rev |
line source |
nuclear@1
|
1 /*
|
nuclear@1
|
2 * jmemmgr.c
|
nuclear@1
|
3 *
|
nuclear@1
|
4 * Copyright (C) 1991-1997, Thomas G. Lane.
|
nuclear@1
|
5 * This file is part of the Independent JPEG Group's software.
|
nuclear@1
|
6 * For conditions of distribution and use, see the accompanying README file.
|
nuclear@1
|
7 *
|
nuclear@1
|
8 * This file contains the JPEG system-independent memory management
|
nuclear@1
|
9 * routines. This code is usable across a wide variety of machines; most
|
nuclear@1
|
10 * of the system dependencies have been isolated in a separate file.
|
nuclear@1
|
11 * The major functions provided here are:
|
nuclear@1
|
12 * * pool-based allocation and freeing of memory;
|
nuclear@1
|
13 * * policy decisions about how to divide available memory among the
|
nuclear@1
|
14 * virtual arrays;
|
nuclear@1
|
15 * * control logic for swapping virtual arrays between main memory and
|
nuclear@1
|
16 * backing storage.
|
nuclear@1
|
17 * The separate system-dependent file provides the actual backing-storage
|
nuclear@1
|
18 * access code, and it contains the policy decision about how much total
|
nuclear@1
|
19 * main memory to use.
|
nuclear@1
|
20 * This file is system-dependent in the sense that some of its functions
|
nuclear@1
|
21 * are unnecessary in some systems. For example, if there is enough virtual
|
nuclear@1
|
22 * memory so that backing storage will never be used, much of the virtual
|
nuclear@1
|
23 * array control logic could be removed. (Of course, if you have that much
|
nuclear@1
|
24 * memory then you shouldn't care about a little bit of unused code...)
|
nuclear@1
|
25 */
|
nuclear@1
|
26
|
nuclear@1
|
27 #define JPEG_INTERNALS
|
nuclear@1
|
28 #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
|
nuclear@1
|
29 #include "jinclude.h"
|
nuclear@1
|
30 #include "jpeglib.h"
|
nuclear@1
|
31 #include "jmemsys.h" /* import the system-dependent declarations */
|
nuclear@1
|
32
|
nuclear@1
|
33 #ifndef NO_GETENV
|
nuclear@1
|
34 #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */
|
nuclear@1
|
35 extern char * getenv JPP((const char * name));
|
nuclear@1
|
36 #endif
|
nuclear@1
|
37 #endif
|
nuclear@1
|
38
|
nuclear@1
|
39
|
nuclear@1
|
40 /*
|
nuclear@1
|
41 * Some important notes:
|
nuclear@1
|
42 * The allocation routines provided here must never return NULL.
|
nuclear@1
|
43 * They should exit to error_exit if unsuccessful.
|
nuclear@1
|
44 *
|
nuclear@1
|
45 * It's not a good idea to try to merge the sarray and barray routines,
|
nuclear@1
|
46 * even though they are textually almost the same, because samples are
|
nuclear@1
|
47 * usually stored as bytes while coefficients are shorts or ints. Thus,
|
nuclear@1
|
48 * in machines where byte pointers have a different representation from
|
nuclear@1
|
49 * word pointers, the resulting machine code could not be the same.
|
nuclear@1
|
50 */
|
nuclear@1
|
51
|
nuclear@1
|
52
|
nuclear@1
|
53 /*
|
nuclear@1
|
54 * Many machines require storage alignment: longs must start on 4-byte
|
nuclear@1
|
55 * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
|
nuclear@1
|
56 * always returns pointers that are multiples of the worst-case alignment
|
nuclear@1
|
57 * requirement, and we had better do so too.
|
nuclear@1
|
58 * There isn't any really portable way to determine the worst-case alignment
|
nuclear@1
|
59 * requirement. This module assumes that the alignment requirement is
|
nuclear@1
|
60 * multiples of sizeof(ALIGN_TYPE).
|
nuclear@1
|
61 * By default, we define ALIGN_TYPE as double. This is necessary on some
|
nuclear@1
|
62 * workstations (where doubles really do need 8-byte alignment) and will work
|
nuclear@1
|
63 * fine on nearly everything. If your machine has lesser alignment needs,
|
nuclear@1
|
64 * you can save a few bytes by making ALIGN_TYPE smaller.
|
nuclear@1
|
65 * The only place I know of where this will NOT work is certain Macintosh
|
nuclear@1
|
66 * 680x0 compilers that define double as a 10-byte IEEE extended float.
|
nuclear@1
|
67 * Doing 10-byte alignment is counterproductive because longwords won't be
|
nuclear@1
|
68 * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have
|
nuclear@1
|
69 * such a compiler.
|
nuclear@1
|
70 */
|
nuclear@1
|
71
|
nuclear@1
|
72 #ifndef ALIGN_TYPE /* so can override from jconfig.h */
|
nuclear@1
|
73 #define ALIGN_TYPE double
|
nuclear@1
|
74 #endif
|
nuclear@1
|
75
|
nuclear@1
|
76
|
nuclear@1
|
77 /*
|
nuclear@1
|
78 * We allocate objects from "pools", where each pool is gotten with a single
|
nuclear@1
|
79 * request to jpeg_get_small() or jpeg_get_large(). There is no per-object
|
nuclear@1
|
80 * overhead within a pool, except for alignment padding. Each pool has a
|
nuclear@1
|
81 * header with a link to the next pool of the same class.
|
nuclear@1
|
82 * Small and large pool headers are identical except that the latter's
|
nuclear@1
|
83 * link pointer must be FAR on 80x86 machines.
|
nuclear@1
|
84 * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
|
nuclear@1
|
85 * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
|
nuclear@1
|
86 * of the alignment requirement of ALIGN_TYPE.
|
nuclear@1
|
87 */
|
nuclear@1
|
88
|
nuclear@1
|
89 typedef union small_pool_struct * small_pool_ptr;
|
nuclear@1
|
90
|
nuclear@1
|
91 typedef union small_pool_struct {
|
nuclear@1
|
92 struct {
|
nuclear@1
|
93 small_pool_ptr next; /* next in list of pools */
|
nuclear@1
|
94 size_t bytes_used; /* how many bytes already used within pool */
|
nuclear@1
|
95 size_t bytes_left; /* bytes still available in this pool */
|
nuclear@1
|
96 } hdr;
|
nuclear@1
|
97 ALIGN_TYPE dummy; /* included in union to ensure alignment */
|
nuclear@1
|
98 } small_pool_hdr;
|
nuclear@1
|
99
|
nuclear@1
|
100 typedef union large_pool_struct FAR * large_pool_ptr;
|
nuclear@1
|
101
|
nuclear@1
|
102 typedef union large_pool_struct {
|
nuclear@1
|
103 struct {
|
nuclear@1
|
104 large_pool_ptr next; /* next in list of pools */
|
nuclear@1
|
105 size_t bytes_used; /* how many bytes already used within pool */
|
nuclear@1
|
106 size_t bytes_left; /* bytes still available in this pool */
|
nuclear@1
|
107 } hdr;
|
nuclear@1
|
108 ALIGN_TYPE dummy; /* included in union to ensure alignment */
|
nuclear@1
|
109 } large_pool_hdr;
|
nuclear@1
|
110
|
nuclear@1
|
111
|
nuclear@1
|
112 /*
|
nuclear@1
|
113 * Here is the full definition of a memory manager object.
|
nuclear@1
|
114 */
|
nuclear@1
|
115
|
nuclear@1
|
116 typedef struct {
|
nuclear@1
|
117 struct jpeg_memory_mgr pub; /* public fields */
|
nuclear@1
|
118
|
nuclear@1
|
119 /* Each pool identifier (lifetime class) names a linked list of pools. */
|
nuclear@1
|
120 small_pool_ptr small_list[JPOOL_NUMPOOLS];
|
nuclear@1
|
121 large_pool_ptr large_list[JPOOL_NUMPOOLS];
|
nuclear@1
|
122
|
nuclear@1
|
123 /* Since we only have one lifetime class of virtual arrays, only one
|
nuclear@1
|
124 * linked list is necessary (for each datatype). Note that the virtual
|
nuclear@1
|
125 * array control blocks being linked together are actually stored somewhere
|
nuclear@1
|
126 * in the small-pool list.
|
nuclear@1
|
127 */
|
nuclear@1
|
128 jvirt_sarray_ptr virt_sarray_list;
|
nuclear@1
|
129 jvirt_barray_ptr virt_barray_list;
|
nuclear@1
|
130
|
nuclear@1
|
131 /* This counts total space obtained from jpeg_get_small/large */
|
nuclear@1
|
132 long total_space_allocated;
|
nuclear@1
|
133
|
nuclear@1
|
134 /* alloc_sarray and alloc_barray set this value for use by virtual
|
nuclear@1
|
135 * array routines.
