them must be "<=", not "<".
|
nuclear@2
|
669 */
|
nuclear@2
|
670 maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
|
nuclear@2
|
671 centerc0 = (minc0 + maxc0) >> 1;
|
nuclear@2
|
672 maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
|
nuclear@2
|
673 centerc1 = (minc1 + maxc1) >> 1;
|
nuclear@2
|
674 maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
|
nuclear@2
|
675 centerc2 = (minc2 + maxc2) >> 1;
|
nuclear@2
|
676
|
nuclear@2
|
677 /* For each color in colormap, find:
|
nuclear@2
|
678 * 1. its minimum squared-distance to any point in the update boxx
|
nuclear@2
|
679 * (zero if color is within update boxx);
|
nuclear@2
|
680 * 2. its maximum squared-distance to any point in the update boxx.
|
nuclear@2
|
681 * Both of these can be found by considering only the corners of the boxx.
|
nuclear@2
|
682 * We save the minimum distance for each color in mindist[];
|
nuclear@2
|
683 * only the smallest maximum distance is of interest.
|
nuclear@2
|
684 */
|
nuclear@2
|
685 minmaxdist = 0x7FFFFFFFL;
|
nuclear@2
|
686
|
nuclear@2
|
687 for (i = 0; i < numcolors; i++) {
|
nuclear@2
|
688 /* We compute the squared-c0-distance term, then add in the other two. */
|
nuclear@2
|
689 x = GETJSAMPLE(cinfo->colormap[0][i]);
|
nuclear@2
|
690 if (x < minc0) {
|
nuclear@2
|
691 tdist = (x - minc0) * C0_SCALE;
|
nuclear@2
|
692 min_dist = tdist*tdist;
|
nuclear@2
|
693 tdist = (x - maxc0) * C0_SCALE;
|
nuclear@2
|
694 max_dist = tdist*tdist;
|
nuclear@2
|
695 } else if (x > maxc0) {
|
nuclear@2
|
696 tdist = (x - maxc0) * C0_SCALE;
|
nuclear@2
|
697 min_dist = tdist*tdist;
|
nuclear@2
|
698 tdist = (x - minc0) * C0_SCALE;
|
nuclear@2
|
699 max_dist = tdist*tdist;
|
nuclear@2
|
700 } else {
|
nuclear@2
|
701 /* within cell range so no contribution to min_dist */
|
nuclear@2
|
702 min_dist = 0;
|
nuclear@2
|
703 if (x <= centerc0) {
|
nuclear@2
|
704 tdist = (x - maxc0) * C0_SCALE;
|
nuclear@2
|
705 max_dist = tdist*tdist;
|
nuclear@2
|
706 } else {
|
nuclear@2
|
707 tdist = (x - minc0) * C0_SCALE;
|
nuclear@2
|
708 max_dist = tdist*tdist;
|
nuclear@2
|
709 }
|
nuclear@2
|
710 }
|
nuclear@2
|
711
|
nuclear@2
|
712 x = GETJSAMPLE(cinfo->colormap[1][i]);
|
nuclear@2
|
713 if (x < minc1) {
|
nuclear@2
|
714 tdist = (x - minc1) * C1_SCALE;
|
nuclear@2
|
715 min_dist += tdist*tdist;
|
nuclear@2
|
716 tdist = (x - maxc1) * C1_SCALE;
|
nuclear@2
|
717 max_dist += tdist*tdist;
|
nuclear@2
|
718 } else if (x > maxc1) {
|
nuclear@2
|
719 tdist = (x - maxc1) * C1_SCALE;
|
nuclear@2
|
720 min_dist += tdist*tdist;
|
nuclear@2
|
721 tdist = (x - minc1) * C1_SCALE;
|
nuclear@2
|
722 max_dist += tdist*tdist;
|
nuclear@2
|
723 } else {
|
nuclear@2
|
724 /* within cell range so no contribution to min_dist */
|
nuclear@2
|
725 if (x <= centerc1) {
|
nuclear@2
|
726 tdist = (x - maxc1) * C1_SCALE;
|
nuclear@2
|
727 max_dist += tdist*tdist;
|
nuclear@2
|
728 } else {
|
nuclear@2
|
729 tdist = (x - minc1) * C1_SCALE;
|
nuclear@2
|
730 max_dist += tdist*tdist;
|
nuclear@2
|
731 }
|
nuclear@2
|
732 }
|
nuclear@2
|
733
|
nuclear@2
|
734 x = GETJSAMPLE(cinfo->colormap[2][i]);
|
nuclear@2
|
735 if (x < minc2) {
|
nuclear@2
|
736 tdist = (x - minc2) * C2_SCALE;
|
nuclear@2
|
737 min_dist += tdist*tdist;
|
nuclear@2
|
738 tdist = (x - maxc2) * C2_SCALE;
|
nuclear@2
|
739 max_dist += tdist*tdist;
|
nuclear@2
|
740 } else if (x > maxc2) {
|
nuclear@2
|
741 tdist = (x - maxc2) * C2_SCALE;
|
nuclear@2
|
742 min_dist += tdist*tdist;
|
nuclear@2
|
743 tdist = (x - minc2) * C2_SCALE;
|
nuclear@2
|
744 max_dist += tdist*tdist;
|
nuclear@2
|
745 } else {
|
nuclear@2
|
746 /* within cell range so no contribution to min_dist */
|
nuclear@2
|
747 if (x <= centerc2) {
|
nuclear@2
|
748 tdist = (x - maxc2) * C2_SCALE;
|
nuclear@2
|
749 max_dist += tdist*tdist;
|
nuclear@2
|
750 } else {
|
nuclear@2
|
751 tdist = (x - minc2) * C2_SCALE;
|
nuclear@2
|
752 max_dist += tdist*tdist;
|
nuclear@2
|
753 }
|
nuclear@2
|
754 }
|
nuclear@2
|
755
|
nuclear@2
|
756 mindist[i] = min_dist; /* save away the results */
|
nuclear@2
|
757 if (max_dist < minmaxdist)
|
nuclear@2
|
758 minmaxdist = max_dist;
|
nuclear@2
|
759 }
|
nuclear@2
|
760
|
nuclear@2
|
761 /* Now we know that no cell in the update boxx is more than minmaxdist
|
nuclear@2
|
762 * away from some colormap entry. Therefore, only colors that are
|
nuclear@2
|
763 * within minmaxdist of some part of the boxx need be considered.
