rev |
line source |
nuclear@1
|
1 /*
|
nuclear@1
|
2 * jcphuff.c
|
nuclear@1
|
3 *
|
nuclear@1
|
4 * Copyright (C) 1995-1997, Thomas G. Lane.
|
nuclear@1
|
5 * This file is part of the Independent JPEG Group's software.
|
nuclear@1
|
6 * For conditions of distribution and use, see the accompanying README file.
|
nuclear@1
|
7 *
|
nuclear@1
|
8 * This file contains Huffman entropy encoding routines for progressive JPEG.
|
nuclear@1
|
9 *
|
nuclear@1
|
10 * We do not support output suspension in this module, since the library
|
nuclear@1
|
11 * currently does not allow multiple-scan files to be written with output
|
nuclear@1
|
12 * suspension.
|
nuclear@1
|
13 */
|
nuclear@1
|
14
|
nuclear@1
|
15 #define JPEG_INTERNALS
|
nuclear@1
|
16 #include "jinclude.h"
|
nuclear@1
|
17 #include "jpeglib.h"
|
nuclear@1
|
18 #include "jchuff.h" /* Declarations shared with jchuff.c */
|
nuclear@1
|
19
|
nuclear@1
|
20 #ifdef C_PROGRESSIVE_SUPPORTED
|
nuclear@1
|
21
|
nuclear@1
|
22 /* Expanded entropy encoder object for progressive Huffman encoding. */
|
nuclear@1
|
23
|
nuclear@1
|
24 typedef struct {
|
nuclear@1
|
25 struct jpeg_entropy_encoder pub; /* public fields */
|
nuclear@1
|
26
|
nuclear@1
|
27 /* Mode flag: TRUE for optimization, FALSE for actual data output */
|
nuclear@1
|
28 boolean gather_statistics;
|
nuclear@1
|
29
|
nuclear@1
|
30 /* Bit-level coding status.
|
nuclear@1
|
31 * next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
|
nuclear@1
|
32 */
|
nuclear@1
|
33 JOCTET * next_output_byte; /* => next byte to write in buffer */
|
nuclear@1
|
34 size_t free_in_buffer; /* # of byte spaces remaining in buffer */
|
nuclear@1
|
35 INT32 put_buffer; /* current bit-accumulation buffer */
|
nuclear@1
|
36 int put_bits; /* # of bits now in it */
|
nuclear@1
|
37 j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */
|
nuclear@1
|
38
|
nuclear@1
|
39 /* Coding status for DC components */
|
nuclear@1
|
40 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
nuclear@1
|
41
|
nuclear@1
|
42 /* Coding status for AC components */
|
nuclear@1
|
43 int ac_tbl_no; /* the table number of the single component */
|
nuclear@1
|
44 unsigned int EOBRUN; /* run length of EOBs */
|
nuclear@1
|
45 unsigned int BE; /* # of buffered correction bits before MCU */
|
nuclear@1
|
46 char * bit_buffer; /* buffer for correction bits (1 per char) */
|
nuclear@1
|
47 /* packing correction bits tightly would save some space but cost time... */
|
nuclear@1
|
48
|
nuclear@1
|
49 unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
nuclear@1
|
50 int next_restart_num; /* next restart number to write (0-7) */
|
nuclear@1
|
51
|
nuclear@1
|
52 /* Pointers to derived tables (these workspaces have image lifespan).
|
nuclear@1
|
53 * Since any one scan codes only DC or only AC, we only need one set
|
nuclear@1
|
54 * of tables, not one for DC and one for AC.
|
nuclear@1
|
55 */
|
nuclear@1
|
56 c_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
|
nuclear@1
|
57
|
nuclear@1
|
58 /* Statistics tables for optimization; again, one set is enough */
|
nuclear@1
|
59 long * count_ptrs[NUM_HUFF_TBLS];
|
nuclear@1
|
60 } phuff_entropy_encoder;
|
nuclear@1
|
61
|
nuclear@1
|
62 typedef phuff_entropy_encoder * phuff_entropy_ptr;
|
nuclear@1
|
63
|
nuclear@1
|
64 /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
|
nuclear@1
|
65 * buffer can hold. Larger sizes may slightly improve compression, but
|
nuclear@1
|
66 * 1000 is already well into the realm of overkill.