|
nuclear@1
|
136 */
|
nuclear@1
|
137 JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
|
nuclear@1
|
138 } my_memory_mgr;
|
nuclear@1
|
139
|
nuclear@1
|
140 typedef my_memory_mgr * my_mem_ptr;
|
nuclear@1
|
141
|
nuclear@1
|
142
|
nuclear@1
|
143 /*
|
nuclear@1
|
144 * The control blocks for virtual arrays.
|
nuclear@1
|
145 * Note that these blocks are allocated in the "small" pool area.
|
nuclear@1
|
146 * System-dependent info for the associated backing store (if any) is hidden
|
nuclear@1
|
147 * inside the backing_store_info struct.
|
nuclear@1
|
148 */
|
nuclear@1
|
149
|
nuclear@1
|
150 struct jvirt_sarray_control {
|
nuclear@1
|
151 JSAMPARRAY mem_buffer; /* => the in-memory buffer */
|
nuclear@1
|
152 JDIMENSION rows_in_array; /* total virtual array height */
|
nuclear@1
|
153 JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
|
nuclear@1
|
154 JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */
|
nuclear@1
|
155 JDIMENSION rows_in_mem; /* height of memory buffer */
|
nuclear@1
|
156 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
|
nuclear@1
|
157 JDIMENSION cur_start_row; /* first logical row # in the buffer */
|
nuclear@1
|
158 JDIMENSION first_undef_row; /* row # of first uninitialized row */
|
nuclear@1
|
159 boolean pre_zero; /* pre-zero mode requested? */
|
nuclear@1
|
160 boolean dirty; /* do current buffer contents need written? */
|
nuclear@1
|
161 boolean b_s_open; /* is backing-store data valid? */
|
nuclear@1
|
162 jvirt_sarray_ptr next; /* link to next virtual sarray control block */
|
nuclear@1
|
163 backing_store_info b_s_info; /* System-dependent control info */
|
nuclear@1
|
164 };
|
nuclear@1
|
165
|
nuclear@1
|
166 struct jvirt_barray_control {
|
nuclear@1
|
167 JBLOCKARRAY mem_buffer; /* => the in-memory buffer */
|
nuclear@1
|
168 JDIMENSION rows_in_array; /* total virtual array height */
|
nuclear@1
|
169 JDIMENSION blocksperrow; /* width of array (and of memory buffer) */
|
nuclear@1
|
170 JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */
|
nuclear@1
|
171 JDIMENSION rows_in_mem; /* height of memory buffer */
|
nuclear@1
|
172 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
|
nuclear@1
|
173 JDIMENSION cur_start_row; /* first logical row # in the buffer */
|
nuclear@1
|
174 JDIMENSION first_undef_row; /* row # of first uninitialized row */
|
nuclear@1
|
175 boolean pre_zero; /* pre-zero mode requested? */
|
nuclear@1
|
176 boolean dirty; /* do current buffer contents need written? */
|
nuclear@1
|
177 boolean b_s_open; /* is backing-store data valid? */
|
nuclear@1
|
178 jvirt_barray_ptr next; /* link to next virtual barray control block */
|
nuclear@1
|
179 backing_store_info b_s_info; /* System-dependent control info */
|
nuclear@1
|
180 };
|
nuclear@1
|
181
|
nuclear@1
|
182
|
nuclear@1
|
183 #ifdef MEM_STATS /* optional extra stuff for statistics */
|
nuclear@1
|
184
|
nuclear@1
|
185 LOCAL(void)
|
nuclear@1
|
186 print_mem_stats (j_common_ptr cinfo, int pool_id)
|
nuclear@1
|
187 {
|
nuclear@1
|
188 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
|
nuclear@1
|
189 small_pool_ptr shdr_ptr;
|
nuclear@1
|
190 large_pool_ptr lhdr_ptr;
|
nuclear@1
|
191
|
nuclear@1
|
192 /* Since this is only a debugging stub, we can cheat a little by using
|
nuclear@1
|
193 * fprintf directly rather than going through the trace message code.
|
nuclear@1
|
194 * This is helpful because message parm array can't handle longs.
|
nuclear@1
|
195 */
|
nuclear@1
|
196 fprintf(stderr, "Freeing pool %d, total space = %ld\n",
|
nuclear@1
|
197 pool_id, mem->total_space_allocated);
|
nuclear@1
|
198
|
nuclear@1
|
199 for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
|
nuclear@1
|
200 lhdr_ptr = lhdr_ptr->hdr.next) {
|
nuclear@1
|
201 fprintf(stderr, " Large chunk used %ld\n",
|
nuclear@1
|
202 (long) lhdr_ptr->hdr.bytes_used);
|
nuclear@1
|
203 }
|
nuclear@1
|
204
|
nuclear@1
|
205 for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
|
nuclear@1
|
206 shdr_ptr = shdr_ptr->hdr.next) {
|
nuclear@1
|
207 fprintf(stderr, " Small chunk used %ld free %ld\n",
|
nuclear@1
|
208 (long) shdr_ptr->hdr.bytes_used,
|
nuclear@1
|
209 (long) shdr_ptr->hdr.bytes_left);
|
nuclear@1
|
210 }
|
nuclear@1
|
211 }
|
nuclear@1
|
212
|
nuclear@1
|
213 #endif /* MEM_STATS */
|
nuclear@1
|
214
|
nuclear@1
|
215
|
nuclear@1
|
216 LOCAL(void)
|
nuclear@1
|
217 out_of_memory (j_common_ptr cinfo, int which)
|
nuclear@1
|
218 /* Report an out-of-memory error and stop execution */
|
nuclear@1
|
219 /* If we compiled MEM_STATS support, report alloc requests before dying */
|
nuclear@1
|
220 {
|
nuclear@1
|
221 #ifdef MEM_STATS
|
nuclear@1
|
222 cinfo->err->trace_level = 2; /* force self_destruct to report stats */
|
nuclear@1
|
223 #endif
|
nuclear@1
|
224 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
|
nuclear@1
|
225 }
|
nuclear@1
|
226
|
nuclear@1
|
227
|
nuclear@1
|
228 /*
|
nuclear@1
|
229 * Allocation of "small" objects.
|
nuclear@1
|
230 *
|
nuclear@1
|
231 * For these, we use pooled storage. When a new pool must be created,
|
nuclear@1
|
232 * we try to get enough space for the current request plus a "slop" factor,
|
nuclear@1
|
233 * where the slop will be the amount of leftover space in the new pool.
|
nuclear@1
|
234 * The speed vs. space tradeoff is largely determined by the slop values.
|
nuclear@1
|
235 * A different slop value is provided for each pool class (lifetime),
|
nuclear@1
|
236 * and we also distinguish the first pool of a class from later ones.
|
nuclear@1
|
237 * NOTE: the values given work fairly well on both 16- and 32-bit-int
|
nuclear@1
|
238 * machines, but may be too small if longs are 64 bits or more.