|
nuclear@2
|
764 */
|
nuclear@2
|
765 ncolors = 0;
|
nuclear@2
|
766 for (i = 0; i < numcolors; i++) {
|
nuclear@2
|
767 if (mindist[i] <= minmaxdist)
|
nuclear@2
|
768 colorlist[ncolors++] = (JSAMPLE) i;
|
nuclear@2
|
769 }
|
nuclear@2
|
770 return ncolors;
|
nuclear@2
|
771 }
|
nuclear@2
|
772
|
nuclear@2
|
773
|
nuclear@2
|
774 LOCAL(void)
|
nuclear@2
|
775 find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
|
nuclear@2
|
776 int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
|
nuclear@2
|
777 /* Find the closest colormap entry for each cell in the update boxx,
|
nuclear@2
|
778 * given the list of candidate colors prepared by find_nearby_colors.
|
nuclear@2
|
779 * Return the indexes of the closest entries in the bestcolor[] array.
|
nuclear@2
|
780 * This routine uses Thomas' incremental distance calculation method to
|
nuclear@2
|
781 * find the distance from a colormap entry to successive cells in the boxx.
|
nuclear@2
|
782 */
|
nuclear@2
|
783 {
|
nuclear@2
|
784 int ic0, ic1, ic2;
|
nuclear@2
|
785 int i, icolor;
|
nuclear@2
|
786 register INT32 * bptr; /* pointer into bestdist[] array */
|
nuclear@2
|
787 JSAMPLE * cptr; /* pointer into bestcolor[] array */
|
nuclear@2
|
788 INT32 dist0, dist1; /* initial distance values */
|
nuclear@2
|
789 register INT32 dist2; /* current distance in inner loop */
|
nuclear@2
|
790 INT32 xx0, xx1; /* distance increments */
|
nuclear@2
|
791 register INT32 xx2;
|
nuclear@2
|
792 INT32 inc0, inc1, inc2; /* initial values for increments */
|
nuclear@2
|
793 /* This array holds the distance to the nearest-so-far color for each cell */
|
nuclear@2
|
794 INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
|
nuclear@2
|
795
|
nuclear@2
|
796 /* Initialize best-distance for each cell of the update boxx */
|
nuclear@2
|
797 bptr = bestdist;
|
nuclear@2
|
798 for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
|
nuclear@2
|
799 *bptr++ = 0x7FFFFFFFL;
|
nuclear@2
|
800
|
nuclear@2
|
801 /* For each color selected by find_nearby_colors,
|
nuclear@2
|
802 * compute its distance to the center of each cell in the boxx.
|
nuclear@2
|
803 * If that's less than best-so-far, update best distance and color number.