|
nuclear@1
|
67 * The minimum safe size is 64 bits.
|
nuclear@1
|
68 */
|
nuclear@1
|
69
|
nuclear@1
|
70 #define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */
|
nuclear@1
|
71
|
nuclear@1
|
72 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
|
nuclear@1
|
73 * We assume that int right shift is unsigned if INT32 right shift is,
|
nuclear@1
|
74 * which should be safe.
|
nuclear@1
|
75 */
|
nuclear@1
|
76
|
nuclear@1
|
77 #ifdef RIGHT_SHIFT_IS_UNSIGNED
|
nuclear@1
|
78 #define ISHIFT_TEMPS int ishift_temp;
|
nuclear@1
|
79 #define IRIGHT_SHIFT(x,shft) \
|
nuclear@1
|
80 ((ishift_temp = (x)) < 0 ? \
|
nuclear@1
|
81 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
|
nuclear@1
|
82 (ishift_temp >> (shft)))
|
nuclear@1
|
83 #else
|
nuclear@1
|
84 #define ISHIFT_TEMPS
|
nuclear@1
|
85 #define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
|
nuclear@1
|
86 #endif
|
nuclear@1
|
87
|
nuclear@1
|
88 /* Forward declarations */
|
nuclear@1
|
89 METHODDEF(boolean) encode_mcu_DC_first JPP((j_compress_ptr cinfo,
|
nuclear@1
|
90 JBLOCKROW *MCU_data));
|
nuclear@1
|
91 METHODDEF(boolean) encode_mcu_AC_first JPP((j_compress_ptr cinfo,
|
nuclear@1
|
92 JBLOCKROW *MCU_data));
|
nuclear@1
|
93 METHODDEF(boolean) encode_mcu_DC_refine JPP((j_compress_ptr cinfo,
|
nuclear@1
|
94 JBLOCKROW *MCU_data));
|
nuclear@1
|
95 METHODDEF(boolean) encode_mcu_AC_refine JPP((j_compress_ptr cinfo,
|
nuclear@1
|
96 JBLOCKROW *MCU_data));
|
nuclear@1
|
97 METHODDEF(void) finish_pass_phuff JPP((j_compress_ptr cinfo));
|
nuclear@1
|
98 METHODDEF(void) finish_pass_gather_phuff JPP((j_compress_ptr cinfo));
|
nuclear@1
|
99
|
nuclear@1
|
100
|
nuclear@1
|
101 /*
|
nuclear@1
|
102 * Initialize for a Huffman-compressed scan using progressive JPEG.
|
nuclear@1
|
103 */
|
nuclear@1
|
104
|
nuclear@1
|
105 METHODDEF(void)
|
nuclear@1
|
106 start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics)
|
nuclear@1
|
107 {
|
nuclear@1
|
108 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
nuclear@1
|
109 boolean is_DC_band;
|
nuclear@1
|
110 int ci, tbl;
|
nuclear@1
|
111 jpeg_component_info * compptr;
|
nuclear@1
|
112
|
nuclear@1
|
113 entropy->cinfo = cinfo;
|
nuclear@1
|
114 entropy->gather_statistics = gather_statistics;
|
nuclear@1
|
115
|
nuclear@1
|
116 is_DC_band = (cinfo->Ss == 0);
|
nuclear@1
|
117
|
nuclear@1
|
118 /* We assume jcmaster.c already validated the scan parameters. */
|
nuclear@1
|
119
|
nuclear@1
|
120 /* Select execution routines */
|
nuclear@1
|
121 if (cinfo->Ah == 0) {
|
nuclear@1
|
122 if (is_DC_band)
|
nuclear@1
|
123 entropy->pub.encode_mcu = encode_mcu_DC_first;
|
nuclear@1
|
124 else
|
nuclear@1
|
125 entropy->pub.encode_mcu = encode_mcu_AC_first;
|
nuclear@1
|
126 } else {
|
nuclear@1
|
127 if (is_DC_band)
|
nuclear@1
|
128 entropy->pub.encode_mcu = encode_mcu_DC_refine;
|
nuclear@1
|
129 else {
|
nuclear@1
|
130 entropy->pub.encode_mcu = encode_mcu_AC_refine;
|
nuclear@1
|
131 /* AC refinement needs a correction bit buffer */
|
nuclear@1
|
132 if (entropy->bit_buffer == NULL)
|
nuclear@1
|
133 entropy->bit_buffer = (char *)
|
nuclear@1
|
134 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
nuclear@1
|
135 MAX_CORR_BITS * SIZEOF(char));
|
nuclear@1
|
136 }
|
nuclear@1
|
137 }
|
nuclear@1
|
138 if (gather_statistics)
|
nuclear@1
|
139 entropy->pub.finish_pass = finish_pass_gather_phuff;
|
nuclear@1
|
140 else
|
nuclear@1
|
141 entropy->pub.finish_pass = finish_pass_phuff;
|
nuclear@1
|
142
|
nuclear@1
|
143 /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1
|
nuclear@1
|
144 * for AC coefficients.
