dos3d

annotate src/mingl.c @ 15:4a0e9ab12ad0

separated vec2/vec3/vec4 in a different header file
author John Tsiombikas <nuclear@member.fsf.org>
date Tue, 29 Nov 2011 07:23:12 +0200
parents 0909996838ff
children 1e9f0b3616fa
rev   line source
nuclear@0 1 /*
nuclear@0 2 256-color 3D graphics hack for real-mode DOS.
nuclear@0 3 Copyright (C) 2011 John Tsiombikas <nuclear@member.fsf.org>
nuclear@0 4
nuclear@0 5 This program is free software: you can redistribute it and/or modify
nuclear@0 6 it under the terms of the GNU General Public License as published by
nuclear@0 7 the Free Software Foundation, either version 3 of the License, or
nuclear@0 8 (at your option) any later version.
nuclear@0 9
nuclear@0 10 This program is distributed in the hope that it will be useful,
nuclear@0 11 but WITHOUT ANY WARRANTY; without even the implied warranty of
nuclear@0 12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
nuclear@0 13 GNU General Public License for more details.
nuclear@0 14
nuclear@0 15 You should have received a copy of the GNU General Public License
nuclear@0 16 along with this program. If not, see <http://www.gnu.org/licenses/>.
nuclear@0 17 */
nuclear@0 18 #include <stdio.h>
nuclear@0 19 #include <stdlib.h>
nuclear@0 20 #include <string.h>
nuclear@0 21 #include <math.h>
nuclear@0 22 #include <assert.h>
nuclear@0 23 #include "mingl.h"
nuclear@0 24 #include "mglimpl.h"
nuclear@0 25
nuclear@3 26
nuclear@0 27 #define DOT(a, b) ((a).x * (b).x + (a).y * (b).y + (a).z * (b).z)
nuclear@0 28
nuclear@11 29 #define NORMALIZE(v) \
nuclear@11 30 do { \
nuclear@11 31 float mag = sqrt(DOT(v, v)); \
nuclear@11 32 if(fabs(mag) > 1e-6) { \
nuclear@11 33 float invmag = 1.0 / mag; \
nuclear@11 34 (v).x *= invmag; \
nuclear@11 35 (v).y *= invmag; \
nuclear@11 36 (v).z *= invmag; \
nuclear@11 37 } \
nuclear@11 38 } while(0)
nuclear@11 39
nuclear@0 40 static void transform(vec4_t *res, vec4_t *v, float *mat);
nuclear@0 41 static void transform3(vec3_t *res, vec3_t *v, float *mat);
nuclear@0 42 static void vertex_proc(struct vertex *vert);
nuclear@3 43 static int calc_shiftmask(int val, int *shiftp, unsigned int *maskp);
nuclear@0 44
nuclear@0 45 static struct state st;
nuclear@0 46 static struct framebuffer fb;
nuclear@0 47
nuclear@0 48 int mgl_init(int width, int height)
nuclear@0 49 {
nuclear@0 50 int i;
nuclear@0 51
nuclear@0 52 st.flags = 0;
nuclear@0 53 st.mmode = 0;
nuclear@0 54
nuclear@0 55 mgl_front_face(MGL_CCW);
nuclear@0 56 mgl_cull_face(MGL_BACK);
nuclear@0 57
nuclear@0 58 st.curv.cidx = 0;
nuclear@0 59 st.curv.energy = 1.0;
nuclear@0 60 st.curv.norm.x = st.curv.norm.y = st.curv.norm.z = 0.0;
nuclear@0 61
nuclear@0 62 if(!(fb.pixels = malloc(width * height))) {
nuclear@0 63 return -1;
nuclear@0 64 }
nuclear@0 65 fb.width = width;