|
nuclear@2
|
804 */
|
nuclear@2
|
805
|
nuclear@2
|
806 /* Nominal steps between cell centers ("x" in Thomas article) */
|
nuclear@2
|
807 #define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE)
|
nuclear@2
|
808 #define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE)
|
nuclear@2
|
809 #define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE)
|
nuclear@2
|
810
|
nuclear@2
|
811 for (i = 0; i < numcolors; i++) {
|
nuclear@2
|
812 icolor = GETJSAMPLE(colorlist[i]);
|
nuclear@2
|
813 /* Compute (square of) distance from minc0/c1/c2 to this color */
|
nuclear@2
|
814 inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
|
nuclear@2
|
815 dist0 = inc0*inc0;
|
nuclear@2
|
816 inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
|
nuclear@2
|
817 dist0 += inc1*inc1;
|
nuclear@2
|
818 inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
|
nuclear@2
|
819 dist0 += inc2*inc2;
|
nuclear@2
|
820 /* Form the initial difference increments */
|
nuclear@2
|
821 inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
|
nuclear@2
|
822 inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
|
nuclear@2
|
823 inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
|
nuclear@2
|
824 /* Now loop over all cells in boxx, updating distance per Thomas method */
|
nuclear@2
|
825 bptr = bestdist;
|
nuclear@2
|
826 cptr = bestcolor;
|
nuclear@2
|
827 xx0 = inc0;
|
nuclear@2
|
828 for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
|
nuclear@2
|
829 dist1 = dist0;
|
nuclear@2
|
830 xx1 = inc1;
|
nuclear@2
|
831 for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
|
nuclear@2
|
832 dist2 = dist1;
|
nuclear@2
|
833 xx2 = inc2;
|
nuclear@2
|
834 for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
|
nuclear@2
|
835 if (dist2 < *bptr) {
|
nuclear@2
|
836 *bptr = dist2;
|
nuclear@2
|
837 *cptr = (JSAMPLE) icolor;
|
nuclear@2
|
838 }
|
nuclear@2
|
839 dist2 += xx2;
|
nuclear@2
|
840 xx2 += 2 * STEP_C2 * STEP_C2;
|
nuclear@2
|
841 bptr++;
|
nuclear@2
|
842 cptr++;
|
nuclear@2
|
843 }
|
nuclear@2
|
844 dist1 += xx1;
|
nuclear@2
|
845 xx1 += 2 * STEP_C1 * STEP_C1;
|
nuclear@2
|
846 }
|
nuclear@2
|
847 dist0 += xx0;
|
nuclear@2
|
848 xx0 += 2 * STEP_C0 * STEP_C0;
|
nuclear@2
|
849 }
|
nuclear@2
|
850 }
|
nuclear@2
|
851 }
|
nuclear@2
|
852
|
nuclear@2
|
853
|
nuclear@2
|
854 LOCAL(void)
|
nuclear@2
|
855 fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
|
nuclear@2
|
856 /* Fill the inverse-colormap entries in the update boxx that contains */
|
nuclear@2
|
857 /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */
|
nuclear@2
|
858 /* we can fill as many others as we wish.) */
|
nuclear@2
|
859 {
|
nuclear@2
|
860 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
nuclear@2
|
861 hist3d histogram = cquantize->histogram;
|
nuclear@2
|
862 int minc0, minc1, minc2; /* lower left corner of update boxx */
|
nuclear@2
|
863 int ic0, ic1, ic2;
|
nuclear@2
|
864 register JSAMPLE * cptr; /* pointer into bestcolor[] array */
|
nuclear@2
|
865 register histptr cachep; /* pointer into main cache array */
|
nuclear@2
|
866 /* This array lists the candidate colormap indexes. */
|
nuclear@2
|
867 JSAMPLE colorlist[MAXNUMCOLORS];
|
nuclear@2
|
868 int numcolors; /* number of candidate colors */
|
nuclear@2
|
869 /* This array holds the actually closest colormap index for each cell. */
|
nuclear@2
|
870 JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
|
nuclear@2
|
871
|
nuclear@2
|
872 /* Convert cell coordinates to update boxx ID */
|
nuclear@2
|
873 c0 >>= BOX_C0_LOG;
|
nuclear@2
|
874 c1 >>= BOX_C1_LOG;
|
nuclear@2
|
875 c2 >>= BOX_C2_LOG;
|
nuclear@2
|
876
|
nuclear@2
|
877 /* Compute true coordinates of update boxx's origin corner.
|
nuclear@2
|
878 * Actually we compute the coordinates of the center of the corner
|
nuclear@2
|
879 * histogram cell, which are the lower bounds of the volume we care about.
|
nuclear@2
|
880 */
|
nuclear@2
|
881 minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
|
nuclear@2
|
882 minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
|
nuclear@2
|
883 minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
|
nuclear@2
|
884
|
nuclear@2
|
885 /* Determine which colormap entries are close enough to be candidates
|
nuclear@2
|
886 * for the nearest entry to some cell in the update boxx.
|
nuclear@2
|
887 */
|
nuclear@2
|
888 numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
|
nuclear@2
|
889
|
nuclear@2
|
890 /* Determine the actually nearest colors. */
|
nuclear@2
|
891 find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
|
nuclear@2
|
892 bestcolor);
|
nuclear@2
|
893
|
nuclear@2
|
894 /* Save the best color numbers (plus 1) in the main cache array */
|
nuclear@2
|
895 c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */
|
nuclear@2
|
896 c1 <<= BOX_C1_LOG;
|
nuclear@2
|
897 c2 <<= BOX_C2_LOG;
|
nuclear@2
|
898 cptr = bestcolor;
|
nuclear@2
|
899 for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
|
nuclear@2
|
900 for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
|
nuclear@2
|
901 cachep = & histogram[c0+ic0][c1+ic1][c2];
|
nuclear@2
|
902 for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
|
nuclear@2
|
903 *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
|
nuclear@2
|
904 }
|
nuclear@2
|
905 }
|
nuclear@2
|
906 }
|
nuclear@2
|
907 }
|
nuclear@2
|
908
|
nuclear@2
|
909
|
nuclear@2
|
910 /*
|
nuclear@2
|
911 * Map some rows of pixels to the output colormapped representation.