|
nuclear@1
|
145 */
|
nuclear@1
|
146 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
nuclear@1
|
147 compptr = cinfo->cur_comp_info[ci];
|
nuclear@1
|
148 /* Initialize DC predictions to 0 */
|
nuclear@1
|
149 entropy->last_dc_val[ci] = 0;
|
nuclear@1
|
150 /* Get table index */
|
nuclear@1
|
151 if (is_DC_band) {
|
nuclear@1
|
152 if (cinfo->Ah != 0) /* DC refinement needs no table */
|
nuclear@1
|
153 continue;
|
nuclear@1
|
154 tbl = compptr->dc_tbl_no;
|
nuclear@1
|
155 } else {
|
nuclear@1
|
156 entropy->ac_tbl_no = tbl = compptr->ac_tbl_no;
|
nuclear@1
|
157 }
|
nuclear@1
|
158 if (gather_statistics) {
|
nuclear@1
|
159 /* Check for invalid table index */
|
nuclear@1
|
160 /* (make_c_derived_tbl does this in the other path) */
|
nuclear@1
|
161 if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
|
nuclear@1
|
162 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
|
nuclear@1
|
163 /* Allocate and zero the statistics tables */
|
nuclear@1
|
164 /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
|
nuclear@1
|
165 if (entropy->count_ptrs[tbl] == NULL)
|
nuclear@1
|
166 entropy->count_ptrs[tbl] = (long *)
|
nuclear@1
|
167 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
nuclear@1
|
168 257 * SIZEOF(long));
|
nuclear@1
|
169 MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long));
|
nuclear@1
|
170 } else {
|
nuclear@1
|
171 /* Compute derived values for Huffman table */
|
nuclear@1
|
172 /* We may do this more than once for a table, but it's not expensive */
|
nuclear@1
|
173 jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl,
|
nuclear@1
|
174 & entropy->derived_tbls[tbl]);
|
nuclear@1
|
175 }
|
nuclear@1
|
176 }
|
nuclear@1
|
177
|
nuclear@1
|
178 /* Initialize AC stuff */
|
nuclear@1
|
179 entropy->EOBRUN = 0;
|
nuclear@1
|
180 entropy->BE = 0;
|
nuclear@1
|
181
|
nuclear@1
|
182 /* Initialize bit buffer to empty */
|
nuclear@1
|
183 entropy->put_buffer = 0;
|
nuclear@1
|
184 entropy->put_bits = 0;
|
nuclear@1
|
185
|
nuclear@1
|
186 /* Initialize restart stuff */
|
nuclear@1
|
187 entropy->restarts_to_go = cinfo->restart_interval;
|
nuclear@1
|
188 entropy->next_restart_num = 0;
|
nuclear@1
|
189 }
|
nuclear@1
|
190
|
nuclear@1
|
191
|
nuclear@1
|
192 /* Outputting bytes to the file.
