rev |
line source |
nuclear@0
|
1 #include <stdio.h>
|
nuclear@0
|
2 #include <math.h>
|
nuclear@0
|
3 #include "camera.h"
|
nuclear@0
|
4
|
nuclear@8
|
5 #define DEFAULT_FOV DEG_TO_RAD(50)
|
nuclear@8
|
6
|
nuclear@0
|
7 static void calc_sample_pos_rec(int sidx, float xsz, float ysz, float *pos);
|
nuclear@0
|
8
|
nuclear@0
|
9 Camera::Camera()
|
nuclear@0
|
10 {
|
nuclear@8
|
11 vfov = DEFAULT_FOV;
|
nuclear@0
|
12 cached_matrix_valid = false;
|
nuclear@0
|
13 }
|
nuclear@0
|
14
|
nuclear@0
|
15 Camera::Camera(const Vector3 &p)
|
nuclear@0
|
16 : pos(p)
|
nuclear@0
|
17 {
|
nuclear@8
|
18 vfov = DEFAULT_FOV;
|
nuclear@0
|
19 cached_matrix_valid = false;
|
nuclear@0
|
20 }
|
nuclear@0
|
21
|
nuclear@0
|
22 Camera::~Camera()
|
nuclear@0
|
23 {
|
nuclear@0
|
24 }
|
nuclear@0
|
25
|
nuclear@0
|
26 void Camera::set_fov(float vfov)
|
nuclear@0
|
27 {
|
nuclear@0
|
28 this->vfov = vfov;
|
nuclear@0
|
29 }
|
nuclear@0
|
30
|
nuclear@0
|
31 float Camera::get_fov() const
|
nuclear@0
|
32 {
|
nuclear@0
|
33 return vfov;
|
nuclear@0
|
34 }
|
nuclear@0
|
35
|
nuclear@0
|
36 void Camera::set_position(const Vector3 &pos)
|
nuclear@0
|
37 {
|
nuclear@0
|
38 this->pos = pos;
|
nuclear@0
|
39 cached_matrix_valid = false; // invalidate the cached matrix
|
nuclear@0
|
40 }
|
nuclear@0
|
41
|
nuclear@0
|
42 const Vector3 &Camera::get_position() const
|
nuclear@0
|
43 {
|
nuclear@0
|
44 return pos;
|
nuclear@0
|
45 }
|
nuclear@0
|
46
|
nuclear@0
|
47 const Matrix4x4 &Camera::get_matrix() const
|
nuclear@0
|
48 {
|
nuclear@0
|
49 if(!cached_matrix_valid) {
|
nuclear@0
|
50 calc_matrix(&cached_matrix);
|
nuclear@0
|
51 cached_matrix_valid = true;
|
nuclear@0
|
52 }
|
nuclear@0
|
53 return cached_matrix;
|
nuclear@0
|
54 }
|
nuclear@0
|
55
|
nuclear@0
|
56 Vector2 Camera::calc_sample_pos(int x, int y, int xsz, int ysz, int sample) const
|
nuclear@0
|
57 {
|
nuclear@0
|
58 float ppos[2];
|
nuclear@0
|
59 float aspect = (float)xsz / (float)ysz;
|
nuclear@0
|
60
|
nuclear@0
|
61 float pwidth = 2.0 * aspect / (float)xsz;
|
nuclear@0
|
62 float pheight = 2.0 / (float)ysz;
|
nuclear@0
|
63
|
nuclear@0
|
64 ppos[0] = (float)x * pwidth - aspect;
|
nuclear@0
|
65 ppos[1] = 1.0 - (float)y * pheight;
|
nuclear@0
|
66
|
nuclear@0
|
67 calc_sample_pos_rec(sample, pwidth, pheight, ppos);
|
nuclear@0
|
68 return Vector2(ppos[0], ppos[1]);
|
nuclear@0
|
69 }
|
nuclear@0
|
70
|
nuclear@0
|
71 Ray Camera::get_primary_ray(int x, int y, int xsz, int ysz, int sample) const
|
nuclear@0
|
72 {
|
nuclear@8
|
73 Vector2 ppos = calc_sample_pos(x, y, xsz, ysz, sample);
|
nuclear@0
|
74
|
nuclear@0
|
75 Ray ray;
|
nuclear@0
|
76 ray.origin = pos;
|
nuclear@8
|
77 ray.dir.x = ppos.x;
|
nuclear@8
|
78 ray.dir.y = ppos.y;
|
nuclear@8
|
79 ray.dir.z = 1.0 / tan(vfov / 2.0);
|
nuclear@8
|
80 ray.dir.normalize();
|
nuclear@0
|
81
|
nuclear@0
|
82 // transform the ray direction with the camera matrix
|
nuclear@0
|
83 Matrix4x4 mat = get_matrix();
|
nuclear@0
|
84 mat.m[0][3] = mat.m[1][3] = mat.m[2][3] = mat.m[3][0] = mat.m[3][1] = mat.m[3][2] = 0.0;
|
nuclear@0
|
85 mat.m[3][3] = 1.0;
|
nuclear@0
|
86
|
nuclear@0
|
87 ray.dir = ray.dir.transformed(mat);
|
nuclear@0
|
88 return ray;
|
nuclear@0
|
89 }
|
nuclear@0
|
90
|
nuclear@0
|
91 TargetCamera::TargetCamera() {}
|
nuclear@0
|
92
|
nuclear@0
|
