rev |
line source |
nuclear@0
|
1 #include <stdio.h>
|
nuclear@0
|
2 #include <math.h>
|
nuclear@0
|
3 #include "camera.h"
|
nuclear@0
|
4
|
nuclear@8
|
5 #define DEFAULT_FOV DEG_TO_RAD(50)
|
nuclear@8
|
6
|
nuclear@0
|
7 static void calc_sample_pos_rec(int sidx, float xsz, float ysz, float *pos);
|
nuclear@0
|
8
|
nuclear@0
|
9 Camera::Camera()
|
nuclear@0
|
10 {
|
nuclear@8
|
11 vfov = DEFAULT_FOV;
|
nuclear@0
|
12 cached_matrix_valid = false;
|
nuclear@0
|
13 }
|
nuclear@0
|
14
|
nuclear@46
|
15 Camera::Camera(const Vec3 &p)
|
nuclear@0
|
16 : pos(p)
|
nuclear@0
|
17 {
|
nuclear@8
|
18 vfov = DEFAULT_FOV;
|
nuclear@0
|
19 cached_matrix_valid = false;
|
nuclear@0
|
20 }
|
nuclear@0
|
21
|
nuclear@0
|
22 Camera::~Camera()
|
nuclear@0
|
23 {
|
nuclear@0
|
24 }
|
nuclear@0
|
25
|
nuclear@0
|
26 void Camera::set_fov(float vfov)
|
nuclear@0
|
27 {
|
nuclear@0
|
28 this->vfov = vfov;
|
nuclear@0
|
29 }
|
nuclear@0
|
30
|
nuclear@0
|
31 float Camera::get_fov() const
|
nuclear@0
|
32 {
|
nuclear@0
|
33 return vfov;
|
nuclear@0
|
34 }
|
nuclear@0
|
35
|
nuclear@46
|
36 void Camera::set_position(const Vec3 &pos)
|
nuclear@0
|
37 {
|
nuclear@0
|
38 this->pos = pos;
|
nuclear@0
|
39 cached_matrix_valid = false; // invalidate the cached matrix
|
nuclear@0
|
40 }
|
nuclear@0
|
41
|
nuclear@46
|
42 const Vec3 &Camera::get_position() const
|
nuclear@0
|
43 {
|
nuclear@0
|
44 return pos;
|
nuclear@0
|
45 }
|
nuclear@0
|
46
|
nuclear@46
|
47 const Mat4x4 &Camera::get_matrix() const
|
nuclear@0
|
48 {
|
nuclear@0
|
49 if(!cached_matrix_valid) {
|
nuclear@0
|
50 calc_matrix(&cached_matrix);
|
nuclear@0
|
51 cached_matrix_valid = true;
|
nuclear@0
|
52 }
|
nuclear@0
|
53 return cached_matrix;
|
nuclear@0
|
54 }
|
nuclear@0
|
55
|
nuclear@46
|
56 Vec2 Camera::calc_sample_pos(int x, int y, int xsz, int ysz, int sample) const
|
nuclear@0
|
57 {
|
nuclear@0
|
58 float ppos[2];
|
nuclear@0
|
59 float aspect = (float)xsz / (float)ysz;
|
nuclear@0
|
60
|
nuclear@0
|
61 float pwidth = 2.0 * aspect / (float)xsz;
|
nuclear@0
|
62 float pheight = 2.0 / (float)ysz;
|
nuclear@0
|
63
|
nuclear@0
|
64 ppos[0] = (float)x * pwidth - aspect;
|
nuclear@0
|
65 ppos[1] = 1.0 - (float)y * pheight;
|
nuclear@0
|
66
|
nuclear@0
|
67 calc_sample_pos_rec(sample, pwidth, pheight, ppos);
|
nuclear@46
|
68 return Vec2(ppos[0], ppos[1]);
|
nuclear@0
|
69 }
|
nuclear@0
|
70
|
nuclear@0
|
71 Ray Camera::get_primary_ray(int x, int y, int xsz, int ysz, int sample) const
|
nuclear@0
|
72 {
|
nuclear@46
|
73 Vec2 ppos = calc_sample_pos(x, y, xsz, ysz, sample);
|
nuclear@0
|
74
|
nuclear@0
|
75 Ray ray;
|
nuclear@0
|
76 ray.origin = pos;
|
nuclear@8
|
77 ray.dir.x = ppos.x;
|
nuclear@8
|
78 ray.dir.y = ppos.y;
|
nuclear@8
|
79 ray.dir.z = 1.0 / tan(vfov / 2.0);
|
nuclear@8
|
80 ray.dir.normalize();
|
nuclear@0
|
81
|
nuclear@0
|
82 // transform the ray direction with the camera matrix
|
nuclear@46
|
83 Mat4x4 mat = get_matrix();
|
nuclear@0
|
84 mat.m[0][3] = mat.m[1][3] = mat.m[2][3] = mat.m[3][0] = mat.m[3][1] = mat.m[3][2] = 0.0;
|
nuclear@0
|
85 mat.m[3][3] = 1.0;
|
nuclear@0
|
86
|
nuclear@0
|
87 ray.dir = ray.dir.transformed(mat);
|
nuclear@0
|
88 return ray;
|
nuclear@0
|
89 }
|
nuclear@0
|
90
|
nuclear@0
|
91 TargetCamera::TargetCamera() {}
|
nuclear@0
|
92
|
nuclear@46
|
93 TargetCamera::TargetCamera(const Vec3 &pos, const Vec3 &targ)
|
nuclear@0
|
94 : Camera(pos), target(targ)