|
nuclear@2
|
912 */
|
nuclear@2
|
913
|
nuclear@2
|
914 METHODDEF(void)
|
nuclear@2
|
915 pass2_no_dither (j_decompress_ptr cinfo,
|
nuclear@2
|
916 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
|
nuclear@2
|
917 /* This version performs no dithering */
|
nuclear@2
|
918 {
|
nuclear@2
|
919 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
nuclear@2
|
920 hist3d histogram = cquantize->histogram;
|
nuclear@2
|
921 register JSAMPROW inptr, outptr;
|
nuclear@2
|
922 register histptr cachep;
|
nuclear@2
|
923 register int c0, c1, c2;
|
nuclear@2
|
924 int row;
|
nuclear@2
|
925 JDIMENSION col;
|
nuclear@2
|
926 JDIMENSION width = cinfo->output_width;
|
nuclear@2
|
927
|
nuclear@2
|
928 for (row = 0; row < num_rows; row++) {
|
nuclear@2
|
929 inptr = input_buf[row];
|
nuclear@2
|
930 outptr = output_buf[row];
|
nuclear@2
|
931 for (col = width; col > 0; col--) {
|
nuclear@2
|
932 /* get pixel value and index into the cache */
|
nuclear@2
|
933 c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
|
nuclear@2
|
934 c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
|
nuclear@2
|
935 c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
|
nuclear@2
|
936 cachep = & histogram[c0][c1][c2];
|
nuclear@2
|
937 /* If we have not seen this color before, find nearest colormap entry */
|
nuclear@2
|
938 /* and update the cache */
|
nuclear@2
|
939 if (*cachep == 0)
|
nuclear@2
|
940 fill_inverse_cmap(cinfo, c0,c1,c2);
|
nuclear@2
|
941 /* Now emit the colormap index for this cell */
|
nuclear@2
|
942 *outptr++ = (JSAMPLE) (*cachep - 1);
|
nuclear@2
|
943 }
|
nuclear@2
|
944 }
|
nuclear@2
|
945 }
|
nuclear@2
|
946
|
nuclear@2
|
947
|
nuclear@2
|
948 METHODDEF(void)
|
nuclear@2
|
949 pass2_fs_dither (j_decompress_ptr cinfo,
|
nuclear@2
|
950 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
|
nuclear@2
|
951 /* This version performs Floyd-Steinberg dithering */
|
nuclear@2
|
952 {
|
nuclear@2
|
953 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
nuclear@2
|
954 hist3d histogram = cquantize->histogram;
|
nuclear@2
|
955 register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
|
nuclear@2
|
956 LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
|
nuclear@2
|
957 LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
|
nuclear@2
|
958 register FSERRPTR errorptr; /* => fserrors[] at column before current */
|
nuclear@2
|
959 JSAMPROW inptr; /* => current input pixel */
|
nuclear@2
|
960 JSAMPROW outptr; /* => current output pixel */
|
nuclear@2
|
961 histptr cachep;
|
nuclear@2
|
962 int dir; /* +1 or -1 depending on direction */
|
nuclear@2
|
963 int dir3; /* 3*dir, for advancing inptr & errorptr */
|
nuclear@2
|
964 int row;
|
nuclear@2
|
965 JDIMENSION col;
|
nuclear@2
|
966 JDIMENSION width = cinfo->output_width;
|
nuclear@2
|
967 JSAMPLE *range_limit = cinfo->sample_range_limit;
|
nuclear@2
|
968 int *error_limit = cquantize->error_limiter;
|
nuclear@2
|
969 JSAMPROW colormap0 = cinfo->colormap[0];
|
nuclear@2
|
970 JSAMPROW colormap1 = cinfo->colormap[1];
|
nuclear@2
|
971 JSAMPROW colormap2 = cinfo->colormap[2];
|
nuclear@2
|
972 SHIFT_TEMPS
|
nuclear@2
|
973
|
nuclear@2
|
974 for (row = 0; row < num_rows; row++) {
|
nuclear@2
|
975 inptr = input_buf[row];
|
nuclear@2
|
976 outptr = output_buf[row];
|
nuclear@2
|
977 if (cquantize->on_odd_row) {
|
nuclear@2
|
978 /* work right to left in this row */
|
nuclear@2
|
979 inptr += (width-1) * 3; /* so point to rightmost pixel */
|
nuclear@2
|
980 outptr += width-1;
|
nuclear@2
|
981 dir = -1;
|
nuclear@2
|
982 dir3 = -3;
|
nuclear@2
|
983 errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
|
nuclear@2
|
984 cquantize->on_odd_row = FALSE; /* flip for next time */
|
nuclear@2
|
985 } else {
|
nuclear@2
|
986 /* work left to right in this row */
|
nuclear@2
|
987 dir = 1;
|
nuclear@2
|
988 dir3 = 3;
|
nuclear@2
|
989 errorptr = cquantize->fserrors; /* => entry before first real column */
|
nuclear@2
|
990 cquantize->on_odd_row = TRUE; /* flip for next time */
|
nuclear@2
|
991 }
|
nuclear@2
|
992 /* Preset error values: no error propagated to first pixel from left */
|
nuclear@2
|
993 cur0 = cur1 = cur2 = 0;
|
nuclear@2
|
994 /* and no error propagated to row below yet */
|
nuclear@2
|
995 belowerr0 = belowerr1 = belowerr2 = 0;
|
nuclear@2
|
996 bpreverr0 = bpreverr1 = bpreverr2 = 0;
|
nuclear@2
|
997
|
nuclear@2
|
998 for (col = width; col > 0; col--) {
|
nuclear@2
|
999 /* curN holds the error propagated from the previous pixel on the
|
nuclear@2
|
1000 * current line. Add the error propagated from the previous line
|
nuclear@2
|
1001 * to form the complete error correction term for this pixel, and
|
nuclear@2
|
1002 * round the error term (which is expressed * 16) to an integer.