nuclear@0 66 fb.height = height;
nuclear@0 67 fb.zbuf = 0;
nuclear@0 68
nuclear@0 69 if(mgl_rast_init(&st, &fb) == -1) {
nuclear@0 70 free(fb.pixels);
nuclear@0 71 return -1;
nuclear@0 72 }
nuclear@0 73
nuclear@0 74 st.mtop[0] = st.mtop[1] = 0;
nuclear@0 75
nuclear@0 76 mgl_matrix_mode(MGL_MODELVIEW);
nuclear@0 77 mgl_load_identity();
nuclear@0 78 mgl_matrix_mode(MGL_PROJECTION);
nuclear@0 79 mgl_load_identity();
nuclear@0 80
nuclear@0 81 /* initial viewport in the size of the framebuffer */
nuclear@0 82 st.vp[0] = st.vp[1] = 0;
nuclear@0 83 st.vp[2] = width;
nuclear@0 84 st.vp[3] = height;
nuclear@0 85
nuclear@0 86 st.col_range = 256;
nuclear@0 87 for(i=0; i<MAX_LIGHTS; i++) {
nuclear@11 88 st.lpos[i].x = st.lpos[i].y = st.lpos[i].w = 0.0f;
nuclear@11 89 st.lpos[i].z = 1.0f;
nuclear@0 90 st.lint[i] = 0.0f;
nuclear@0 91 }
nuclear@0 92
nuclear@0 93 return 0;
nuclear@0 94 }
nuclear@0 95
nuclear@0 96 void mgl_free(void)
nuclear@0 97 {
nuclear@9 98 int i;
nuclear@9 99
nuclear@0 100 mgl_rast_cleanup();
nuclear@0 101 free(fb.pixels);
nuclear@9 102 fb.pixels = 0;
nuclear@9 103
nuclear@9 104 if(fb.zbuf) {
nuclear@9 105 for(i=0; i<fb.num_ztiles; i++) {
nuclear@9 106 free(fb.zbuf[i]);
nuclear@9 107 }
nuclear@9 108 free(fb.zbuf);
nuclear@9 109 fb.zbuf = 0;
nuclear@9 110 }
nuclear@0 111 }
nuclear@0 112
nuclear@0 113 unsigned char *mgl_framebuffer(void)
nuclear@0 114 {
nuclear@0 115 return fb.pixels;
nuclear@0 116 }
nuclear@0 117
nuclear@0 118 void mgl_clear(int cidx)
nuclear@0 119 {
nuclear@0 120 memset(fb.pixels, cidx, fb.width * fb.height);
nuclear@0 121 }
nuclear@0 122
nuclear@9 123 void mgl_clear_depth(void)
nuclear@9 124 {
nuclear@9 125 int i;
nuclear@9 126
nuclear@9 127 if(!fb.zbuf) {
nuclear@9 128 long num_pixels = (long)fb.width * (long)fb.height;
nuclear@9 129 fb.num_ztiles = (num_pixels + ZTILE_SIZE - 1) / ZTILE_SIZE;
nuclear@9 130
nuclear@9 131 if(!(fb.zbuf = malloc(fb.num_ztiles * sizeof *fb.zbuf))) {
nuclear@9 132 fprintf(stderr, "failed to allocate ztile array\n");
nuclear@9 133 abort();
nuclear@9 134 }
nuclear@9 135
nuclear@9 136 for(i=0; i<fb.num_ztiles; i++) {
nuclear@9 137 if(!(fb.zbuf[i] = malloc(ZTILE_SIZE * 2))) {
nuclear@9 138 fprintf(stderr, "failed to allocate ztile %d\n", i);
nuclear@9 139 abort();
nuclear@9 140 }
nuclear@9 141 memset(fb.zbuf[i], 0xff, ZTILE_SIZE * 2);
nuclear@9 142 }
nuclear@9 143 return;
nuclear@9 144 }
nuclear@9 145
nuclear@9 146 for(i=0; i<fb.num_ztiles; i++) {
nuclear@9 147 memset(fb.zbuf[i], 0xff, ZTILE_SIZE * 2);
nuclear@9 148 }
nuclear@9 149 }
nuclear@9 150
nuclear@0 151 void mgl_enable(unsigned int bit)
nuclear@0 152 {
nuclear@0 153 st.flags |= bit;
nuclear@0 154 }
nuclear@0 155
nuclear@0 156 void mgl_disable(unsigned int bit)
nuclear@0 157 {
nuclear@0 158 st.flags &= ~bit;
nuclear@0 159 }
nuclear@0 160