93 TargetCamera::TargetCamera(const Vector3 &pos, const Vector3 &targ)
|
nuclear@0
|
94 : Camera(pos), target(targ)
|
nuclear@0
|
95 {
|
nuclear@0
|
96 }
|
nuclear@0
|
97
|
nuclear@0
|
98 void TargetCamera::set_target(const Vector3 &targ)
|
nuclear@0
|
99 {
|
nuclear@0
|
100 target = targ;
|
nuclear@0
|
101 cached_matrix_valid = false; // invalidate the cached matrix
|
nuclear@0
|
102 }
|
nuclear@0
|
103
|
nuclear@0
|
104 const Vector3 &TargetCamera::get_target() const
|
nuclear@0
|
105 {
|
nuclear@0
|
106 return target;
|
nuclear@0
|
107 }
|
nuclear@0
|
108
|
nuclear@0
|
109 void TargetCamera::calc_matrix(Matrix4x4 *mat) const
|
nuclear@0
|
110 {
|
nuclear@0
|
111 Vector3 up(0, 1, 0);
|
nuclear@0
|
112 Vector3 dir = (target - pos).normalized();
|
nuclear@0
|
113 Vector3 right = cross_product(up, dir);
|
nuclear@0
|
114 up = cross_product(dir, right);
|
nuclear@0
|
115
|
nuclear@0
|
116 *mat = Matrix4x4(
|
nuclear@0
|
117 right.x, up.x, dir.x, pos.x,
|
nuclear@0
|
118 right.y, up.y, dir.y, pos.y,
|
nuclear@0
|
119 right.z, up.z, dir.z, pos.z,
|
nuclear@0
|
120 0.0, 0.0, 0.0, 1.0);
|
nuclear@0
|
121 }
|
nuclear@0
|
122
|
nuclear@0
|
123 void FlyCamera::input_move(float x, float y, float z)
|
nuclear@0
|
124 {
|
nuclear@0
|
125 static const Vector3 vfwd(0, 0, 1), vright(1, 0, 0);
|
nuclear@0
|
126
|
nuclear@0
|
127 Vector3 k = vfwd.transformed(rot);
|
nuclear@0
|
128 Vector3 i = vright.transformed(rot);
|
nuclear@0
|
129 Vector3 j = cross_product(k, i);
|
nuclear@0
|
130
|
nuclear@0
|
131 pos += i * x + j * y + k * z;
|
nuclear@0
|
132 cached_matrix_valid = false;
|
nuclear@0
|
133 }
|
nuclear@0
|
134
|
nuclear@0
|
135 void FlyCamera::input_rotate(float x, float y, float z)
|
nuclear@0
|
136 {
|
nuclear@0
|
137 Vector3 axis(x, y, z);
|
nuclear@0
|
138 float axis_len = axis.length();
|
nuclear@0
|
139 if(fabs(axis_len) < 1e-5) {
|
nuclear@0
|
140 return;
|
nuclear@0
|
141 }
|
nuclear@0
|
142 rot.rotate(axis / axis_len, -axis_len);
|
nuclear@0
|
143 rot.normalize();
|
nuclear@0
|
144
|
nuclear@0
|
145 cached_matrix_valid = false;
|
nuclear@0
|
146 }
|
nuclear@0
|
147
|
nuclear@0
|
148 void FlyCamera::calc_matrix(Matrix4x4 *mat) const
|
nuclear@0
|
149 {
|
nuclear@0
|
150 Matrix4x4 tmat;
|
nuclear@0
|
151 tmat.set_translation(pos);
|
nuclear@0
|
152
|
nuclear@0
|
153 Matrix3x3 rmat = rot.get_rotation_matrix();
|
nuclear@0
|
154
|
nuclear@0
|
155 *mat = tmat * Matrix4x4(rmat);
|
nuclear@0
|
156 }
|
nuclear@0
|
157
|
nuclear@0
|
158 /* generates a sample position for sample number sidx, in the unit square
|
nuclear@0
|
159 * by recursive subdivision and jittering
|
nuclear@0
|
160 */
|
nuclear@0
|
161 static void calc_sample_pos_rec(int sidx, float xsz, float ysz, float *pos)
|
nuclear@0
|
162 {
|
nuclear@0
|
163 static const float subpt[4][2] = {
|
nuclear@0
|
164 {-0.25, -0.25}, {0.25, -0.25}, {-0.25, 0.25}, {0.25, 0.25}
|
nuclear@0
|
165 };
|
nuclear@0
|
166
|
nuclear@0
|
167 if(!sidx) {
|
nuclear@0
|
168 return;
|
nuclear@0
|
169 }
|
nuclear@0
|
170
|
nuclear@0
|
171 /* determine which quadrant to recurse into */
|
nuclear@0
|
172 int quadrant = ((sidx - 1) % 4);
|
nuclear@0
|
173 pos[0] += subpt[quadrant][0] * xsz;
|
nuclear@0
|
174 pos[1] += subpt[quadrant][1] * ysz;
|
nuclear@0
|
175
|
nuclear@0
|
176 calc_sample_pos_rec((sidx - 1) / 4, xsz / 2, ysz / 2, pos);
|
nuclear@0
|
177 }
|