dbf-halloween2015

annotate libs/vmath/vector.cc @ 1:c3f5c32cb210

barfed all the libraries in the source tree to make porting easier
author John Tsiombikas <nuclear@member.fsf.org>
date Sun, 01 Nov 2015 00:36:56 +0200
parents
children
rev   line source
nuclear@1 1 #include "vector.h"
nuclear@1 2 #include "vmath.h"
nuclear@1 3
nuclear@1 4 // ---------- Vector2 -----------
nuclear@1 5
nuclear@1 6 Vector2::Vector2(scalar_t x, scalar_t y)
nuclear@1 7 {
nuclear@1 8 this->x = x;
nuclear@1 9 this->y = y;
nuclear@1 10 }
nuclear@1 11
nuclear@1 12 Vector2::Vector2(const vec2_t &vec)
nuclear@1 13 {
nuclear@1 14 x = vec.x;
nuclear@1 15 y = vec.y;
nuclear@1 16 }
nuclear@1 17
nuclear@1 18 Vector2::Vector2(const Vector3 &vec)
nuclear@1 19 {
nuclear@1 20 x = vec.x;
nuclear@1 21 y = vec.y;
nuclear@1 22 }
nuclear@1 23
nuclear@1 24 Vector2::Vector2(const Vector4 &vec)
nuclear@1 25 {
nuclear@1 26 x = vec.x;
nuclear@1 27 y = vec.y;
nuclear@1 28 }
nuclear@1 29
nuclear@1 30 void Vector2::normalize()
nuclear@1 31 {
nuclear@1 32 scalar_t len = length();
nuclear@1 33 x /= len;
nuclear@1 34 y /= len;
nuclear@1 35 }
nuclear@1 36
nuclear@1 37 Vector2 Vector2::normalized() const
nuclear@1 38 {
nuclear@1 39 scalar_t len = length();
nuclear@1 40 return Vector2(x / len, y / len);
nuclear@1 41 }
nuclear@1 42
nuclear@1 43 void Vector2::transform(const Matrix3x3 &mat)
nuclear@1 44 {
nuclear@1 45 scalar_t nx = mat[0][0] * x + mat[0][1] * y + mat[0][2];
nuclear@1 46 y = mat[1][0] * x + mat[1][1] * y + mat[1][2];
nuclear@1 47 x = nx;
nuclear@1 48 }
nuclear@1 49
nuclear@1 50 Vector2 Vector2::transformed(const Matrix3x3 &mat) const
nuclear@1 51 {
nuclear@1 52 Vector2 vec;
nuclear@1 53 vec.x = mat[0][0] * x + mat[0][1] * y + mat[0][2];
nuclear@1 54 vec.y = mat[1][0] * x + mat[1][1] * y + mat[1][2];
nuclear@1 55 return vec;
nuclear@1 56 }
nuclear@1 57
nuclear@1 58 void Vector2::rotate(scalar_t angle)
nuclear@1 59 {
nuclear@1 60 *this = Vector2(cos(angle) * x - sin(angle) * y, sin(angle) * x + cos(angle) * y);
nuclear@1 61 }
nuclear@1 62
nuclear@1 63 Vector2 Vector2::rotated(scalar_t angle) const
nuclear@1 64 {
nuclear@1 65 return Vector2(cos(angle) * x - sin(angle) * y, sin(angle) * x + cos(angle) * y);
nuclear@1 66 }
nuclear@1 67
nuclear@1 68 Vector2 Vector2::reflection(const Vector2 &normal) const
nuclear@1 69 {
nuclear@1 70 return 2.0 * dot_product(*this, normal) * normal - *this;
nuclear@1 71 }
nuclear@1 72
nuclear@1 73 Vector2 Vector2::refraction(const Vector2 &normal, scalar_t src_ior, scalar_t dst_ior) const
nuclear@1 74 {
nuclear@1 75 // quick and dirty implementation :)
nuclear@1 76 Vector3 v3refr = Vector3(this->x, this->y, 1.0).refraction(Vector3(this->x, this->y, 1), src_ior, dst_ior);
nuclear@1 77 return Vector2(v3refr.x, v3refr.y);
nuclear@1 78 }
nuclear@1 79