|
nuclear@2
|
1003 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
|
nuclear@2
|
1004 * for either sign of the error value.
|
nuclear@2
|
1005 * Note: errorptr points to *previous* column's array entry.
|
nuclear@2
|
1006 */
|
nuclear@2
|
1007 cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
|
nuclear@2
|
1008 cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
|
nuclear@2
|
1009 cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
|
nuclear@2
|
1010 /* Limit the error using transfer function set by init_error_limit.
|
nuclear@2
|
1011 * See comments with init_error_limit for rationale.
|
nuclear@2
|
1012 */
|
nuclear@2
|
1013 cur0 = error_limit[cur0];
|
nuclear@2
|
1014 cur1 = error_limit[cur1];
|
nuclear@2
|
1015 cur2 = error_limit[cur2];
|
nuclear@2
|
1016 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
|
nuclear@2
|
1017 * The maximum error is +- MAXJSAMPLE (or less with error limiting);
|
nuclear@2
|
1018 * this sets the required size of the range_limit array.
|
nuclear@2
|
1019 */
|
nuclear@2
|
1020 cur0 += GETJSAMPLE(inptr[0]);
|
nuclear@2
|
1021 cur1 += GETJSAMPLE(inptr[1]);
|
nuclear@2
|
1022 cur2 += GETJSAMPLE(inptr[2]);
|
nuclear@2
|
1023 cur0 = GETJSAMPLE(range_limit[cur0]);
|
nuclear@2
|
1024 cur1 = GETJSAMPLE(range_limit[cur1]);
|
nuclear@2
|
1025 cur2 = GETJSAMPLE(range_limit[cur2]);
|
nuclear@2
|
1026 /* Index into the cache with adjusted pixel value */
|
nuclear@2
|
1027 cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
|
nuclear@2
|
1028 /* If we have not seen this color before, find nearest colormap */
|
nuclear@2
|
1029 /* entry and update the cache */
|
nuclear@2
|
1030 if (*cachep == 0)
|
nuclear@2
|
1031 fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
|
nuclear@2
|
1032 /* Now emit the colormap index for this cell */
|
nuclear@2
|
1033 { register int pixcode = *cachep - 1;
|
nuclear@2
|
1034 *outptr = (JSAMPLE) pixcode;
|
nuclear@2
|
1035 /* Compute representation error for this pixel */
|
nuclear@2
|
1036 cur0 -= GETJSAMPLE(colormap0[pixcode]);
|
nuclear@2
|
1037 cur1 -= GETJSAMPLE(colormap1[pixcode]);
|
nuclear@2
|
1038 cur2 -= GETJSAMPLE(colormap2[pixcode]);
|
nuclear@2
|
1039 }
|
nuclear@2
|
1040 /* Compute error fractions to be propagated to adjacent pixels.
|
nuclear@2
|
1041 * Add these into the running sums, and simultaneously shift the
|
nuclear@2
|
1042 * next-line error sums left by 1 column.
|
nuclear@2
|
1043 */
|
nuclear@2
|
1044 { register LOCFSERROR bnexterr, delta;
|
nuclear@2
|
1045
|
nuclear@2
|
1046 bnexterr = cur0; /* Process component 0 */
|
nuclear@2
|
1047 delta = cur0 * 2;
|
nuclear@2
|
1048 cur0 += delta; /* form error * 3 */
|
nuclear@2
|
1049 errorptr[0] = (FSERROR) (bpreverr0 + cur0);
|
nuclear@2
|
1050 cur0 += delta; /* form error * 5 */
|
nuclear@2
|
1051 bpreverr0 = belowerr0 + cur0;
|
nuclear@2
|
1052 belowerr0 = bnexterr;
|
nuclear@2
|
1053 cur0 += delta; /* form error * 7 */
|
nuclear@2
|
1054 bnexterr = cur1; /* Process component 1 */
|
nuclear@2
|
1055 delta = cur1 * 2;
|
nuclear@2
|
1056 cur1 += delta; /* form error * 3 */
|
nuclear@2
|
1057 errorptr[1] = (FSERROR) (bpreverr1 + cur1);
|
nuclear@2
|
1058 cur1 += delta; /* form error * 5 */
|
nuclear@2
|
1059 bpreverr1 = belowerr1 + cur1;
|
nuclear@2
|
1060 belowerr1 = bnexterr;
|
nuclear@2
|
1061 cur1 += delta; /* form error * 7 */
|
nuclear@2
|
1062 bnexterr = cur2; /* Process component 2 */
|
nuclear@2
|
1063 delta = cur2 * 2;
|
nuclear@2
|
1064 cur2 += delta; /* form error * 3 */
|
nuclear@2
|
1065 errorptr[2] = (FSERROR) (bpreverr2 + cur2);
|
nuclear@2
|
1066 cur2 += delta; /* form error * 5 */
|
nuclear@2
|
1067 bpreverr2 = belowerr2 + cur2;
|
nuclear@2
|
1068 belowerr2 = bnexterr;
|
nuclear@2
|
1069 cur2 += delta; /* form error * 7 */
|
nuclear@2
|
1070 }
|
nuclear@2
|
1071 /* At this point curN contains the 7/16 error value to be propagated
|
nuclear@2
|
1072 * to the next pixel on the current line, and all the errors for the
|
nuclear@2
|
1073 * next line have been shifted over. We are therefore ready to move on.