|
nuclear@1
|
193 * NB: these must be called only when actually outputting,
|
nuclear@1
|
194 * that is, entropy->gather_statistics == FALSE.
|
nuclear@1
|
195 */
|
nuclear@1
|
196
|
nuclear@1
|
197 /* Emit a byte */
|
nuclear@1
|
198 #define emit_byte(entropy,val) \
|
nuclear@1
|
199 { *(entropy)->next_output_byte++ = (JOCTET) (val); \
|
nuclear@1
|
200 if (--(entropy)->free_in_buffer == 0) \
|
nuclear@1
|
201 dump_buffer(entropy); }
|
nuclear@1
|
202
|
nuclear@1
|
203
|
nuclear@1
|
204 LOCAL(void)
|
nuclear@1
|
205 dump_buffer (phuff_entropy_ptr entropy)
|
nuclear@1
|
206 /* Empty the output buffer; we do not support suspension in this module. */
|
nuclear@1
|
207 {
|
nuclear@1
|
208 struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
|
nuclear@1
|
209
|
nuclear@1
|
210 if (! (*dest->empty_output_buffer) (entropy->cinfo))
|
nuclear@1
|
211 ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
|
nuclear@1
|
212 /* After a successful buffer dump, must reset buffer pointers */
|
nuclear@1
|
213 entropy->next_output_byte = dest->next_output_byte;
|
nuclear@1
|
214 entropy->free_in_buffer = dest->free_in_buffer;
|
nuclear@1
|
215 }
|
nuclear@1
|
216
|
nuclear@1
|
217
|
nuclear@1
|
218 /* Outputting bits to the file */
|
nuclear@1
|
219
|
nuclear@1
|
220 /* Only the right 24 bits of put_buffer are used; the valid bits are
|
nuclear@1
|
221 * left-justified in this part. At most 16 bits can be passed to emit_bits
|
nuclear@1
|
222 * in one call, and we never retain more than 7 bits in put_buffer
|
nuclear@1
|
223 * between calls, so 24 bits are sufficient.
|
nuclear@1
|
224 */
|
nuclear@1
|
225
|
nuclear@1
|
226 INLINE
|
nuclear@1
|
227 LOCAL(void)
|
nuclear@1
|
228 emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size)
|
nuclear@1
|
229 /* Emit some bits, unless we are in gather mode */
|
nuclear@1
|
230 {
|
nuclear@1
|
231 /* This routine is heavily used, so it's worth coding tightly. */
|
nuclear@1
|
232 register INT32 put_buffer = (INT32) code;
|
nuclear@1
|
233 register int put_bits = entropy->put_bits;
|
nuclear@1
|
234
|
nuclear@1
|
235 /* if size is 0, caller used an invalid Huffman table entry */
|
nuclear@1
|
236 if (size == 0)
|
nuclear@1
|
237 ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
|
nuclear@1
|
238
|
nuclear@1
|
239 if (entropy->gather_statistics)
|
nuclear@1
|
240 return; /* do nothing if we're only getting stats */
|
nuclear@1
|
241
|
nuclear@1
|
242 put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
|
nuclear@1
|
243
|
nuclear@1
|
244 put_bits += size; /* new number of bits in buffer */
|
nuclear@1
|
245
|
nuclear@1
|
246 put_buffer <<= 24 - put_bits; /* align incoming bits */
|
nuclear@1
|
247
|
nuclear@1
|
248 put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */
|
nuclear@1
|
249
|
nuclear@1
|
250 while (put_bits >= 8) {
|
nuclear@1
|
251 int c = (int) ((put_buffer >> 16) & 0xFF);
|
nuclear@1
|
252
|
nuclear@1
|
253 emit_byte(entropy, c);
|
nuclear@1
|
254 if (c == 0xFF) { /* need to stuff a zero byte? */
|
nuclear@1
|
255 emit_byte(entropy, 0);
|
nuclear@1
|
256 }
|
nuclear@1
|
257 put_buffer <<= 8;
|
nuclear@1
|
258 put_bits -= 8;
|
nuclear@1
|
259 }
|
nuclear@1
|
260
|
nuclear@1
|
261 entropy->put_buffer = put_buffer; /* update variables */
|
nuclear@1
|
262 entropy->put_bits = put_bits;
|
nuclear@1
|
263 }
|
nuclear@1
|
264
|
nuclear@1
|
265
|
nuclear@1
|
266 LOCAL(void)
|
nuclear@1
|
267 flush_bits (phuff_entropy_ptr entropy)
|
nuclear@1
|
268 {
|
nuclear@1
|
269 emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */
|
nuclear@1
|
270 entropy->put_buffer = 0; /* and reset bit-buffer to empty */
|
nuclear@1
|
271 entropy->put_bits = 0;
|
nuclear@1
|
272 }
|
nuclear@1
|
273
|
nuclear@1
|
274
|
nuclear@1
|
275 /*
|
nuclear@1
|
276 * Emit (or just count) a Huffman symbol.