|
nuclear@0
|
95 {
|
nuclear@0
|
96 }
|
nuclear@0
|
97
|
nuclear@46
|
98 void TargetCamera::set_target(const Vec3 &targ)
|
nuclear@0
|
99 {
|
nuclear@0
|
100 target = targ;
|
nuclear@0
|
101 cached_matrix_valid = false; // invalidate the cached matrix
|
nuclear@0
|
102 }
|
nuclear@0
|
103
|
nuclear@46
|
104 const Vec3 &TargetCamera::get_target() const
|
nuclear@0
|
105 {
|
nuclear@0
|
106 return target;
|
nuclear@0
|
107 }
|
nuclear@0
|
108
|
nuclear@46
|
109 void TargetCamera::calc_matrix(Mat4x4 *mat) const
|
nuclear@0
|
110 {
|
nuclear@46
|
111 Vec3 up{0, 1, 0};
|
nuclear@46
|
112 Vec3 dir = (target - pos).normalized();
|
nuclear@34
|
113
|
nuclear@34
|
114 if(1.0 - fabs(dot_product(dir, up)) < 1e-4) {
|
nuclear@46
|
115 up = Vec3(0, 0, 1);
|
nuclear@34
|
116 }
|
nuclear@34
|
117
|
nuclear@46
|
118 Vec3 right = cross_product(up, dir).normalized();
|
nuclear@0
|
119 up = cross_product(dir, right);
|
nuclear@0
|
120
|
nuclear@46
|
121 *mat = Mat4x4(
|
nuclear@0
|
122 right.x, up.x, dir.x, pos.x,
|
nuclear@0
|
123 right.y, up.y, dir.y, pos.y,
|
nuclear@0
|
124 right.z, up.z, dir.z, pos.z,
|
nuclear@0
|
125 0.0, 0.0, 0.0, 1.0);
|
nuclear@0
|
126 }
|
nuclear@0
|
127
|
nuclear@0
|
128 void FlyCamera::input_move(float x, float y, float z)
|
nuclear@0
|
129 {
|
nuclear@46
|
130 static const Vec3 vfwd(0, 0, 1), vright(1, 0, 0);
|
nuclear@0
|
131
|
nuclear@46
|
132 Vec3 k = vfwd.transformed(rot);
|
nuclear@46
|
133 Vec3 i = vright.transformed(rot);
|
nuclear@46
|
134 Vec3 j = cross_product(k, i);
|
nuclear@0
|
135
|
nuclear@0
|
136 pos += i * x + j * y + k * z;
|
nuclear@0
|
137 cached_matrix_valid = false;
|
nuclear@0
|
138 }
|
nuclear@0
|
139
|
nuclear@0
|
140 void FlyCamera::input_rotate(float x, float y, float z)
|
nuclear@0
|
141 {
|
nuclear@46
|
142 Vec3 axis(x, y, z);
|
nuclear@0
|
143 float axis_len = axis.length();
|
nuclear@0
|
144 if(fabs(axis_len) < 1e-5) {
|
nuclear@0
|
145 return;
|
nuclear@0
|
146 }
|
nuclear@0
|
147 rot.rotate(axis / axis_len, -axis_len);
|
nuclear@0
|
148 rot.normalize();
|
nuclear@0
|
149
|
nuclear@0
|
150 cached_matrix_valid = false;
|
nuclear@0
|
151 }
|
nuclear@0
|
152
|
nuclear@46
|
153 void FlyCamera::calc_matrix(Mat4x4 *mat) const
|
nuclear@0
|
154 {
|
nuclear@46
|
155 Mat4x4 tmat;
|
nuclear@0
|
156 tmat.set_translation(pos);
|
nuclear@0
|
157
|
nuclear@46
|
158 Mat3x3 rmat = rot.get_rotation_matrix();
|
nuclear@0
|
159
|
nuclear@46
|
160 *mat = tmat * Mat4x4(rmat);
|
nuclear@0
|
161 }
|
nuclear@0
|
162
|
nuclear@0
|
163 /* generates a sample position for sample number sidx, in the unit square
|
nuclear@0
|
164 * by recursive subdivision and jittering
|
nuclear@0
|
165 */
|
nuclear@0
|
166 static void calc_sample_pos_rec(int sidx, float xsz, float ysz, float *pos)
|
nuclear@0
|
167 {
|
nuclear@0
|
168 static const float subpt[4][2] = {
|
nuclear@0
|
169 {-0.25, -0.25}, {0.25, -0.25}, {-0.25, 0.25}, {0.25, 0.25}
|
nuclear@0
|
170 };
|
nuclear@0
|
171
|
nuclear@0
|
172 if(!sidx) {
|
nuclear@0
|
173 return;
|
nuclear@0
|
174 }
|
nuclear@0
|
175
|
nuclear@0
|
176 /* determine which quadrant to recurse into */
|
nuclear@0
|
177 int quadrant = ((sidx - 1) % 4);
|
nuclear@0
|
178 pos[0] += subpt[quadrant][0] * xsz;
|
nuclear@0
|
179 pos[1] += subpt[quadrant][1] * ysz;
|
nuclear@0
|
180
|
nuclear@0
|
181 calc_sample_pos_rec((sidx - 1) / 4, xsz / 2, ysz / 2, pos);
|
nuclear@0
|
182 }
|