|
nuclear@1
|
239 */
|
nuclear@1
|
240
|
nuclear@1
|
241 static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
|
nuclear@1
|
242 {
|
nuclear@1
|
243 1600, /* first PERMANENT pool */
|
nuclear@1
|
244 16000 /* first IMAGE pool */
|
nuclear@1
|
245 };
|
nuclear@1
|
246
|
nuclear@1
|
247 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
|
nuclear@1
|
248 {
|
nuclear@1
|
249 0, /* additional PERMANENT pools */
|
nuclear@1
|
250 5000 /* additional IMAGE pools */
|
nuclear@1
|
251 };
|
nuclear@1
|
252
|
nuclear@1
|
253 #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
|
nuclear@1
|
254
|
nuclear@1
|
255
|
nuclear@1
|
256 METHODDEF(void *)
|
nuclear@1
|
257 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
|
nuclear@1
|
258 /* Allocate a "small" object */
|
nuclear@1
|
259 {
|
nuclear@1
|
260 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
|
nuclear@1
|
261 small_pool_ptr hdr_ptr, prev_hdr_ptr;
|
nuclear@1
|
262 char * data_ptr;
|
nuclear@1
|
263 size_t odd_bytes, min_request, slop;
|
nuclear@1
|
264
|
nuclear@1
|
265 /* Check for unsatisfiable request (do now to ensure no overflow below) */
|
nuclear@1
|
266 if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
|
nuclear@1
|
267 out_of_memory(cinfo, 1); /* request exceeds malloc's ability */
|
nuclear@1
|
268
|
nuclear@1
|
269 /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
|
nuclear@1
|
270 odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
|
nuclear@1
|
271 if (odd_bytes > 0)
|
nuclear@1
|
272 sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
|
nuclear@1
|
273
|
nuclear@1
|
274 /* See if space is available in any existing pool */
|
nuclear@1
|
275 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
|
nuclear@1
|
276 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
|
nuclear@1
|
277 prev_hdr_ptr = NULL;
|
nuclear@1
|
278 hdr_ptr = mem->small_list[pool_id];
|
nuclear@1
|
279 while (hdr_ptr != NULL) {
|
nuclear@1
|
280 if (hdr_ptr->hdr.bytes_left >= sizeofobject)
|
nuclear@1
|
281 break; /* found pool with enough space */
|
nuclear@1
|
282 prev_hdr_ptr = hdr_ptr;
|
nuclear@1
|
283 hdr_ptr = hdr_ptr->hdr.next;
|
nuclear@1
|
284 }
|
nuclear@1
|
285
|
nuclear@1
|
286 /* Time to make a new pool? */
|
nuclear@1
|
287 if (hdr_ptr == NULL) {
|
nuclear@1
|
288 /* min_request is what we need now, slop is what will be leftover */
|
nuclear@1
|
289 min_request = sizeofobject + SIZEOF(small_pool_hdr);
|
nuclear@1
|
290 if (prev_hdr_ptr == NULL) /* first pool in class? */
|
nuclear@1
|
291 slop = first_pool_slop[pool_id];
|
nuclear@1
|
292 else
|
nuclear@1
|
293 slop = extra_pool_slop[pool_id];
|
nuclear@1
|
294 /* Don't ask for more than MAX_ALLOC_CHUNK */
|
nuclear@1
|
295 if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
|
nuclear@1
|
296 slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
|
nuclear@1
|
297 /* Try to get space, if fail reduce slop and try again */
|
nuclear@1
|
298 for (;;) {
|
nuclear@1
|
299 hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
|
nuclear@1
|
300 if (hdr_ptr != NULL)
|
nuclear@1
|
301 break;
|
nuclear@1
|
302 slop /= 2;
|
nuclear@1
|
303 if (slop < MIN_SLOP) /* give up when it gets real small */
|
nuclear@1
|
304 out_of_memory(cinfo, 2); /* jpeg_get_small failed */
|
nuclear@1
|
305 }
|
nuclear@1
|
306 mem->total_space_allocated += min_request + slop;
|
nuclear@1
|
307 /* Success, initialize the new pool header and add to end of list */
|
nuclear@1
|
308 hdr_ptr->hdr.next = NULL;
|
nuclear@1
|
309 hdr_ptr->hdr.bytes_used = 0;
|
nuclear@1
|
310 hdr_ptr->hdr.bytes_left = sizeofobject + slop;
|
nuclear@1
|
311 if (prev_hdr_ptr == NULL) /* first pool in class? */
|
nuclear@1
|
312 mem->small_list[pool_id] = hdr_ptr;
|
nuclear@1
|
313 else
|
nuclear@1
|
314 prev_hdr_ptr->hdr.next = hdr_ptr;
|
nuclear@1
|
315 }
|
nuclear@1
|
316
|
nuclear@1
|
317 /* OK, allocate the object from the current pool */
|
nuclear@1
|
318 data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
|
nuclear@1
|
319 data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
|
nuclear@1
|
320 hdr_ptr->hdr.bytes_used += sizeofobject;
|
nuclear@1
|
321 hdr_ptr->hdr.bytes_left -= sizeofobject;
|
nuclear@1
|
322
|
nuclear@1
|
323 return (void *) data_ptr;
|
nuclear@1
|
324 }
|
nuclear@1
|
325
|
nuclear@1
|
326
|
nuclear@1
|
327 /*
|
nuclear@1
|
328 * Allocation of "large" objects.
|
nuclear@1
|
329 *
|
nuclear@1
|
330 * The external semantics of these are the same as "small" objects,
|
nuclear@1
|
331 * except that FAR pointers are used on 80x86. However the pool
|
nuclear@1
|
332 * management heuristics are quite different. We assume that each
|
nuclear@1
|
333 * request is large enough that it may as well be passed directly to
|
nuclear@1
|
334 * jpeg_get_large; the pool management just links everything together
|
nuclear@1
|
335 * so that we can free it all on demand.
|
nuclear@1
|
336 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
|
nuclear@1
|
337 * structures. The routines that create these structures (see below)
|
nuclear@1
|
338 * deliberately bunch rows together to ensure a large request size.
|
nuclear@1
|
339 */
|
nuclear@1
|
340
|
nuclear@1
|
341 METHODDEF(void FAR *)
|
nuclear@1
|
342 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
|
nuclear@1
|
343 /* Allocate a "large" object */
|
nuclear@1
|
344 {
|
nuclear@1
|
345 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
|
nuclear@1
|
346 large_pool_ptr hdr_ptr;
|
nuclear@1
|
347 size_t odd_bytes;
|
nuclear@1
|
348
|
nuclear@1
|
349 /* Check for unsatisfiable request (do now to ensure no overflow below) */
|
nuclear@1
|
350 if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
|
nuclear@1
|
351 out_of_memory(cinfo, 3); /* request exceeds malloc's ability */
|
nuclear@1
|
352
|
nuclear@1
|
353 /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
|
nuclear@1
|
354 odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
|
nuclear@1
|
355 if (odd_bytes > 0)
|
nuclear@1
|
356 sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
|
nuclear@1
|
357
|
nuclear@1
|
358 /* Always make a new pool */
|
nuclear@1
|
359 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
|
nuclear@1
|
360 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
|
nuclear@1
|
361
|
nuclear@1
|
362 hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
|
nuclear@1
|
363 SIZEOF(large_pool_hdr));
|
nuclear@1
|
364 if (hdr_ptr == NULL)
|
nuclear@1
|
365 out_of_memory(cinfo, 4); /* jpeg_get_large failed */
|
nuclear@1
|
366 mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
|
nuclear@1
|
367
|
nuclear@1
|
368 /* Success, initialize the new pool header and add to list */
|
nuclear@1
|
369 hdr_ptr->hdr.next = mem->large_list[pool_id];
|
nuclear@1
|
370 /* We maintain space counts in each pool header for statistical purposes,
|
nuclear@1
|
371 * even though they are not needed for allocation.
|
nuclear@1
|
372 */
|
nuclear@1
|
373 hdr_ptr->hdr.bytes_used = sizeofobject;
|
nuclear@1
|
374 hdr_ptr->hdr.bytes_left = 0;
|
nuclear@1
|
375 mem->large_list[pool_id] = hdr_ptr;
|
nuclear@1
|
376
|
nuclear@1
|
377 return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
|
nuclear@1
|
378 }
|
nuclear@1
|
379
|
nuclear@1
|
380
|
nuclear@1
|
381 /*
|
nuclear@1
|
382 * Creation of 2-D sample arrays.
|
nuclear@1
|
383 * The pointers are in near heap, the samples themselves in FAR heap.
|
nuclear@1
|
384 *
|
nuclear@1
|
385 * To minimize allocation overhead and to allow I/O of large contiguous
|
nuclear@1
|
386 * blocks, we allocate the sample rows in groups of as many rows as possible
|
nuclear@1
|
387 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
|
nuclear@1
|
388 * NB: the virtual array control routines, later in this file, know about
|
nuclear@1
|
389 * this chunking of rows. The rowsperchunk value is left in the mem manager
|
nuclear@1
|
390 * object so that it can be saved away if this sarray is the workspace for
|
nuclear@1
|
391 * a virtual array.