nuclear@1 80 std::ostream &operator <<(std::ostream &out, const Vector2 &vec)
nuclear@1 81 {
nuclear@1 82 out << "[" << vec.x << " " << vec.y << "]";
nuclear@1 83 return out;
nuclear@1 84 }
nuclear@1 85
nuclear@1 86
nuclear@1 87
nuclear@1 88 // --------- Vector3 ----------
nuclear@1 89
nuclear@1 90 Vector3::Vector3(scalar_t x, scalar_t y, scalar_t z)
nuclear@1 91 {
nuclear@1 92 this->x = x;
nuclear@1 93 this->y = y;
nuclear@1 94 this->z = z;
nuclear@1 95 }
nuclear@1 96
nuclear@1 97 Vector3::Vector3(const vec3_t &vec)
nuclear@1 98 {
nuclear@1 99 x = vec.x;
nuclear@1 100 y = vec.y;
nuclear@1 101 z = vec.z;
nuclear@1 102 }
nuclear@1 103
nuclear@1 104 Vector3::Vector3(const Vector2 &vec)
nuclear@1 105 {
nuclear@1 106 x = vec.x;
nuclear@1 107 y = vec.y;
nuclear@1 108 z = 1;
nuclear@1 109 }
nuclear@1 110
nuclear@1 111 Vector3::Vector3(const Vector4 &vec)
nuclear@1 112 {
nuclear@1 113 x = vec.x;
nuclear@1 114 y = vec.y;
nuclear@1 115 z = vec.z;
nuclear@1 116 }
nuclear@1 117
nuclear@1 118 Vector3::Vector3(const SphVector &sph)
nuclear@1 119 {
nuclear@1 120 *this = sph;
nuclear@1 121 }
nuclear@1 122
nuclear@1 123 Vector3 &Vector3::operator =(const SphVector &sph)
nuclear@1 124 {
nuclear@1 125 x = sph.r * cos(sph.theta) * sin(sph.phi);
nuclear@1 126 z = sph.r * sin(sph.theta) * sin(sph.phi);
nuclear@1 127 y = sph.r * cos(sph.phi);
nuclear@1 128 return *this;
nuclear@1 129 }
nuclear@1 130
nuclear@1 131 void Vector3::normalize()
nuclear@1 132 {
nuclear@1 133 scalar_t len = length();
nuclear@1 134 x /= len;
nuclear@1 135 y /= len;
nuclear@1 136 z /= len;
nuclear@1 137 }
nuclear@1 138
nuclear@1 139 Vector3 Vector3::normalized() const
nuclear@1 140 {
nuclear@1 141 scalar_t len = length();
nuclear@1 142 return Vector3(x / len, y / len, z / len);
nuclear@1 143 }
nuclear@1 144
nuclear@1 145 Vector3 Vector3::reflection(const Vector3 &normal) const
nuclear@1 146 {
nuclear@1 147 return 2.0 * dot_product(*this, normal) * normal - *this;
nuclear@1 148 }
nuclear@1 149
nuclear@1 150 Vector3 Vector3::refraction(const Vector3 &normal, scalar_t src_ior, scalar_t dst_ior) const
nuclear@1 151 {
nuclear@1 152 return refraction(normal, src_ior / dst_ior);
nuclear@1 153 }
nuclear@1 154
nuclear@1 155 Vector3 Vector3::refraction(const Vector3 &normal, scalar_t ior) const
nuclear@1 156 {
nuclear@1 157 scalar_t cos_inc = dot_product(*this, -normal);
nuclear@1 158
nuclear@1 159 scalar_t radical = 1.0 + SQ(ior) * (SQ(cos_inc) - 1.0);
nuclear@1 160
nuclear@1 161 if(radical < 0.0) { // total internal reflection
nuclear@1 162 return -reflection(normal);
nuclear@1 163 }
nuclear@1 164
nuclear@1 165 scalar_t beta = ior * cos_inc - sqrt(radical);
nuclear@1 166
nuclear@1 167 return *this * ior + normal * beta;
nuclear@1 168 }
nuclear@1 169
nuclear@1 170 void Vector3::transform(const Matrix3x3 &mat)
nuclear@1 171 {