nuclear@3 161 int mgl_isenabled(unsigned int bit)
nuclear@3 162 {
nuclear@3 163 return (st.flags & bit) != 0;
nuclear@3 164 }
nuclear@3 165
nuclear@0 166 void mgl_front_face(int ff)
nuclear@0 167 {
nuclear@0 168 st.frontface = ff;
nuclear@0 169 }
nuclear@0 170
nuclear@0 171 void mgl_cull_face(int cf)
nuclear@0 172 {
nuclear@0 173 st.cullface = cf;
nuclear@0 174 }
nuclear@0 175
nuclear@0 176 void mgl_color_range(int rng)
nuclear@0 177 {
nuclear@0 178 st.col_range = rng;
nuclear@0 179 }
nuclear@0 180
nuclear@0 181 void mgl_light_intensity(int ltidx, float intens)
nuclear@0 182 {
nuclear@0 183 assert(ltidx >= 0 && ltidx < MAX_LIGHTS);
nuclear@0 184 st.lint[ltidx] = intens;
nuclear@0 185 }
nuclear@0 186
nuclear@11 187 void mgl_light_position(int ltidx, float x, float y, float z, float w)
nuclear@0 188 {
nuclear@11 189 vec4_t pos;
nuclear@0 190 assert(ltidx >= 0 && ltidx < MAX_LIGHTS);
nuclear@0 191
nuclear@11 192 pos.x = x;
nuclear@11 193 pos.y = y;
nuclear@11 194 pos.z = z;
nuclear@11 195 pos.w = w;
nuclear@11 196 transform(&st.lpos[ltidx], &pos, st.matrix[MGL_MODELVIEW][st.mtop[MGL_MODELVIEW]]);
nuclear@0 197
nuclear@11 198 if(fabs(st.lpos[ltidx].w) < 1e-6) {
nuclear@11 199 NORMALIZE(st.lpos[ltidx]);
nuclear@11 200 } else {
nuclear@11 201 st.lpos[ltidx].x /= st.lpos[ltidx].w;
nuclear@11 202 st.lpos[ltidx].y /= st.lpos[ltidx].w;
nuclear@11 203 st.lpos[ltidx].z /= st.lpos[ltidx].w;
nuclear@0 204 }
nuclear@0 205 }
nuclear@0 206
nuclear@0 207 void mgl_begin(int prim)
nuclear@0 208 {
nuclear@0 209 st.prim = prim;
nuclear@0 210 st.vidx = 0;
nuclear@0 211
nuclear@0 212 st.ord = st.frontface;
nuclear@0 213 if(st.cullface == MGL_FRONT) {
nuclear@0 214 st.ord = st.frontface == MGL_CCW ? MGL_CW : MGL_CCW;
nuclear@0 215 }
nuclear@0 216
nuclear@0 217 /* select the correct rasterizer according to state */
nuclear@0 218 mgl_rast_prepare();
nuclear@0 219 }
nuclear@0 220
nuclear@0 221 void mgl_end(void)
nuclear@0 222 {
nuclear@0 223 }
nuclear@0 224
nuclear@0 225 void mgl_vertex2f(float x, float y)
nuclear@0 226 {
nuclear@0 227 mgl_vertex4f(x, y, 0.0f, 1.0f);
nuclear@0 228 }
nuclear@0 229
nuclear@0 230 void mgl_vertex3f(float x, float y, float z)
nuclear@0 231 {
nuclear@0 232 mgl_vertex4f(x, y, z, 1.0f);
nuclear@0 233 }
nuclear@0 234
nuclear@0 235 void mgl_vertex4f(float x, float y, float z, float w)
nuclear@0 236 {
nuclear@0 237 st.v[st.vidx].pos.x = x;
nuclear@0 238 st.v[st.vidx].pos.y = y;
nuclear@0 239 st.v[st.vidx].pos.z = z;
nuclear@0 240 st.v[st.vidx].pos.w = w;
nuclear@0 241 st.v[st.vidx].cidx = st.curv.cidx;
nuclear@0 242 st.v[st.vidx].energy = st.curv.energy;
nuclear@0 243 st.v[st.vidx].norm = st.curv.norm;
nuclear@0 244 st.v[st.vidx].tc = st.curv.tc;
nuclear@0 245
nuclear@0 246 vertex_proc(st.v + st.vidx);
nuclear@0 247