|
nuclear@1
|
392 */
|
nuclear@1
|
393
|
nuclear@1
|
394 METHODDEF(JSAMPARRAY)
|
nuclear@1
|
395 alloc_sarray (j_common_ptr cinfo, int pool_id,
|
nuclear@1
|
396 JDIMENSION samplesperrow, JDIMENSION numrows)
|
nuclear@1
|
397 /* Allocate a 2-D sample array */
|
nuclear@1
|
398 {
|
nuclear@1
|
399 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
|
nuclear@1
|
400 JSAMPARRAY result;
|
nuclear@1
|
401 JSAMPROW workspace;
|
nuclear@1
|
402 JDIMENSION rowsperchunk, currow, i;
|
nuclear@1
|
403 long ltemp;
|
nuclear@1
|
404
|
nuclear@1
|
405 /* Calculate max # of rows allowed in one allocation chunk */
|
nuclear@1
|
406 ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
|
nuclear@1
|
407 ((long) samplesperrow * SIZEOF(JSAMPLE));
|
nuclear@1
|
408 if (ltemp <= 0)
|
nuclear@1
|
409 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
|
nuclear@1
|
410 if (ltemp < (long) numrows)
|
nuclear@1
|
411 rowsperchunk = (JDIMENSION) ltemp;
|
nuclear@1
|
412 else
|
nuclear@1
|
413 rowsperchunk = numrows;
|
nuclear@1
|
414 mem->last_rowsperchunk = rowsperchunk;
|
nuclear@1
|
415
|
nuclear@1
|
416 /* Get space for row pointers (small object) */
|
nuclear@1
|
417 result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
|
nuclear@1
|
418 (size_t) (numrows * SIZEOF(JSAMPROW)));
|
nuclear@1
|
419
|
nuclear@1
|
420 /* Get the rows themselves (large objects) */
|
nuclear@1
|
421 currow = 0;
|
nuclear@1
|
422 while (currow < numrows) {
|
nuclear@1
|
423 rowsperchunk = MIN(rowsperchunk, numrows - currow);
|
nuclear@1
|
424 workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
|
nuclear@1
|
425 (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
|
nuclear@1
|
426 * SIZEOF(JSAMPLE)));
|
nuclear@1
|
427 for (i = rowsperchunk; i > 0; i--) {
|
nuclear@1
|
428 result[currow++] = workspace;
|
nuclear@1
|
429 workspace += samplesperrow;
|
nuclear@1
|
430 }
|
nuclear@1
|
431 }
|
nuclear@1
|
432
|
nuclear@1
|
433 return result;
|
nuclear@1
|
434 }
|
nuclear@1
|
435
|
nuclear@1
|
436
|
nuclear@1
|
437 /*
|
nuclear@1
|
438 * Creation of 2-D coefficient-block arrays.
|
nuclear@1
|
439 * This is essentially the same as the code for sample arrays, above.
|
nuclear@1
|
440 */
|
nuclear@1
|
441
|
nuclear@1
|
442 METHODDEF(JBLOCKARRAY)
|
nuclear@1
|
443 alloc_barray (j_common_ptr cinfo, int pool_id,
|
nuclear@1
|
444 JDIMENSION blocksperrow, JDIMENSION numrows)
|
nuclear@1
|
445 /* Allocate a 2-D coefficient-block array */
|
nuclear@1
|
446 {
|
nuclear@1
|
447 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
|
nuclear@1
|
448 JBLOCKARRAY result;
|
nuclear@1
|
449 JBLOCKROW workspace;
|
nuclear@1
|
450 JDIMENSION rowsperchunk, currow, i;
|
nuclear@1
|
451 long ltemp;
|
nuclear@1
|
452
|
nuclear@1
|
453 /* Calculate max # of rows allowed in one allocation chunk */
|
nuclear@1
|
454 ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
|
nuclear@1
|
455 ((long) blocksperrow * SIZEOF(JBLOCK));
|
nuclear@1
|
456 if (ltemp <= 0)
|
nuclear@1
|
457 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
|
nuclear@1
|
458 if (ltemp < (long) numrows)
|
nuclear@1
|
459 rowsperchunk = (JDIMENSION) ltemp;
|
nuclear@1
|
460 else
|
nuclear@1
|
461 rowsperchunk = numrows;
|
nuclear@1
|
462 mem->last_rowsperchunk = rowsperchunk;
|
nuclear@1
|
463
|
nuclear@1
|
464 /* Get space for row pointers (small object) */
|
nuclear@1
|
465 result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
|
nuclear@1
|
466 (size_t) (numrows * SIZEOF(JBLOCKROW)));
|
nuclear@1
|
467
|
nuclear@1
|
468 /* Get the rows themselves (large objects) */
|
nuclear@1
|
469 currow = 0;
|
nuclear@1
|
470 while (currow < numrows) {
|
nuclear@1
|
471 rowsperchunk = MIN(rowsperchunk, numrows - currow);
|
nuclear@1
|
472 workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
|
nuclear@1
|
473 (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
|
nuclear@1
|
474 * SIZEOF(JBLOCK)));
|
nuclear@1
|
475 for (i = rowsperchunk; i > 0; i--) {
|
nuclear@1
|
476 result[currow++] = workspace;
|
nuclear@1
|
477 workspace += blocksperrow;
|
nuclear@1
|
478 }
|
nuclear@1
|
479 }
|
nuclear@1
|
480
|
nuclear@1
|
481 return result;
|
nuclear@1
|
482 }
|
nuclear@1
|
483
|
nuclear@1
|
484
|
nuclear@1
|
485 /*
|
nuclear@1
|
486 * About virtual array management:
|
nuclear@1
|
487 *
|
nuclear@1
|
488 * The above "normal" array routines are only used to allocate strip buffers
|
nuclear@1
|
489 * (as wide as the image, but just a few rows high). Full-image-sized buffers
|
nuclear@1
|
490 * are handled as "virtual" arrays. The array is still accessed a strip at a
|
nuclear@1
|
491 * time, but the memory manager must save the whole array for repeated
|
nuclear@1
|
492 * accesses. The intended implementation is that there is a strip buffer in
|
nuclear@1
|
493 * memory (as high as is possible given the desired memory limit), plus a
|
nuclear@1
|
494 * backing file that holds the rest of the array.
|
nuclear@1
|
495 *
|
nuclear@1
|
496 * The request_virt_array routines are told the total size of the image and
|
nuclear@1
|
497 * the maximum number of rows that will be accessed at once. The in-memory
|
nuclear@1
|
498 * buffer must be at least as large as the maxaccess value.
|
nuclear@1
|
499 *
|
nuclear@1
|
500 * The request routines create control blocks but not the in-memory buffers.
|
nuclear@1
|
501 * That is postponed until realize_virt_arrays is called. At that time the
|
nuclear@1
|
502 * total amount of space needed is known (approximately, anyway), so free
|
nuclear@1
|
503 * memory can be divided up fairly.
|
nuclear@1
|
504 *
|
nuclear@1
|
505 * The access_virt_array routines are responsible for making a specific strip
|
nuclear@1
|
506 * area accessible (after reading or writing the backing file, if necessary).
|
nuclear@1
|
507 * Note that the access routines are told whether the caller intends to modify
|
nuclear@1
|
508 * the accessed strip; during a read-only pass this saves having to rewrite
|
nuclear@1
|
509 * data to disk. The access routines are also responsible for pre-zeroing
|
nuclear@1
|
510 * any newly accessed rows, if pre-zeroing was requested.
|
nuclear@1
|
511 *
|
nuclear@1
|
512 * In current usage, the access requests are usually for nonoverlapping
|
nuclear@1
|
513 * strips; that is, successive access start_row numbers differ by exactly
|
nuclear@1
|
514 * num_rows = maxaccess. This means we can get good performance with simple
|
nuclear@1
|
515 * buffer dump/reload logic, by making the in-memory buffer be a multiple
|
nuclear@1
|
516 * of the access height; then there will never be accesses across bufferload
|
nuclear@1
|
517 * boundaries. The code will still work with overlapping access requests,
|
nuclear@1
|
518 * but it doesn't handle bufferload overlaps very efficiently.