|
nuclear@1
|
277 */
|
nuclear@1
|
278
|
nuclear@1
|
279 INLINE
|
nuclear@1
|
280 LOCAL(void)
|
nuclear@1
|
281 emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol)
|
nuclear@1
|
282 {
|
nuclear@1
|
283 if (entropy->gather_statistics)
|
nuclear@1
|
284 entropy->count_ptrs[tbl_no][symbol]++;
|
nuclear@1
|
285 else {
|
nuclear@1
|
286 c_derived_tbl * tbl = entropy->derived_tbls[tbl_no];
|
nuclear@1
|
287 emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
|
nuclear@1
|
288 }
|
nuclear@1
|
289 }
|
nuclear@1
|
290
|
nuclear@1
|
291
|
nuclear@1
|
292 /*
|
nuclear@1
|
293 * Emit bits from a correction bit buffer.
|
nuclear@1
|
294 */
|
nuclear@1
|
295
|
nuclear@1
|
296 LOCAL(void)
|
nuclear@1
|
297 emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart,
|
nuclear@1
|
298 unsigned int nbits)
|
nuclear@1
|
299 {
|
nuclear@1
|
300 if (entropy->gather_statistics)
|
nuclear@1
|
301 return; /* no real work */
|
nuclear@1
|
302
|
nuclear@1
|
303 while (nbits > 0) {
|
nuclear@1
|
304 emit_bits(entropy, (unsigned int) (*bufstart), 1);
|
nuclear@1
|
305 bufstart++;
|
nuclear@1
|
306 nbits--;
|
nuclear@1
|
307 }
|
nuclear@1
|
308 }
|
nuclear@1
|
309
|
nuclear@1
|
310
|
nuclear@1
|
311 /*
|
nuclear@1
|
312 * Emit any pending EOBRUN symbol.
|
nuclear@1
|
313 */
|
nuclear@1
|
314
|
nuclear@1
|
315 LOCAL(void)
|
nuclear@1
|
316 emit_eobrun (phuff_entropy_ptr entropy)
|
nuclear@1
|
317 {
|
nuclear@1
|
318 register int temp, nbits;
|
nuclear@1
|
319
|
nuclear@1
|
320 if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */
|
nuclear@1
|
321 temp = entropy->EOBRUN;
|
nuclear@1
|
322 nbits = 0;
|
nuclear@1
|
323 while ((temp >>= 1))
|
nuclear@1
|
324 nbits++;
|
nuclear@1
|
325 /* safety check: shouldn't happen given limited correction-bit buffer */
|
nuclear@1
|
326 if (nbits > 14)
|
nuclear@1
|
327 ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
|
nuclear@1
|
328
|
nuclear@1
|
329 emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
|
nuclear@1
|
330 if (nbits)
|
nuclear@1
|
331 emit_bits(entropy, entropy->EOBRUN, nbits);
|
nuclear@1
|
332
|
nuclear@1
|
333 entropy->EOBRUN = 0;
|
nuclear@1
|
334
|
nuclear@1
|
335 /* Emit any buffered correction bits */
|
nuclear@1
|
336 emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
|
nuclear@1
|
337 entropy->BE = 0;
|
nuclear@1
|
338 }
|
nuclear@1
|
339 }
|
nuclear@1
|
340
|
nuclear@1
|
341
|
nuclear@1
|
342 /*
|
nuclear@1
|
343 * Emit a restart marker & resynchronize predictions.