nuclear@1 172 scalar_t nx = mat[0][0] * x + mat[0][1] * y + mat[0][2] * z;
nuclear@1 173 scalar_t ny = mat[1][0] * x + mat[1][1] * y + mat[1][2] * z;
nuclear@1 174 z = mat[2][0] * x + mat[2][1] * y + mat[2][2] * z;
nuclear@1 175 x = nx;
nuclear@1 176 y = ny;
nuclear@1 177 }
nuclear@1 178
nuclear@1 179 Vector3 Vector3::transformed(const Matrix3x3 &mat) const
nuclear@1 180 {
nuclear@1 181 Vector3 vec;
nuclear@1 182 vec.x = mat[0][0] * x + mat[0][1] * y + mat[0][2] * z;
nuclear@1 183 vec.y = mat[1][0] * x + mat[1][1] * y + mat[1][2] * z;
nuclear@1 184 vec.z = mat[2][0] * x + mat[2][1] * y + mat[2][2] * z;
nuclear@1 185 return vec;
nuclear@1 186 }
nuclear@1 187
nuclear@1 188 void Vector3::transform(const Matrix4x4 &mat)
nuclear@1 189 {
nuclear@1 190 scalar_t nx = mat[0][0] * x + mat[0][1] * y + mat[0][2] * z + mat[0][3];
nuclear@1 191 scalar_t ny = mat[1][0] * x + mat[1][1] * y + mat[1][2] * z + mat[1][3];
nuclear@1 192 z = mat[2][0] * x + mat[2][1] * y + mat[2][2] * z + mat[2][3];
nuclear@1 193 x = nx;
nuclear@1 194 y = ny;
nuclear@1 195 }
nuclear@1 196
nuclear@1 197 Vector3 Vector3::transformed(const Matrix4x4 &mat) const
nuclear@1 198 {
nuclear@1 199 Vector3 vec;
nuclear@1 200 vec.x = mat[0][0] * x + mat[0][1] * y + mat[0][2] * z + mat[0][3];
nuclear@1 201 vec.y = mat[1][0] * x + mat[1][1] * y + mat[1][2] * z + mat[1][3];
nuclear@1 202 vec.z = mat[2][0] * x + mat[2][1] * y + mat[2][2] * z + mat[2][3];
nuclear@1 203 return vec;
nuclear@1 204 }
nuclear@1 205
nuclear@1 206 void Vector3::transform(const Quaternion &quat)
nuclear@1 207 {
nuclear@1 208 Quaternion vq(0.0f, *this);
nuclear@1 209 vq = quat * vq * quat.inverse();
nuclear@1 210 *this = vq.v;
nuclear@1 211 }
nuclear@1 212
nuclear@1 213 Vector3 Vector3::transformed(const Quaternion &quat) const
nuclear@1 214 {
nuclear@1 215 Quaternion vq(0.0f, *this);
nuclear@1 216 vq = quat * vq * quat.inverse();
nuclear@1 217 return vq.v;
nuclear@1 218 }
nuclear@1 219
nuclear@1 220 void Vector3::rotate(const Vector3 &euler)
nuclear@1 221 {
nuclear@1 222 Matrix4x4 rot;
nuclear@1 223 rot.set_rotation(euler);
nuclear@1 224 transform(rot);
nuclear@1 225 }
nuclear@1 226
nuclear@1 227 Vector3 Vector3::rotated(const Vector3 &euler) const
nuclear@1 228 {
nuclear@1 229 Matrix4x4 rot;
nuclear@1 230 rot.set_rotation(euler);
nuclear@1 231 return transformed(rot);
nuclear@1 232 }
nuclear@1 233
nuclear@1 234 std::ostream &operator <<(std::ostream &out, const Vector3 &vec)
nuclear@1 235 {
nuclear@1 236 out << "[" << vec.x << " " << vec.y << " " << vec.z << "]";
nuclear@1 237 return out;
nuclear@1 238 }
nuclear@1 239
nuclear@1 240
nuclear@1 241 // -------------- Vector4 --------------
nuclear@1 242 Vector4::Vector4(scalar_t x, scalar_t y, scalar_t z, scalar_t w)
nuclear@1 243 {
nuclear@1 244 this->x = x;
nuclear@1 245 this->y = y;
nuclear@1 246 this->z = z;