|
nuclear@2
|
1074 */
|
nuclear@2
|
1075 inptr += dir3; /* Advance pixel pointers to next column */
|
nuclear@2
|
1076 outptr += dir;
|
nuclear@2
|
1077 errorptr += dir3; /* advance errorptr to current column */
|
nuclear@2
|
1078 }
|
nuclear@2
|
1079 /* Post-loop cleanup: we must unload the final error values into the
|
nuclear@2
|
1080 * final fserrors[] entry. Note we need not unload belowerrN because
|
nuclear@2
|
1081 * it is for the dummy column before or after the actual array.
|
nuclear@2
|
1082 */
|
nuclear@2
|
1083 errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
|
nuclear@2
|
1084 errorptr[1] = (FSERROR) bpreverr1;
|
nuclear@2
|
1085 errorptr[2] = (FSERROR) bpreverr2;
|
nuclear@2
|
1086 }
|
nuclear@2
|
1087 }
|
nuclear@2
|
1088
|
nuclear@2
|
1089
|
nuclear@2
|
1090 /*
|
nuclear@2
|
1091 * Initialize the error-limiting transfer function (lookup table).
|
nuclear@2
|
1092 * The raw F-S error computation can potentially compute error values of up to
|
nuclear@2
|
1093 * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be
|
nuclear@2
|
1094 * much less, otherwise obviously wrong pixels will be created. (Typical
|
nuclear@2
|
1095 * effects include weird fringes at color-area boundaries, isolated bright
|
nuclear@2
|
1096 * pixels in a dark area, etc.) The standard advice for avoiding this problem
|
nuclear@2
|
1097 * is to ensure that the "corners" of the color cube are allocated as output
|
nuclear@2
|
1098 * colors; then repeated errors in the same direction cannot cause cascading
|
nuclear@2
|
1099 * error buildup. However, that only prevents the error from getting
|
nuclear@2
|
1100 * completely out of hand; Aaron Giles reports that error limiting improves
|
nuclear@2
|
1101 * the results even with corner colors allocated.
|
nuclear@2
|
1102 * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
|
nuclear@2
|
1103 * well, but the smoother transfer function used below is even better. Thanks
|
nuclear@2
|
1104 * to Aaron Giles for this idea.
|
nuclear@2
|
1105 */
|
nuclear@2
|
1106
|
nuclear@2
|
1107 LOCAL(void)
|
nuclear@2
|
1108 init_error_limit (j_decompress_ptr cinfo)
|
nuclear@2
|
1109 /* Allocate and fill in the error_limiter table */
|
nuclear@2
|
1110 {
|
nuclear@2
|
1111 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
nuclear@2
|
1112 int * table;
|
nuclear@2
|
1113 int in, out;
|
nuclear@2
|
1114
|
nuclear@2
|
1115 table = (int *) (*cinfo->mem->alloc_small)
|
nuclear@2
|
1116 ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
|
nuclear@2
|
1117 table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
|
nuclear@2
|
1118 cquantize->error_limiter = table;
|
nuclear@2
|
1119
|
nuclear@2
|
1120 #define STEPSIZE ((MAXJSAMPLE+1)/16)
|
nuclear@2
|
1121 /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
|
nuclear@2
|
1122 out = 0;
|
nuclear@2
|
1123 for (in = 0; in < STEPSIZE; in++, out++) {
|
nuclear@2
|
1124 table[in] = out; table[-in] = -out;
|
nuclear@2
|
1125 }
|
nuclear@2
|
1126 /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
|
nuclear@2
|
1127 for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
|
nuclear@2
|
1128 table[in] = out; table[-in] = -out;
|
nuclear@2
|
1129 }
|
nuclear@2
|
1130 /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
|
nuclear@2
|
1131 for (; in <= MAXJSAMPLE; in++) {
|
nuclear@2
|
1132 table[in] = out; table[-in] = -out;
|
nuclear@2
|
1133 }
|
nuclear@2
|
1134 #undef STEPSIZE
|
nuclear@2
|
1135 }
|
nuclear@2
|
1136
|
nuclear@2
|
1137
|
nuclear@2
|
1138 /*
|
nuclear@2
|
1139 * Finish up at the end of each pass.