|
nuclear@1
|
344 */
|
nuclear@1
|
345
|
nuclear@1
|
346 LOCAL(void)
|
nuclear@1
|
347 emit_restart (phuff_entropy_ptr entropy, int restart_num)
|
nuclear@1
|
348 {
|
nuclear@1
|
349 int ci;
|
nuclear@1
|
350
|
nuclear@1
|
351 emit_eobrun(entropy);
|
nuclear@1
|
352
|
nuclear@1
|
353 if (! entropy->gather_statistics) {
|
nuclear@1
|
354 flush_bits(entropy);
|
nuclear@1
|
355 emit_byte(entropy, 0xFF);
|
nuclear@1
|
356 emit_byte(entropy, JPEG_RST0 + restart_num);
|
nuclear@1
|
357 }
|
nuclear@1
|
358
|
nuclear@1
|
359 if (entropy->cinfo->Ss == 0) {
|
nuclear@1
|
360 /* Re-initialize DC predictions to 0 */
|
nuclear@1
|
361 for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
|
nuclear@1
|
362 entropy->last_dc_val[ci] = 0;
|
nuclear@1
|
363 } else {
|
nuclear@1
|
364 /* Re-initialize all AC-related fields to 0 */
|
nuclear@1
|
365 entropy->EOBRUN = 0;
|
nuclear@1
|
366 entropy->BE = 0;
|
nuclear@1
|
367 }
|
nuclear@1
|
368 }
|
nuclear@1
|
369
|
nuclear@1
|
370
|
nuclear@1
|
371 /*
|
nuclear@1
|
372 * MCU encoding for DC initial scan (either spectral selection,
|
nuclear@1
|
373 * or first pass of successive approximation).
|
nuclear@1
|
374 */
|
nuclear@1
|
375
|
nuclear@1
|
376 METHODDEF(boolean)
|
nuclear@1
|
377 encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
nuclear@1
|
378 {
|
nuclear@1
|
379 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
nuclear@1
|
380 register int temp, temp2;
|
nuclear@1
|
381 register int nbits;
|
nuclear@1
|
382 int blkn, ci;
|
nuclear@1
|
383 int Al = cinfo->Al;
|
nuclear@1
|
384 JBLOCKROW block;
|
nuclear@1
|
385 jpeg_component_info * compptr;
|
nuclear@1
|
386 ISHIFT_TEMPS
|
nuclear@1
|
387
|
nuclear@1
|
388 entropy->next_output_byte = cinfo->dest->next_output_byte;
|
nuclear@1
|
389 entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
nuclear@1
|
390
|
nuclear@1
|
391 /* Emit restart marker if needed */
|
nuclear@1
|
392 if (cinfo->restart_interval)
|
nuclear@1
|
393 if (entropy->restarts_to_go == 0)
|
nuclear@1
|
394 emit_restart(entropy, entropy->next_restart_num);
|
nuclear@1
|
395
|
nuclear@1
|
396 /* Encode the MCU data blocks */
|
nuclear@1
|
397 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
nuclear@1
|
398 block = MCU_data[blkn];
|
nuclear@1
|
399 ci = cinfo->MCU_membership[blkn];
|
nuclear@1
|
400 compptr = cinfo->cur_comp_info[ci];
|
nuclear@1
|
401
|
nuclear@1
|
402 /* Compute the DC value after the required point transform by Al.
|
nuclear@1
|
403 * This is simply an arithmetic right shift.