nuclear@0 248 if(++st.vidx >= st.prim) {
nuclear@0 249 switch(st.prim) {
nuclear@0 250 case MGL_POINTS:
nuclear@0 251 mgl_draw_point(st.v);
nuclear@0 252 break;
nuclear@0 253 case MGL_LINES:
nuclear@0 254 mgl_draw_line(st.v, st.v + 1);
nuclear@0 255 break;
nuclear@0 256 case MGL_TRIANGLES:
nuclear@0 257 case MGL_QUADS:
nuclear@0 258 mgl_draw_poly(st.v, st.prim);
nuclear@0 259 break;
nuclear@0 260 default:
nuclear@0 261 fprintf(stderr, "invalid primitive: %d\n", st.prim);
nuclear@0 262 abort();
nuclear@0 263 }
nuclear@0 264 st.vidx = 0;
nuclear@0 265 }
nuclear@0 266 }
nuclear@0 267
nuclear@0 268 void mgl_color1f(float energy)
nuclear@0 269 {
nuclear@0 270 st.curv.energy = energy;
nuclear@0 271 }
nuclear@0 272
nuclear@0 273 void mgl_index(int c)
nuclear@0 274 {
nuclear@0 275 st.curv.cidx = c;
nuclear@0 276 }
nuclear@0 277
nuclear@0 278 void mgl_normal(float x, float y, float z)
nuclear@0 279 {
nuclear@0 280 st.curv.norm.x = x;
nuclear@0 281 st.curv.norm.y = y;
nuclear@0 282 st.curv.norm.z = z;
nuclear@0 283 }
nuclear@0 284
nuclear@0 285 void mgl_texcoord2f(float x, float y)
nuclear@0 286 {
nuclear@0 287 st.curv.tc.x = x;
nuclear@0 288 st.curv.tc.y = y;
nuclear@0 289 }
nuclear@0 290
nuclear@0 291 static void transform(vec4_t *res, vec4_t *v, float *mat)
nuclear@0 292 {
nuclear@0 293 res->x = mat[0] * v->x + mat[4] * v->y + mat[8] * v->z + mat[12] * v->w;
nuclear@0 294 res->y = mat[1] * v->x + mat[5] * v->y + mat[9] * v->z + mat[13] * v->w;
nuclear@0 295 res->z = mat[2] * v->x + mat[6] * v->y + mat[10] * v->z + mat[14] * v->w;
nuclear@0 296 res->w = mat[3] * v->x + mat[7] * v->y + mat[11] * v->z + mat[15] * v->w;
nuclear@0 297 }
nuclear@0 298
nuclear@0 299 /* the matrix is 4x4 (16 floats), just ignoring anything out of the 3x3 */
nuclear@0 300 static void transform3(vec3_t *res, vec3_t *v, float *mat)
nuclear@0 301 {
nuclear@0 302 res->x = mat[0] * v->x + mat[4] * v->y + mat[8] * v->z;
nuclear@0 303 res->y = mat[1] * v->x + mat[5] * v->y + mat[9] * v->z;
nuclear@0 304 res->z = mat[2] * v->x + mat[6] * v->y + mat[10] * v->z;
nuclear@0 305 }
nuclear@0 306
nuclear@0 307 static void vertex_proc(struct vertex *vert)
nuclear@0 308 {
nuclear@0 309 vec4_t pview, pclip;
nuclear@0 310
nuclear@0 311 float *mvmat = st.matrix[MGL_MODELVIEW][st.mtop[MGL_MODELVIEW]];
nuclear@0 312 float *pmat = st.matrix[MGL_PROJECTION][st.mtop[MGL_PROJECTION]];
nuclear@0 313
nuclear@0 314 /* modelview transformation */
nuclear@0 315 transform(&pview, &vert->pos, mvmat);
nuclear@0 316
nuclear@0 317 if(st.flags & MGL_LIGHTING) {
nuclear@0 318 if((st.flags & MGL_SMOOTH) || st.vidx == 0) {
nuclear@0 319 int i;
nuclear@0 320 vec3_t norm;
nuclear@0 321 float irrad = 0.0f;
nuclear@0 322
nuclear@0 323 transform3(&norm, &vert->norm, mvmat);
nuclear@0 324
nuclear@0 325 for(i=0; i<MAX_LIGHTS; i++) {