|
nuclear@1
|
519 */
|
nuclear@1
|
520
|
nuclear@1
|
521
|
nuclear@1
|
522 METHODDEF(jvirt_sarray_ptr)
|
nuclear@1
|
523 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
|
nuclear@1
|
524 JDIMENSION samplesperrow, JDIMENSION numrows,
|
nuclear@1
|
525 JDIMENSION maxaccess)
|
nuclear@1
|
526 /* Request a virtual 2-D sample array */
|
nuclear@1
|
527 {
|
nuclear@1
|
528 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
|
nuclear@1
|
529 jvirt_sarray_ptr result;
|
nuclear@1
|
530
|
nuclear@1
|
531 /* Only IMAGE-lifetime virtual arrays are currently supported */
|
nuclear@1
|
532 if (pool_id != JPOOL_IMAGE)
|
nuclear@1
|
533 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
|
nuclear@1
|
534
|
nuclear@1
|
535 /* get control block */
|
nuclear@1
|
536 result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
|
nuclear@1
|
537 SIZEOF(struct jvirt_sarray_control));
|
nuclear@1
|
538
|
nuclear@1
|
539 result->mem_buffer = NULL; /* marks array not yet realized */
|
nuclear@1
|
540 result->rows_in_array = numrows;
|
nuclear@1
|
541 result->samplesperrow = samplesperrow;
|
nuclear@1
|
542 result->maxaccess = maxaccess;
|
nuclear@1
|
543 result->pre_zero = pre_zero;
|
nuclear@1
|
544 result->b_s_open = FALSE; /* no associated backing-store object */
|
nuclear@1
|
545 result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
|
nuclear@1
|
546 mem->virt_sarray_list = result;
|
nuclear@1
|
547
|
nuclear@1
|
548 return result;
|
nuclear@1
|
549 }
|
nuclear@1
|
550
|
nuclear@1
|
551
|
nuclear@1
|
552 METHODDEF(jvirt_barray_ptr)
|
nuclear@1
|
553 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
|
nuclear@1
|
554 JDIMENSION blocksperrow, JDIMENSION numrows,
|
nuclear@1
|
555 JDIMENSION maxaccess)
|
nuclear@1
|
556 /* Request a virtual 2-D coefficient-block array */
|
nuclear@1
|
557 {
|
nuclear@1
|
558 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
|
nuclear@1
|
559 jvirt_barray_ptr result;
|
nuclear@1
|
560
|
nuclear@1
|
561 /* Only IMAGE-lifetime virtual arrays are currently supported */
|
nuclear@1
|
562 if (pool_id != JPOOL_IMAGE)
|
nuclear@1
|
563 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
|
nuclear@1
|
564
|
nuclear@1
|
565 /* get control block */
|
nuclear@1
|
566 result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
|
nuclear@1
|
567 SIZEOF(struct jvirt_barray_control));
|
nuclear@1
|
568
|
nuclear@1
|
569 result->mem_buffer = NULL; /* marks array not yet realized */
|
nuclear@1
|
570 result->rows_in_array = numrows;
|
nuclear@1
|
571 result->blocksperrow = blocksperrow;
|
nuclear@1
|
572 result->maxaccess = maxaccess;
|
nuclear@1
|
573 result->pre_zero = pre_zero;
|
nuclear@1
|
574 result->b_s_open = FALSE; /* no associated backing-store object */
|
nuclear@1
|
575 result->next = mem->virt_barray_list; /* add to list of virtual arrays */
|
nuclear@1
|
576 mem->virt_barray_list = result;
|
nuclear@1
|
577
|
nuclear@1
|
578 return result;
|
nuclear@1
|
579 }
|
nuclear@1
|
580
|
nuclear@1
|
581
|
nuclear@1
|
582 METHODDEF(void)
|
nuclear@1
|
583 realize_virt_arrays (j_common_ptr cinfo)
|
nuclear@1
|
584 /* Allocate the in-memory buffers for any unrealized virtual arrays */
|
nuclear@1
|
585 {
|
nuclear@1
|
586 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
|
nuclear@1
|
587 long space_per_minheight, maximum_space, avail_mem;
|
nuclear@1
|
588 long minheights, max_minheights;
|
nuclear@1
|
589 jvirt_sarray_ptr sptr;
|
nuclear@1
|
590 jvirt_barray_ptr bptr;
|
nuclear@1
|
591
|
nuclear@1
|
592 /* Compute the minimum space needed (maxaccess rows in each buffer)
|
nuclear@1
|
593 * and the maximum space needed (full image height in each buffer).
|
nuclear@1
|
594 * These may be of use to the system-dependent jpeg_mem_available routine.
|
nuclear@1
|
595 */
|
nuclear@1
|
596 space_per_minheight = 0;
|
nuclear@1
|
597 maximum_space = 0;
|
nuclear@1
|
598 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
|
nuclear@1
|
599 if (sptr->mem_buffer == NULL) { /* if not realized yet */
|
nuclear@1
|
600 space_per_minheight += (long) sptr->maxaccess *
|
nuclear@1
|
601 (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
|
nuclear@1
|
602 maximum_space += (long) sptr->rows_in_array *
|
nuclear@1
|
603 (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
|
nuclear@1
|
604 }
|
nuclear@1
|
605 }
|
nuclear@1
|
606 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
|
nuclear@1
|
607 if (bptr->mem_buffer == NULL) { /* if not realized yet */
|
nuclear@1
|
608 space_per_minheight += (long) bptr->maxaccess *
|
nuclear@1
|
609 (long) bptr->blocksperrow * SIZEOF(JBLOCK);
|
nuclear@1
|
610 maximum_space += (long) bptr->rows_in_array *
|
nuclear@1
|
611 (long) bptr->blocksperrow * SIZEOF(JBLOCK);
|
nuclear@1
|
612 }
|
nuclear@1
|
613 }
|
nuclear@1
|
614
|
nuclear@1
|
615 if (space_per_minheight <= 0)
|
nuclear@1
|
616 return; /* no unrealized arrays, no work */
|
nuclear@1
|
617
|
nuclear@1
|
618 /* Determine amount of memory to actually use; this is system-dependent. */
|
nuclear@1
|
619 avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
|
nuclear@1
|
620 mem->total_space_allocated);
|
nuclear@1
|
621
|
nuclear@1
|
622 /* If the maximum space needed is available, make all the buffers full
|
nuclear@1
|
623 * height; otherwise parcel it out with the same number of minheights
|
nuclear@1
|
624 * in each buffer.
|
nuclear@1
|
625 */
|
nuclear@1
|
626 if (avail_mem >= maximum_space)
|
nuclear@1
|
627 max_minheights = 1000000000L;
|
nuclear@1
|
628 else {
|
nuclear@1
|
629 max_minheights = avail_mem / space_per_minheight;
|
nuclear@1
|
630 /* If there doesn't seem to be enough space, try to get the minimum
|
nuclear@1
|
631 * anyway. This allows a "stub" implementation of jpeg_mem_available().
|
nuclear@1
|
632 */
|
nuclear@1
|
633 if (max_minheights <= 0)
|
nuclear@1
|
634 max_minheights = 1;
|
nuclear@1
|
635 }
|
nuclear@1
|
636
|
nuclear@1
|
637 /* Allocate the in-memory buffers and initialize backing store as needed. */
|
nuclear@1
|
638
|
nuclear@1
|
639 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
|
nuclear@1
|
640 if (sptr->mem_buffer == NULL) { /* if not realized yet */
|
nuclear@1
|
641 minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
|
nuclear@1
|
642 if (minheights <= max_minheights) {
|
nuclear@1
|
643 /* This buffer fits in memory */
|
nuclear@1
|
644 sptr->rows_in_mem = sptr->rows_in_array;
|
nuclear@1
|
645 } else {
|
nuclear@1
|
646 /* It doesn't fit in memory, create backing store. */
|
nuclear@1
|
647 sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
|
nuclear@1
|
648 jpeg_open_backing_store(cinfo, & sptr->b_s_info,
|
nuclear@1
|
649 (long) sptr->rows_in_array *
|
nuclear@1
|
650 (long) sptr->samplesperrow *
|
nuclear@1
|
651 (long) SIZEOF(JSAMPLE));
|
nuclear@1
|
652 sptr->b_s_open = TRUE;
|
nuclear@1
|
653 }
|
nuclear@1
|
654 sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
|
nuclear@1
|
655 sptr->samplesperrow, sptr->rows_in_mem);
|
nuclear@1
|
656 sptr->rowsperchunk = mem->last_rowsperchunk;
|
nuclear@1
|
657 sptr->cur_start_row = 0;
|
nuclear@1
|
658 sptr->first_undef_row = 0;
|
nuclear@1
|
659 sptr->dirty = FALSE;
|
nuclear@1
|
660 }
|
nuclear@1
|
661 }
|
nuclear@1
|
662
|
nuclear@1
|
663 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
|
nuclear@1
|
664 if (bptr->mem_buffer == NULL) { /* if not realized yet */
|
nuclear@1
|
665 minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
|
nuclear@1
|