|
nuclear@2
|
1140 */
|
nuclear@2
|
1141
|
nuclear@2
|
1142 METHODDEF(void)
|
nuclear@2
|
1143 finish_pass1 (j_decompress_ptr cinfo)
|
nuclear@2
|
1144 {
|
nuclear@2
|
1145 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
nuclear@2
|
1146
|
nuclear@2
|
1147 /* Select the representative colors and fill in cinfo->colormap */
|
nuclear@2
|
1148 cinfo->colormap = cquantize->sv_colormap;
|
nuclear@2
|
1149 select_colors(cinfo, cquantize->desired);
|
nuclear@2
|
1150 /* Force next pass to zero the color index table */
|
nuclear@2
|
1151 cquantize->needs_zeroed = TRUE;
|
nuclear@2
|
1152 }
|
nuclear@2
|
1153
|
nuclear@2
|
1154
|
nuclear@2
|
1155 METHODDEF(void)
|
nuclear@2
|
1156 finish_pass2 (j_decompress_ptr cinfo)
|
nuclear@2
|
1157 {
|
nuclear@2
|
1158 /* no work */
|
nuclear@2
|
1159 }
|
nuclear@2
|
1160
|
nuclear@2
|
1161
|
nuclear@2
|
1162 /*
|
nuclear@2
|
1163 * Initialize for each processing pass.
|
nuclear@2
|
1164 */
|
nuclear@2
|
1165
|
nuclear@2
|
1166 METHODDEF(void)
|
nuclear@2
|
1167 start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
|
nuclear@2
|
1168 {
|
nuclear@2
|
1169 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
nuclear@2
|
1170 hist3d histogram = cquantize->histogram;
|
nuclear@2
|
1171 int i;
|
nuclear@2
|
1172
|
nuclear@2
|
1173 /* Only F-S dithering or no dithering is supported. */
|
nuclear@2
|
1174 /* If user asks for ordered dither, give him F-S. */
|
nuclear@2
|
1175 if (cinfo->dither_mode != JDITHER_NONE)
|
nuclear@2
|
1176 cinfo->dither_mode = JDITHER_FS;
|
nuclear@2
|
1177
|
nuclear@2
|
1178 if (is_pre_scan) {
|
nuclear@2
|
1179 /* Set up method pointers */
|
nuclear@2
|
1180 cquantize->pub.color_quantize = prescan_quantize;
|
nuclear@2
|
1181 cquantize->pub.finish_pass = finish_pass1;
|
nuclear@2
|
1182 cquantize->needs_zeroed = TRUE; /* Always zero histogram */
|
nuclear@2
|
1183 } else {
|
nuclear@2
|
1184 /* Set up method pointers */
|
nuclear@2
|
1185 if (cinfo->dither_mode == JDITHER_FS)
|
nuclear@2
|
1186 cquantize->pub.color_quantize = pass2_fs_dither;
|
nuclear@2
|
1187 else
|
nuclear@2
|
1188 cquantize->pub.color_quantize = pass2_no_dither;
|
nuclear@2
|
1189 cquantize->pub.finish_pass = finish_pass2;
|
nuclear@2
|
1190
|
nuclear@2
|
1191 /* Make sure color count is acceptable */
|
nuclear@2
|
1192 i = cinfo->actual_number_of_colors;
|
nuclear@2
|
1193 if (i < 1)
|
nuclear@2
|
1194 ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
|
nuclear@2
|
1195 if (i > MAXNUMCOLORS)
|
nuclear@2
|
1196 ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
|
nuclear@2
|
1197
|
nuclear@2
|
1198 if (cinfo->dither_mode == JDITHER_FS) {
|
nuclear@2
|
1199 size_t arraysize = (size_t) ((cinfo->output_width + 2) *
|
nuclear@2
|
1200 (3 * SIZEOF(FSERROR)));
|
nuclear@2
|
1201 /* Allocate Floyd-Steinberg workspace if we didn't already. */
|
nuclear@2
|
1202 if (cquantize->fserrors == NULL)
|
nuclear@2
|
1203 cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
|
nuclear@2
|
1204 ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
|
nuclear@2
|
1205 /* Initialize the propagated errors to zero. */
|
nuclear@2
|
1206 jzero_far((void FAR *) cquantize->fserrors, arraysize);
|
nuclear@2
|
1207 /* Make the error-limit table if we didn't already. */
|
nuclear@2
|
1208 if (cquantize->error_limiter == NULL)
|
nuclear@2
|
1209 init_error_limit(cinfo);
|
nuclear@2
|
1210 cquantize->on_odd_row = FALSE;
|
nuclear@2
|
1211 }
|
nuclear@2
|
1212
|
nuclear@2
|
1213 }
|
nuclear@2
|
1214 /* Zero the histogram or inverse color map, if necessary */
|
nuclear@2
|
1215 if (cquantize->needs_zeroed) {
|
nuclear@2
|
1216 for (i = 0; i < HIST_C0_ELEMS; i++) {
|
nuclear@2
|
1217 jzero_far((void FAR *) histogram[i],
|
nuclear@2
|
1218 HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
|
nuclear@2
|
1219 }
|
nuclear@2
|
1220 cquantize->needs_zeroed = FALSE;
|
nuclear@2
|
1221 }
|
nuclear@2
|
1222 }
|
nuclear@2
|
1223
|
nuclear@2
|
1224
|
nuclear@2
|
1225 /*
|
nuclear@2
|
1226 * Switch to a new external colormap between output passes.