nuclear@0 326 if(st.lint[i] > 1e-6f) {
nuclear@11 327 float ndotl;
nuclear@11 328 vec3_t ldir;
nuclear@11 329
nuclear@11 330 if(st.lpos[i].w == 0.0) {
nuclear@11 331 ldir.x = st.lpos[i].x;
nuclear@11 332 ldir.y = st.lpos[i].y;
nuclear@11 333 ldir.z = st.lpos[i].z;
nuclear@11 334 } else {
nuclear@11 335 ldir.x = st.lpos[i].x - pview.x;
nuclear@11 336 ldir.y = st.lpos[i].y - pview.y;
nuclear@11 337 ldir.z = st.lpos[i].z - pview.z;
nuclear@11 338
nuclear@11 339 NORMALIZE(ldir);
nuclear@11 340 }
nuclear@11 341
nuclear@11 342 ndotl = DOT(norm, ldir);
nuclear@0 343 if(ndotl < 0.0) {
nuclear@0 344 ndotl = 0.0;
nuclear@0 345 }
nuclear@0 346 irrad += ndotl * st.lint[i];
nuclear@0 347 }
nuclear@0 348 }
nuclear@0 349 vert->energy = irrad;
nuclear@0 350 } else {
nuclear@0 351 vert->energy = st.v[0].energy;
nuclear@0 352 }
nuclear@0 353 }
nuclear@0 354
nuclear@0 355 transform(&pclip, &pview, pmat);
nuclear@0 356 /* TODO clipping in homogenous clip space */
nuclear@0 357
nuclear@0 358 if(pclip.w < 1e-6 && pclip.w > -1e-6) {
nuclear@0 359 vert->pos.x = vert->pos.y = vert->pos.z = vert->pos.w = 0.0f;
nuclear@0 360 return;
nuclear@0 361 }
nuclear@0 362
nuclear@0 363 /* perspective division */
nuclear@0 364 vert->pos.x = pclip.x / pclip.w;
nuclear@0 365 vert->pos.y = pclip.y / pclip.w;
nuclear@0 366 vert->pos.z = pclip.z / pclip.w;
nuclear@0 367 vert->pos.w = pclip.w;
nuclear@0 368
nuclear@0 369 /* viewport transformation */
nuclear@0 370 vert->pos.x = st.vp[0] + st.vp[2] * (vert->pos.x * 0.5 + 0.5);
nuclear@0 371 vert->pos.y = st.vp[1] + st.vp[3] * (-vert->pos.y * 0.5 + 0.5);
nuclear@0 372 }
nuclear@0 373
nuclear@0 374 void mgl_viewport(int x, int y, int width, int height)
nuclear@0 375 {
nuclear@0 376 st.vp[0] = x;
nuclear@0 377 st.vp[1] = y;
nuclear@0 378 st.vp[2] = width;
nuclear@0 379 st.vp[3] = height;
nuclear@0 380 }
nuclear@0 381
nuclear@0 382 void mgl_matrix_mode(int mmode)
nuclear@0 383 {
nuclear@0 384 st.mmode = mmode;
nuclear@0 385 }
nuclear@0 386
nuclear@0 387 void mgl_push_matrix(void)
nuclear@0 388 {
nuclear@0 389 float *topmat;
nuclear@0 390 if(st.mtop[st.mmode] >= MATRIX_STACK_SIZE - 1) {
nuclear@0 391 fprintf(stderr, "mgl_push_matrix: stack overflow\n");
nuclear@0 392 abort();
nuclear@0 393 }
nuclear@0 394
nuclear@0 395 topmat = st.matrix[st.mmode][st.mtop[st.mmode]];
nuclear@0 396 memcpy(topmat + 16, topmat, 16 * sizeof *topmat);
nuclear@0 397 st.mmode++;
nuclear@0 398 }
nuclear@0 399
nuclear@0 400 void mgl_pop_matrix(void)
nuclear@0 401 {
nuclear@0 402 if(st.mtop[st.mmode] <= 0) {
nuclear@0 403 fprintf(stderr, "mgl_pop_matrix: stack underflow\n");
nuclear@0 404 abort();
nuclear@0 405 }
nuclear@0 406 st.mtop[st.mmode]--;
nuclear@0 407 }
nuclear@0 408
nuclear@0 409 void mgl_load_matrix(float *mat)
nuclear@0 410 {