666 if (minheights <= max_minheights) {
|
nuclear@1
|
667 /* This buffer fits in memory */
|
nuclear@1
|
668 bptr->rows_in_mem = bptr->rows_in_array;
|
nuclear@1
|
669 } else {
|
nuclear@1
|
670 /* It doesn't fit in memory, create backing store. */
|
nuclear@1
|
671 bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
|
nuclear@1
|
672 jpeg_open_backing_store(cinfo, & bptr->b_s_info,
|
nuclear@1
|
673 (long) bptr->rows_in_array *
|
nuclear@1
|
674 (long) bptr->blocksperrow *
|
nuclear@1
|
675 (long) SIZEOF(JBLOCK));
|
nuclear@1
|
676 bptr->b_s_open = TRUE;
|
nuclear@1
|
677 }
|
nuclear@1
|
678 bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
|
nuclear@1
|
679 bptr->blocksperrow, bptr->rows_in_mem);
|
nuclear@1
|
680 bptr->rowsperchunk = mem->last_rowsperchunk;
|
nuclear@1
|
681 bptr->cur_start_row = 0;
|
nuclear@1
|
682 bptr->first_undef_row = 0;
|
nuclear@1
|
683 bptr->dirty = FALSE;
|
nuclear@1
|
684 }
|
nuclear@1
|
685 }
|
nuclear@1
|
686 }
|
nuclear@1
|
687
|
nuclear@1
|
688
|
nuclear@1
|
689 LOCAL(void)
|
nuclear@1
|
690 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
|
nuclear@1
|
691 /* Do backing store read or write of a virtual sample array */
|
nuclear@1
|
692 {
|
nuclear@1
|
693 long bytesperrow, file_offset, byte_count, rows, thisrow, i;
|
nuclear@1
|
694
|
nuclear@1
|
695 bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
|
nuclear@1
|
696 file_offset = ptr->cur_start_row * bytesperrow;
|
nuclear@1
|
697 /* Loop to read or write each allocation chunk in mem_buffer */
|
nuclear@1
|
698 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
|
nuclear@1
|
699 /* One chunk, but check for short chunk at end of buffer */
|
nuclear@1
|
700 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
|
nuclear@1
|
701 /* Transfer no more than is currently defined */
|
nuclear@1
|
702 thisrow = (long) ptr->cur_start_row + i;
|
nuclear@1
|
703 rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
|
nuclear@1
|
704 /* Transfer no more than fits in file */
|
nuclear@1
|
705 rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
|
nuclear@1
|
706 if (rows <= 0) /* this chunk might be past end of file! */
|
nuclear@1
|
707 break;
|
nuclear@1
|
708 byte_count = rows * bytesperrow;
|
nuclear@1
|
709 if (writing)
|
nuclear@1
|
710 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
|
nuclear@1
|
711 (void FAR *) ptr->mem_buffer[i],
|
nuclear@1
|
712 file_offset, byte_count);
|
nuclear@1
|
713 else
|
nuclear@1
|
714 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
|
nuclear@1
|
715 (void FAR *) ptr->mem_buffer[i],
|
nuclear@1
|
716 file_offset, byte_count);
|
nuclear@1
|
717 file_offset += byte_count;
|
nuclear@1
|
718 }
|
nuclear@1
|
719 }
|
nuclear@1
|
720
|
nuclear@1
|
721
|
nuclear@1
|
722 LOCAL(void)
|
nuclear@1
|
723 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
|
nuclear@1
|
724 /* Do backing store read or write of a virtual coefficient-block array */
|
nuclear@1
|
725 {
|
nuclear@1
|
726 long bytesperrow, file_offset, byte_count, rows, thisrow, i;
|
nuclear@1
|
727
|
nuclear@1
|
728 bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
|
nuclear@1
|
729 file_offset = ptr->cur_start_row * bytesperrow;
|
nuclear@1
|
730 /* Loop to read or write each allocation chunk in mem_buffer */
|
nuclear@1
|
731 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
|
nuclear@1
|
732 /* One chunk, but check for short chunk at end of buffer */
|
nuclear@1
|
733 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
|
nuclear@1
|
734 /* Transfer no more than is currently defined */
|
nuclear@1
|
735 thisrow = (long) ptr->cur_start_row + i;
|
nuclear@1
|
736 rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
|
nuclear@1
|
737 /* Transfer no more than fits in file */
|
nuclear@1
|
738 rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
|
nuclear@1
|
739 if (rows <= 0) /* this chunk might be past end of file! */
|
nuclear@1
|
740 break;
|
nuclear@1
|
741 byte_count = rows * bytesperrow;
|
nuclear@1
|
742 if (writing)
|
nuclear@1
|
743 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
|
nuclear@1
|
744 (void FAR *) ptr->mem_buffer[i],
|
nuclear@1
|
745 file_offset, byte_count);
|
nuclear@1
|
746 else
|
nuclear@1
|
747 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
|
nuclear@1
|
748 (void FAR *) ptr->mem_buffer[i],
|
nuclear@1
|
749 file_offset, byte_count);
|
nuclear@1
|
750 file_offset += byte_count;
|
nuclear@1
|
751 }
|
nuclear@1
|
752 }
|
nuclear@1
|
753
|
nuclear@1
|
754
|
nuclear@1
|
755 METHODDEF(JSAMPARRAY)
|
nuclear@1
|
756 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
|
nuclear@1
|
757 JDIMENSION start_row, JDIMENSION num_rows,
|
nuclear@1
|
758 boolean writable)
|
nuclear@1
|
759 /* Access the part of a virtual sample array starting at start_row */
|
nuclear@1
|
760 /* and extending for num_rows rows. writable is true if */
|
nuclear@1
|
761 /* caller intends to modify the accessed area. */
|
nuclear@1
|
762 {
|
nuclear@1
|
763 JDIMENSION end_row = start_row + num_rows;
|
nuclear@1
|
764 JDIMENSION undef_row;
|
nuclear@1
|
765
|
nuclear@1
|
766 /* debugging check */
|
nuclear@1
|
767 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
|
nuclear@1
|
768 ptr->mem_buffer == NULL)
|
nuclear@1
|
769 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
|
nuclear@1
|
770
|
nuclear@1
|
771 /* Make the desired part of the virtual array accessible */
|
nuclear@1
|
772 if (start_row < ptr->cur_start_row ||
|
nuclear@1
|
773 end_row > ptr->cur_start_row+ptr->rows_in_mem) {
|
nuclear@1
|
774 if (! ptr->b_s_open)
|
nuclear@1
|
775 ERREXIT(cinfo, JERR_VIRTUAL_BUG);
|
nuclear@1
|
776 /* Flush old buffer contents if necessary */
|
nuclear@1
|
777 if (ptr->dirty) {
|
nuclear@1
|
778 do_sarray_io(cinfo, ptr, TRUE);
|
nuclear@1
|
779 ptr->dirty = FALSE;
|
nuclear@1
|
780 }
|
nuclear@1
|
781 /* Decide what part of virtual array to access.
|
nuclear@1
|
782 * Algorithm: if target address > current window, assume forward scan,
|
nuclear@1
|
783 * load starting at target address. If target address < current window,
|
nuclear@1
|
784 * assume backward scan, load so that target area is top of window.
|
nuclear@1
|
785 * Note that when switching from forward write to forward read, will have
|
nuclear@1
|
786 * start_row = 0, so the limiting case applies and we load from 0 anyway.
|
nuclear@1
|
787 */
|
nuclear@1
|
788 if (start_row > ptr->cur_start_row) {
|
nuclear@1
|
789 ptr->cur_start_row = start_row;
|
nuclear@1
|
790 } else {
|
nuclear@1
|
791 /* use long arithmetic here to avoid overflow & unsigned problems */
|
nuclear@1
|
792 long ltemp;
|
nuclear@1
|
793
|
nuclear@1
|
794 ltemp = (long) end_row - (long) ptr->rows_in_mem;
|
nuclear@1
|
795 if (ltemp < 0)
|
nuclear@1
|
796 ltemp = 0; /* don't fall off front end of file */
|
nuclear@1
|
797 ptr->cur_start_row = (JDIMENSION) ltemp;
|
nuclear@1
|
798 }
|
nuclear@1
|
799 /* Read in the selected part of the array.
|
nuclear@1
|
800 * During the initial write pass, we will do no actual read
|
nuclear@1
|
801 * because the selected part is all undefined.
|
nuclear@1
|
802 */
|
nuclear@1
|
803 do_sarray_io(cinfo, ptr, FALSE);
|
nuclear@1
|
804 }
|
nuclear@1
|
805 /* Ensure the accessed part of the array is defined; prezero if needed.
|
nuclear@1
|
806 * To improve locality of access, we only prezero the part of the array
|
nuclear@1
|
807 * that the caller is about to access, not the entire in-memory array.