nuclear@1 247 this->w = w;
nuclear@1 248 }
nuclear@1 249
nuclear@1 250 Vector4::Vector4(const vec4_t &vec)
nuclear@1 251 {
nuclear@1 252 x = vec.x;
nuclear@1 253 y = vec.y;
nuclear@1 254 z = vec.z;
nuclear@1 255 w = vec.w;
nuclear@1 256 }
nuclear@1 257
nuclear@1 258 Vector4::Vector4(const Vector2 &vec)
nuclear@1 259 {
nuclear@1 260 x = vec.x;
nuclear@1 261 y = vec.y;
nuclear@1 262 z = 1;
nuclear@1 263 w = 1;
nuclear@1 264 }
nuclear@1 265
nuclear@1 266 Vector4::Vector4(const Vector3 &vec)
nuclear@1 267 {
nuclear@1 268 x = vec.x;
nuclear@1 269 y = vec.y;
nuclear@1 270 z = vec.z;
nuclear@1 271 w = 1;
nuclear@1 272 }
nuclear@1 273
nuclear@1 274 void Vector4::normalize()
nuclear@1 275 {
nuclear@1 276 scalar_t len = (scalar_t)sqrt(x*x + y*y + z*z + w*w);
nuclear@1 277 x /= len;
nuclear@1 278 y /= len;
nuclear@1 279 z /= len;
nuclear@1 280 w /= len;
nuclear@1 281 }
nuclear@1 282
nuclear@1 283 Vector4 Vector4::normalized() const
nuclear@1 284 {
nuclear@1 285 scalar_t len = (scalar_t)sqrt(x*x + y*y + z*z + w*w);
nuclear@1 286 return Vector4(x / len, y / len, z / len, w / len);
nuclear@1 287 }
nuclear@1 288
nuclear@1 289 void Vector4::transform(const Matrix4x4 &mat)
nuclear@1 290 {
nuclear@1 291 scalar_t nx = mat[0][0] * x + mat[0][1] * y + mat[0][2] * z + mat[0][3] * w;
nuclear@1 292 scalar_t ny = mat[1][0] * x + mat[1][1] * y + mat[1][2] * z + mat[1][3] * w;
nuclear@1 293 scalar_t nz = mat[2][0] * x + mat[2][1] * y + mat[2][2] * z + mat[2][3] * w;
nuclear@1 294 w = mat[3][0] * x + mat[3][1] * y + mat[3][2] * z + mat[3][3] * w;
nuclear@1 295 x = nx;
nuclear@1 296 y = ny;
nuclear@1 297 z = nz;
nuclear@1 298 }
nuclear@1 299
nuclear@1 300 Vector4 Vector4::transformed(const Matrix4x4 &mat) const
nuclear@1 301 {
nuclear@1 302 Vector4 vec;
nuclear@1 303 vec.x = mat[0][0] * x + mat[0][1] * y + mat[0][2] * z + mat[0][3] * w;
nuclear@1 304 vec.y = mat[1][0] * x + mat[1][1] * y + mat[1][2] * z + mat[1][3] * w;
nuclear@1 305 vec.z = mat[2][0] * x + mat[2][1] * y + mat[2][2] * z + mat[2][3] * w;
nuclear@1 306 vec.w = mat[3][0] * x + mat[3][1] * y + mat[3][2] * z + mat[3][3] * w;
nuclear@1 307 return vec;
nuclear@1 308 }
nuclear@1 309
nuclear@1 310 // TODO: implement 4D vector reflection
nuclear@1 311 Vector4 Vector4::reflection(const Vector4 &normal) const
nuclear@1 312 {
nuclear@1 313 return *this;
nuclear@1 314 }
nuclear@1 315
nuclear@1 316 // TODO: implement 4D vector refraction
nuclear@1 317 Vector4 Vector4::refraction(const Vector4 &normal, scalar_t src_ior, scalar_t dst_ior) const
nuclear@1 318 {
nuclear@1 319 return *this;
nuclear@1 320 }
nuclear@1 321
nuclear@1 322 std::ostream &operator <<(std::ostream &out, const Vector4 &vec)
nuclear@1 323 {
nuclear@1 324 out << "[" << vec.x << " " << vec.y << " " << vec.z << " " << vec.w << "]";
nuclear@1 325 return out;
nuclear@1 326 }