nuclear@0 411 float *dest = st.matrix[st.mmode][st.mtop[st.mmode]];
nuclear@0 412 memcpy(dest, mat, 16 * sizeof *dest);
nuclear@0 413 }
nuclear@0 414
nuclear@0 415 #define M(i,j) (((j) << 2) + (i))
nuclear@0 416 void mgl_mult_matrix(float *m2)
nuclear@0 417 {
nuclear@0 418 int i, j;
nuclear@0 419 float m1[16];
nuclear@0 420 float *dest = st.matrix[st.mmode][st.mtop[st.mmode]];
nuclear@0 421
nuclear@0 422 memcpy(m1, dest, sizeof m1);
nuclear@0 423
nuclear@0 424 for(i=0; i<4; i++) {
nuclear@0 425 for(j=0; j<4; j++) {
nuclear@0 426 dest[M(i,j)] = m1[M(0,j)] * m2[M(i,0)] +
nuclear@0 427 m1[M(1,j)] * m2[M(i,1)] +
nuclear@0 428 m1[M(2,j)] * m2[M(i,2)] +
nuclear@0 429 m1[M(3,j)] * m2[M(i,3)];
nuclear@0 430 }
nuclear@0 431 }
nuclear@0 432 }
nuclear@0 433
nuclear@0 434 void mgl_load_identity(void)
nuclear@0 435 {
nuclear@0 436 static float id[] = {1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1};
nuclear@0 437 mgl_load_matrix((float*)id);
nuclear@0 438 }
nuclear@0 439
nuclear@0 440 void mgl_translate(float x, float y, float z)
nuclear@0 441 {
nuclear@0 442 float xform[] = {1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1};
nuclear@0 443 xform[12] = x;
nuclear@0 444 xform[13] = y;
nuclear@0 445 xform[14] = z;
nuclear@0 446 mgl_mult_matrix(xform);
nuclear@0 447 }
nuclear@0 448
nuclear@0 449 void mgl_rotate(float deg, float x, float y, float z)
nuclear@0 450 {
nuclear@0 451 float xform[] = {1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1};
nuclear@0 452
nuclear@0 453 float angle = M_PI * deg / 180.0f;
nuclear@0 454 float sina = sin(angle);
nuclear@0 455 float cosa = cos(angle);
nuclear@0 456 float one_minus_cosa = 1.0f - cosa;
nuclear@0 457 float nxsq = x * x;
nuclear@0 458 float nysq = y * y;
nuclear@0 459 float nzsq = z * z;
nuclear@0 460
nuclear@0 461 xform[0] = nxsq + (1.0f - nxsq) * cosa;
nuclear@0 462 xform[4] = x * y * one_minus_cosa - z * sina;
nuclear@0 463 xform[8] = x * z * one_minus_cosa + y * sina;
nuclear@0 464 xform[1] = x * y * one_minus_cosa + z * sina;
nuclear@0 465 xform[5] = nysq + (1.0 - nysq) * cosa;
nuclear@0 466 xform[9] = y * z * one_minus_cosa - x * sina;
nuclear@0 467 xform[2] = x * z * one_minus_cosa - y * sina;
nuclear@0 468 xform[6] = y * z * one_minus_cosa + x * sina;
nuclear@0 469 xform[10] = nzsq + (1.0 - nzsq) * cosa;
nuclear@0 470
nuclear@0 471 mgl_mult_matrix(xform);
nuclear@0 472 }
nuclear@0 473
nuclear@0 474 void mgl_scale(float x, float y, float z)
nuclear@0 475 {
nuclear@0 476 float xform[] = {1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1};
nuclear@0 477 xform[0] = x;
nuclear@0 478 xform[5] = y;
nuclear@0 479 xform[10] = z;
nuclear@0 480 mgl_mult_matrix(xform);
nuclear@0 481 }
nuclear@0 482
nuclear@0 483 void gl_ortho(float left, float right, float bottom, float top, float nr, float fr)