|
nuclear@2
|
1227 */
|
nuclear@2
|
1228
|
nuclear@2
|
1229 METHODDEF(void)
|
nuclear@2
|
1230 new_color_map_2_quant (j_decompress_ptr cinfo)
|
nuclear@2
|
1231 {
|
nuclear@2
|
1232 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
nuclear@2
|
1233
|
nuclear@2
|
1234 /* Reset the inverse color map */
|
nuclear@2
|
1235 cquantize->needs_zeroed = TRUE;
|
nuclear@2
|
1236 }
|
nuclear@2
|
1237
|
nuclear@2
|
1238
|
nuclear@2
|
1239 /*
|
nuclear@2
|
1240 * Module initialization routine for 2-pass color quantization.
|
nuclear@2
|
1241 */
|
nuclear@2
|
1242
|
nuclear@2
|
1243 GLOBAL(void)
|
nuclear@2
|
1244 jinit_2pass_quantizer (j_decompress_ptr cinfo)
|
nuclear@2
|
1245 {
|
nuclear@2
|
1246 my_cquantize_ptr cquantize;
|
nuclear@2
|
1247 int i;
|
nuclear@2
|
1248
|
nuclear@2
|
1249 cquantize = (my_cquantize_ptr)
|
nuclear@2
|
1250 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
nuclear@2
|
1251 SIZEOF(my_cquantizer));
|
nuclear@2
|
1252 cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
|
nuclear@2
|
1253 cquantize->pub.start_pass = start_pass_2_quant;
|
nuclear@2
|
1254 cquantize->pub.new_color_map = new_color_map_2_quant;
|
nuclear@2
|
1255 cquantize->fserrors = NULL; /* flag optional arrays not allocated */
|
nuclear@2
|
1256 cquantize->error_limiter = NULL;
|
nuclear@2
|
1257
|
nuclear@2
|
1258 /* Make sure jdmaster didn't give me a case I can't handle */
|
nuclear@2
|
1259 if (cinfo->out_color_components != 3)
|
nuclear@2
|
1260 ERREXIT(cinfo, JERR_NOTIMPL);
|
nuclear@2
|
1261
|
nuclear@2
|
1262 /* Allocate the histogram/inverse colormap storage */
|
nuclear@2
|
1263 cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
|
nuclear@2
|
1264 ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
|
nuclear@2
|
1265 for (i = 0; i < HIST_C0_ELEMS; i++) {
|
nuclear@2
|
1266 cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
|
nuclear@2
|
1267 ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
nuclear@2
|
1268 HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
|
nuclear@2
|
1269 }
|
nuclear@2
|
1270 cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
|
nuclear@2
|
1271
|
nuclear@2
|
1272 /* Allocate storage for the completed colormap, if required.
|
nuclear@2
|
1273 * We do this now since it is FAR storage and may affect
|
nuclear@2
|
1274 * the memory manager's space calculations.
|
nuclear@2
|
1275 */
|
nuclear@2
|
1276 if (cinfo->enable_2pass_quant) {
|
nuclear@2
|
1277 /* Make sure color count is acceptable */
|
nuclear@2
|
1278 int desired = cinfo->desired_number_of_colors;
|
nuclear@2
|
1279 /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
|
nuclear@2
|
1280 if (desired < 8)
|
nuclear@2
|
1281 ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
|
nuclear@2
|
1282 /* Make sure colormap indexes can be represented by JSAMPLEs */
|
nuclear@2
|
1283 if (desired > MAXNUMCOLORS)
|
nuclear@2
|
1284 ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
|
nuclear@2
|
1285 cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
|
nuclear@2
|
1286 ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
|
nuclear@2
|
1287 cquantize->desired = desired;
|
nuclear@2
|
1288 } else
|
nuclear@2
|
1289 cquantize->sv_colormap = NULL;
|
nuclear@2
|
1290
|
nuclear@2
|
1291 /* Only F-S dithering or no dithering is supported. */
|
nuclear@2
|
1292 /* If user asks for ordered dither, give him F-S. */
|
nuclear@2
|
1293 if (cinfo->dither_mode != JDITHER_NONE)
|
nuclear@2
|
1294 cinfo->dither_mode = JDITHER_FS;
|
nuclear@2
|
1295
|
nuclear@2
|
1296 /* Allocate Floyd-Steinberg workspace if necessary.
|
nuclear@2
|
1297 * This isn't really needed until pass 2, but again it is FAR storage.
|
nuclear@2
|
1298 * Although we will cope with a later change in dither_mode,
|
nuclear@2
|
1299 * we do not promise to honor max_memory_to_use if dither_mode changes.
|
nuclear@2
|
1300 */
|
nuclear@2
|
1301 if (cinfo->dither_mode == JDITHER_FS) {
|
nuclear@2
|
1302 cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
|
nuclear@2
|
1303 ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
nuclear@2
|
1304 (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));
|
nuclear@2
|
1305 /* Might as well create the error-limiting table too. */
|
nuclear@2
|
1306 init_error_limit(cinfo);
|
nuclear@2
|
1307 }
|
nuclear@2
|
1308 }
|
nuclear@2
|
1309
|
nuclear@2
|
1310 #endif /* QUANT_2PASS_SUPPORTED */
|