|
nuclear@1
|
808 */
|
nuclear@1
|
809 if (ptr->first_undef_row < end_row) {
|
nuclear@1
|
810 if (ptr->first_undef_row < start_row) {
|
nuclear@1
|
811 if (writable) /* writer skipped over a section of array */
|
nuclear@1
|
812 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
|
nuclear@1
|
813 undef_row = start_row; /* but reader is allowed to read ahead */
|
nuclear@1
|
814 } else {
|
nuclear@1
|
815 undef_row = ptr->first_undef_row;
|
nuclear@1
|
816 }
|
nuclear@1
|
817 if (writable)
|
nuclear@1
|
818 ptr->first_undef_row = end_row;
|
nuclear@1
|
819 if (ptr->pre_zero) {
|
nuclear@1
|
820 size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
|
nuclear@1
|
821 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
|
nuclear@1
|
822 end_row -= ptr->cur_start_row;
|
nuclear@1
|
823 while (undef_row < end_row) {
|
nuclear@1
|
824 jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
|
nuclear@1
|
825 undef_row++;
|
nuclear@1
|
826 }
|
nuclear@1
|
827 } else {
|
nuclear@1
|
828 if (! writable) /* reader looking at undefined data */
|
nuclear@1
|
829 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
|
nuclear@1
|
830 }
|
nuclear@1
|
831 }
|
nuclear@1
|
832 /* Flag the buffer dirty if caller will write in it */
|
nuclear@1
|
833 if (writable)
|
nuclear@1
|
834 ptr->dirty = TRUE;
|
nuclear@1
|
835 /* Return address of proper part of the buffer */
|
nuclear@1
|
836 return ptr->mem_buffer + (start_row - ptr->cur_start_row);
|
nuclear@1
|
837 }
|
nuclear@1
|
838
|
nuclear@1
|
839
|
nuclear@1
|
840 METHODDEF(JBLOCKARRAY)
|
nuclear@1
|
841 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
|
nuclear@1
|
842 JDIMENSION start_row, JDIMENSION num_rows,
|
nuclear@1
|
843 boolean writable)
|
nuclear@1
|
844 /* Access the part of a virtual block array starting at start_row */
|
nuclear@1
|
845 /* and extending for num_rows rows. writable is true if */
|
nuclear@1
|
846 /* caller intends to modify the accessed area. */
|
nuclear@1
|
847 {
|
nuclear@1
|
848 JDIMENSION end_row = start_row + num_rows;
|
nuclear@1
|
849 JDIMENSION undef_row;
|
nuclear@1
|
850
|
nuclear@1
|
851 /* debugging check */
|
nuclear@1
|
852 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
|
nuclear@1
|
853 ptr->mem_buffer == NULL)
|
nuclear@1
|
854 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
|
nuclear@1
|
855
|
nuclear@1
|
856 /* Make the desired part of the virtual array accessible */
|
nuclear@1
|
857 if (start_row < ptr->cur_start_row ||
|
nuclear@1
|
858 end_row > ptr->cur_start_row+ptr->rows_in_mem) {
|
nuclear@1
|
859 if (! ptr->b_s_open)
|
nuclear@1
|
860 ERREXIT(cinfo, JERR_VIRTUAL_BUG);
|
nuclear@1
|
861 /* Flush old buffer contents if necessary */
|
nuclear@1
|
862 if (ptr->dirty) {
|
nuclear@1
|
863 do_barray_io(cinfo, ptr, TRUE);
|
nuclear@1
|
864 ptr->dirty = FALSE;
|
nuclear@1
|
865 }
|
nuclear@1
|
866 /* Decide what part of virtual array to access.
|
nuclear@1
|
867 * Algorithm: if target address > current window, assume forward scan,
|
nuclear@1
|
868 * load starting at target address. If target address < current window,
|
nuclear@1
|
869 * assume backward scan, load so that target area is top of window.
|
nuclear@1
|
870 * Note that when switching from forward write to forward read, will have
|
nuclear@1
|
871 * start_row = 0, so the limiting case applies and we load from 0 anyway.
|
nuclear@1
|
872 */
|
nuclear@1
|
873 if (start_row > ptr->cur_start_row) {
|
nuclear@1
|
874 ptr->cur_start_row = start_row;
|
nuclear@1
|
875 } else {
|
nuclear@1
|
876 /* use long arithmetic here to avoid overflow & unsigned problems */
|
nuclear@1
|
877 long ltemp;
|
nuclear@1
|
878
|
nuclear@1
|
879 ltemp = (long) end_row - (long) ptr->rows_in_mem;
|
nuclear@1
|
880 if (ltemp < 0)
|
nuclear@1
|
881 ltemp = 0; /* don't fall off front end of file */
|
nuclear@1
|
882 ptr->cur_start_row = (JDIMENSION) ltemp;
|
nuclear@1
|
883 }
|
nuclear@1
|
884 /* Read in the selected part of the array.
|
nuclear@1
|
885 * During the initial write pass, we will do no actual read
|
nuclear@1
|
886 * because the selected part is all undefined.
|
nuclear@1
|
887 */
|
nuclear@1
|
888 do_barray_io(cinfo, ptr, FALSE);
|
nuclear@1
|
889 }
|
nuclear@1
|
890 /* Ensure the accessed part of the array is defined; prezero if needed.
|
nuclear@1
|
891 * To improve locality of access, we only prezero the part of the array
|
nuclear@1
|
892 * that the caller is about to access, not the entire in-memory array.
|
nuclear@1
|
893 */
|
nuclear@1
|
894 if (ptr->first_undef_row < end_row) {
|
nuclear@1
|
895 if (ptr->first_undef_row < start_row) {
|
nuclear@1
|
896 if (writable) /* writer skipped over a section of array */
|
nuclear@1
|
897 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
|
nuclear@1
|
898 undef_row = start_row; /* but reader is allowed to read ahead */
|
nuclear@1
|
899 } else {
|
nuclear@1
|
900 undef_row = ptr->first_undef_row;
|
nuclear@1
|
901 }
|
nuclear@1
|
902 if (writable)
|
nuclear@1
|
903 ptr->first_undef_row = end_row;
|
nuclear@1
|
904 if (ptr->pre_zero) {
|
nuclear@1
|
905 size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
|
nuclear@1
|
906 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
|
nuclear@1
|
907 end_row -= ptr->cur_start_row;
|
nuclear@1
|
908 while (undef_row < end_row) {
|
nuclear@1
|
909 jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
|
nuclear@1
|
910 undef_row++;
|
nuclear@1
|
911 }
|
nuclear@1
|
912 } else {
|
nuclear@1
|
913 if (! writable) /* reader looking at undefined data */
|
nuclear@1
|
914 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
|
nuclear@1
|
915 }
|
nuclear@1
|
916 }
|
nuclear@1
|
917 /* Flag the buffer dirty if caller will write in it */
|
nuclear@1
|
918 if (writable)
|
nuclear@1
|
919 ptr->dirty = TRUE;
|
nuclear@1
|
920 /* Return address of proper part of the buffer */
|
nuclear@1
|
921 return ptr->mem_buffer + (start_row - ptr->cur_start_row);
|
nuclear@1
|
922 }
|
nuclear@1
|
923
|
nuclear@1
|
924
|
nuclear@1
|
925 /*
|
nuclear@1
|
926 * Release all objects belonging to a specified pool.
|
nuclear@1
|
927 */
|
nuclear@1
|
928
|
nuclear@1
|
929 METHODDEF(void)
|
nuclear@1
|
930 free_pool (j_common_ptr cinfo, int pool_id)
|
nuclear@1
|
931 {
|
nuclear@1
|
932 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
|
nuclear@1
|
933 small_pool_ptr shdr_ptr;
|
nuclear@1
|
934 large_pool_ptr lhdr_ptr;
|
nuclear@1
|
935 size_t space_freed;
|
nuclear@1
|
936
|
nuclear@1
|
937 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
|
nuclear@1
|
938 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
|
nuclear@1
|
939
|
nuclear@1
|
940 #ifdef MEM_STATS
|
nuclear@1
|
941 if (cinfo->err->trace_level > 1)
|
nuclear@1
|
942 print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
|
nuclear@1
|
943 #endif
|
nuclear@1
|
944
|
nuclear@1
|
945 /* If freeing IMAGE pool, close any virtual arrays first */
|
nuclear@1
|
946 if (pool_id == JPOOL_IMAGE) {
|
nuclear@1
|
947 jvirt_sarray_ptr sptr;
|
nuclear@1
|
948 jvirt_barray_ptr bptr;
|
nuclear@1
|
949
|
nuclear@1
|
950 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
|
nuclear@1
|
951 if (sptr->b_s_open) { /* there may be no backing store */
|
nuclear@1
|
952 sptr->b_s_open = FALSE; /* prevent recursive close if error */
|
nuclear@1
|
953 (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
|
nuclear@1
|
954 }
|
nuclear@1
|
955 }
|
nuclear@1
|
956 mem->virt_sarray_list = NULL;
|
nuclear@1
|
957 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
|
nuclear@1
|
958 if (bptr->b_s_open) { /* there may be no backing store */
|
nuclear@1
|
959 bptr->b_s_open = FALSE; /* prevent recursive close if error */
|
nuclear@1
|
960 (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
|
nuclear@1
|
961 }
|
nuclear@1
|
962 }
|
nuclear@1
|
963 mem->virt_barray_list = NULL;
|
nuclear@1
|
964 }
|
nuclear@1
|
965
|
nuclear@1
|
966 /* Release large objects */
|
nuclear@1
|
967 lhdr_ptr = mem->large_list[pool_id];
|
nuclear@1
|
968 mem->large_list[pool_id] = NULL;
|
nuclear@1
|
969
|
nuclear@1
|
970 while (lhdr_ptr != NULL) {
|
nuclear@1
|
971 large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
|
nuclear@1
|
972 space_freed = lhdr_ptr->hdr.bytes_used +
|
nuclear@1
|
973 lhdr_ptr->hdr.bytes_left +
|
nuclear@1
|
974 SIZEOF(large_pool_hdr);
|
nuclear@1
|
975 jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
|
nuclear@1
|
976 mem->total_space_allocated -= space_freed;
|
nuclear@1
|
977 lhdr_ptr = next_lhdr_ptr;
|
nuclear@1
|
978 }
|
nuclear@1
|
979
|
nuclear@1
|
980 /* Release small objects */
|
nuclear@1
|
981 shdr_ptr = mem->small_list[pool_id];
|
nuclear@1
|
982 mem->small_list[pool_id] = NULL;
|
nuclear@1
|
983
|
nuclear@1
|
984 while (shdr_ptr != NULL) {
|
nuclear@1
|
985 small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
|
nuclear@1
|
986 space_freed = shdr_ptr->hdr.bytes_used +
|
nuclear@1
|
987 shdr_ptr->hdr.bytes_left +
|
nuclear@1
|
988 SIZEOF(small_pool_hdr);
|
nuclear@1
|
989 jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
|
nuclear@1
|
990 mem->total_space_allocated -= space_freed;
|
nuclear@1
|
991 shdr_ptr = next_shdr_ptr;
|
nuclear@1
|
992 }
|
nuclear@1
|
993 }
|
nuclear@1
|
994
|
nuclear@1
|
995
|
nuclear@1
|
996 /*
|
nuclear@1
|
997 * Close up shop entirely.