nuclear@0 484 {
nuclear@0 485 float xform[] = {1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1};
nuclear@0 486
nuclear@0 487 float dx = right - left;
nuclear@0 488 float dy = top - bottom;
nuclear@0 489 float dz = fr - nr;
nuclear@0 490
nuclear@0 491 float tx = -(right + left) / dx;
nuclear@0 492 float ty = -(top + bottom) / dy;
nuclear@0 493 float tz = -(fr + nr) / dz;
nuclear@0 494
nuclear@0 495 float sx = 2.0 / dx;
nuclear@0 496 float sy = 2.0 / dy;
nuclear@0 497 float sz = -2.0 / dz;
nuclear@0 498
nuclear@0 499 xform[0] = sx;
nuclear@0 500 xform[5] = sy;
nuclear@0 501 xform[10] = sz;
nuclear@0 502 xform[12] = tx;
nuclear@0 503 xform[13] = ty;
nuclear@0 504 xform[14] = tz;
nuclear@0 505
nuclear@0 506 mgl_mult_matrix(xform);
nuclear@0 507 }
nuclear@0 508
nuclear@0 509 void mgl_frustum(float left, float right, float bottom, float top, float nr, float fr)
nuclear@0 510 {
nuclear@0 511 float xform[] = {1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1};
nuclear@0 512
nuclear@0 513 float dx = right - left;
nuclear@0 514 float dy = top - bottom;
nuclear@0 515 float dz = fr - nr;
nuclear@0 516
nuclear@0 517 float a = (right + left) / dx;
nuclear@0 518 float b = (top + bottom) / dy;
nuclear@0 519 float c = -(fr + nr) / dz;
nuclear@0 520 float d = -2.0 * fr * nr / dz;
nuclear@0 521
nuclear@0 522 xform[0] = 2.0 * nr / dx;
nuclear@0 523 xform[5] = 2.0 * nr / dy;
nuclear@0 524 xform[8] = a;
nuclear@0 525 xform[9] = b;
nuclear@0 526 xform[10] = c;
nuclear@0 527 xform[11] = -1.0f;
nuclear@0 528 xform[14] = d;
nuclear@0 529
nuclear@0 530 mgl_mult_matrix(xform);
nuclear@0 531 }
nuclear@0 532
nuclear@0 533 void mgl_perspective(float vfov, float aspect, float nr, float fr)
nuclear@0 534 {
nuclear@0 535 float vfov_rad = M_PI * vfov / 180.0;
nuclear@0 536 float x = nr * tan(vfov_rad / 2.0);
nuclear@0 537 mgl_frustum(-aspect * x, aspect * x, -x, x, nr, fr);
nuclear@0 538 }
nuclear@3 539
nuclear@3 540 void mgl_teximage(int width, int height, unsigned char *pixels)
nuclear@3 541 {
nuclear@3 542 st.tex.width = width;
nuclear@3 543 st.tex.height = height;
nuclear@3 544 st.tex.pixels = pixels;
nuclear@3 545
nuclear@3 546 if(calc_shiftmask(width, &st.tex.xshift, &st.tex.xmask) == -1 ||
nuclear@3 547 calc_shiftmask(height, &st.tex.yshift, &st.tex.ymask) == -1) {
nuclear@3 548 st.tex.pixels = 0;
nuclear@3 549 }
nuclear@3 550 }
nuclear@3 551
nuclear@3 552 #define MAX_SHIFT 12
nuclear@3 553 static int calc_shiftmask(int val, int *shiftp, unsigned int *maskp)
nuclear@3 554 {
nuclear@3 555 int i;
nuclear@3 556
nuclear@3 557 for(i=0; i<MAX_SHIFT; i++) {
nuclear@3 558 if((val >> i) == 1) {
nuclear@3 559 *shiftp = i;
nuclear@3 560 *maskp = ~(0xffff << i);
nuclear@3 561 return 0;
nuclear@3 562 }
nuclear@3 563 }
nuclear@3 564 return -1;
nuclear@3 565 }