|
nuclear@1
|
998 * Note that this cannot be called unless cinfo->mem is non-NULL.
|
nuclear@1
|
999 */
|
nuclear@1
|
1000
|
nuclear@1
|
1001 METHODDEF(void)
|
nuclear@1
|
1002 self_destruct (j_common_ptr cinfo)
|
nuclear@1
|
1003 {
|
nuclear@1
|
1004 int pool;
|
nuclear@1
|
1005
|
nuclear@1
|
1006 /* Close all backing store, release all memory.
|
nuclear@1
|
1007 * Releasing pools in reverse order might help avoid fragmentation
|
nuclear@1
|
1008 * with some (brain-damaged) malloc libraries.
|
nuclear@1
|
1009 */
|
nuclear@1
|
1010 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
|
nuclear@1
|
1011 free_pool(cinfo, pool);
|
nuclear@1
|
1012 }
|
nuclear@1
|
1013
|
nuclear@1
|
1014 /* Release the memory manager control block too. */
|
nuclear@1
|
1015 jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
|
nuclear@1
|
1016 cinfo->mem = NULL; /* ensures I will be called only once */
|
nuclear@1
|
1017
|
nuclear@1
|
1018 jpeg_mem_term(cinfo); /* system-dependent cleanup */
|
nuclear@1
|
1019 }
|
nuclear@1
|
1020
|
nuclear@1
|
1021
|
nuclear@1
|
1022 /*
|
nuclear@1
|
1023 * Memory manager initialization.
|
nuclear@1
|
1024 * When this is called, only the error manager pointer is valid in cinfo!
|
nuclear@1
|
1025 */
|
nuclear@1
|
1026
|
nuclear@1
|
1027 GLOBAL(void)
|
nuclear@1
|
1028 jinit_memory_mgr (j_common_ptr cinfo)
|
nuclear@1
|
1029 {
|
nuclear@1
|
1030 my_mem_ptr mem;
|
nuclear@1
|
1031 long max_to_use;
|
nuclear@1
|
1032 int pool;
|
nuclear@1
|
1033 size_t test_mac;
|
nuclear@1
|
1034
|
nuclear@1
|
1035 cinfo->mem = NULL; /* for safety if init fails */
|
nuclear@1
|
1036
|
nuclear@1
|
1037 /* Check for configuration errors.
|
nuclear@1
|
1038 * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
|
nuclear@1
|
1039 * doesn't reflect any real hardware alignment requirement.
|
nuclear@1
|
1040 * The test is a little tricky: for X>0, X and X-1 have no one-bits
|
nuclear@1
|
1041 * in common if and only if X is a power of 2, ie has only one one-bit.
|
nuclear@1
|
1042 * Some compilers may give an "unreachable code" warning here; ignore it.
|
nuclear@1
|
1043 */
|
nuclear@1
|
1044 if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
|
nuclear@1
|
1045 ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
|
nuclear@1
|
1046 /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
|
nuclear@1
|
1047 * a multiple of SIZEOF(ALIGN_TYPE).
|
nuclear@1
|
1048 * Again, an "unreachable code" warning may be ignored here.
|
nuclear@1
|
1049 * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
|
nuclear@1
|
1050 */
|
nuclear@1
|
1051 test_mac = (size_t) MAX_ALLOC_CHUNK;
|
nuclear@1
|
1052 if ((long) test_mac != MAX_ALLOC_CHUNK ||
|
nuclear@1
|
1053 (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
|
nuclear@1
|
1054 ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
|
nuclear@1
|
1055
|
nuclear@1
|
1056 max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
|
nuclear@1
|
1057
|
nuclear@1
|
1058 /* Attempt to allocate memory manager's control block */
|
nuclear@1
|
1059 mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
|
nuclear@1
|
1060
|
nuclear@1
|
1061 if (mem == NULL) {
|
nuclear@1
|
1062 jpeg_mem_term(cinfo); /* system-dependent cleanup */
|
nuclear@1
|
1063 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
|
nuclear@1
|
1064 }
|
nuclear@1
|
1065
|
nuclear@1
|
1066 /* OK, fill in the method pointers */
|
nuclear@1
|
1067 mem->pub.alloc_small = alloc_small;
|
nuclear@1
|
1068 mem->pub.alloc_large = alloc_large;
|
nuclear@1
|
1069 mem->pub.alloc_sarray = alloc_sarray;
|
nuclear@1
|
1070 mem->pub.alloc_barray = alloc_barray;
|
nuclear@1
|
1071 mem->pub.request_virt_sarray = request_virt_sarray;
|
nuclear@1
|
1072 mem->pub.request_virt_barray = request_virt_barray;
|
nuclear@1
|
1073 mem->pub.realize_virt_arrays = realize_virt_arrays;
|
nuclear@1
|
1074 mem->pub.access_virt_sarray = access_virt_sarray;
|
nuclear@1
|
1075 mem->pub.access_virt_barray = access_virt_barray;
|
nuclear@1
|
1076 mem->pub.free_pool = free_pool;
|
nuclear@1
|
1077 mem->pub.self_destruct = self_destruct;
|
nuclear@1
|
1078
|
nuclear@1
|
1079 /* Make MAX_ALLOC_CHUNK accessible to other modules */
|
nuclear@1
|
1080 mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
|
nuclear@1
|
1081
|
nuclear@1
|
1082 /* Initialize working state */
|
nuclear@1
|
1083 mem->pub.max_memory_to_use = max_to_use;
|
nuclear@1
|
1084
|
nuclear@1
|
1085 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
|
nuclear@1
|
1086 mem->small_list[pool] = NULL;
|
nuclear@1
|
1087 mem->large_list[pool] = NULL;
|
nuclear@1
|
1088 }
|
nuclear@1
|
1089 mem->virt_sarray_list = NULL;
|
nuclear@1
|
1090 mem->virt_barray_list = NULL;
|
nuclear@1
|
1091
|
nuclear@1
|
1092 mem->total_space_allocated = SIZEOF(my_memory_mgr);
|
nuclear@1
|
1093
|
nuclear@1
|
1094 /* Declare ourselves open for business */
|
nuclear@1
|
1095 cinfo->mem = & mem->pub;
|
nuclear@1
|
1096
|
nuclear@1
|
1097 /* Check for an environment variable JPEGMEM; if found, override the
|
nuclear@1
|
1098 * default max_memory setting from jpeg_mem_init. Note that the
|
nuclear@1
|
1099 * surrounding application may again override this value.
|
nuclear@1
|
1100 * If your system doesn't support getenv(), define NO_GETENV to disable
|
nuclear@1
|
1101 * this feature.
|
nuclear@1
|
1102 */
|
nuclear@1
|
1103 #ifndef NO_GETENV
|
nuclear@1
|
1104 { char * memenv;
|
nuclear@1
|
1105
|
nuclear@1
|
1106 if ((memenv = getenv("JPEGMEM")) != NULL) {
|
nuclear@1
|
1107 char ch = 'x';
|
nuclear@1
|
1108
|
nuclear@1
|
1109 if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
|
nuclear@1
|
1110 if (ch == 'm' || ch == 'M')
|
nuclear@1
|
1111 max_to_use *= 1000L;
|
nuclear@1
|
1112 mem->pub.max_memory_to_use = max_to_use * 1000L;
|
nuclear@1
|
1113 }
|
nuclear@1
|
1114 }
|
nuclear@1
|
1115 }
|
nuclear@1
|
1116 #endif
|
nuclear@1
|
1117
|
nuclear@1
|
1118 }
|