|
nuclear@1
|
404 */
|
nuclear@1
|
405 temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al);
|
nuclear@1
|
406
|
nuclear@1
|
407 /* DC differences are figured on the point-transformed values. */
|
nuclear@1
|
408 temp = temp2 - entropy->last_dc_val[ci];
|
nuclear@1
|
409 entropy->last_dc_val[ci] = temp2;
|
nuclear@1
|
410
|
nuclear@1
|
411 /* Encode the DC coefficient difference per section G.1.2.1 */
|
nuclear@1
|
412 temp2 = temp;
|
nuclear@1
|
413 if (temp < 0) {
|
nuclear@1
|
414 temp = -temp; /* temp is abs value of input */
|
nuclear@1
|
415 /* For a negative input, want temp2 = bitwise complement of abs(input) */
|
nuclear@1
|
416 /* This code assumes we are on a two's complement machine */
|
nuclear@1
|
417 temp2--;
|
nuclear@1
|
418 }
|
nuclear@1
|
419
|
nuclear@1
|
420 /* Find the number of bits needed for the magnitude of the coefficient */
|
nuclear@1
|
421 nbits = 0;
|
nuclear@1
|
422 while (temp) {
|
nuclear@1
|
423 nbits++;
|
nuclear@1
|
424 temp >>= 1;
|
nuclear@1
|
425 }
|
nuclear@1
|
426 /* Check for out-of-range coefficient values.
|
nuclear@1
|
427 * Since we're encoding a difference, the range limit is twice as much.
|
nuclear@1
|
428 */
|
nuclear@1
|
429 if (nbits > MAX_COEF_BITS+1)
|
nuclear@1
|
430 ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
nuclear@1
|
431
|
nuclear@1
|
432 /* Count/emit the Huffman-coded symbol for the number of bits */
|
nuclear@1
|
433 emit_symbol(entropy, compptr->dc_tbl_no, nbits);
|
nuclear@1
|
434
|
nuclear@1
|
435 /* Emit that number of bits of the value, if positive, */
|
nuclear@1
|
436 /* or the complement of its magnitude, if negative. */
|
nuclear@1
|
437 if (nbits) /* emit_bits rejects calls with size 0 */
|
nuclear@1
|
438 emit_bits(entropy, (unsigned int) temp2, nbits);
|
nuclear@1
|
439 }
|
nuclear@1
|
440
|
nuclear@1
|
441 cinfo->dest->next_output_byte = entropy->next_output_byte;
|
nuclear@1
|
442 cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
nuclear@1
|
443
|
nuclear@1
|
444 /* Update restart-interval state too */
|
nuclear@1
|
445 if (cinfo->restart_interval) {
|
nuclear@1
|
446 if (entropy->restarts_to_go == 0) {
|
nuclear@1
|
447 entropy->restarts_to_go = cinfo->restart_interval;
|
nuclear@1
|
448 entropy->next_restart_num++;
|
nuclear@1
|
449 entropy->next_restart_num &= 7;
|
nuclear@1
|
450 }
|
nuclear@1
|
451 entropy->restarts_to_go--;
|
nuclear@1
|
452 }
|
nuclear@1
|
453
|
nuclear@1
|
454 return TRUE;
|
nuclear@1
|
455 }
|
nuclear@1
|
456
|
nuclear@1
|
457
|
nuclear@1
|
458 /*
|
nuclear@1
|
459 * MCU encoding for AC initial scan (either spectral selection,
|
nuclear@1
|
460 * or first pass of successive approximation).
|
nuclear@1
|
461 */
|
nuclear@1
|
462
|
nuclear@1
|
463 METHODDEF(boolean)
|
nuclear@1
|
464 encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
nuclear@1
|
465 {
|
nuclear@1
|
466 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
nuclear@1
|
467 register int temp, temp2;
|
nuclear@1
|
468 register int nbits;
|
nuclear@1
|
469 register int r, k;
|
nuclear@1
|
470 int Se = cinfo->Se;
|
nuclear@1
|
471 int Al = cinfo->Al;
|
nuclear@1
|
472 JBLOCKROW block;
|
nuclear@1
|
473
|
nuclear@1
|
474 entropy->next_output_byte = cinfo->dest->next_output_byte;
|
nuclear@1
|
475 entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
nuclear@1
|
476
|
nuclear@1
|
477 /* Emit restart marker if needed */
|
nuclear@1
|
478 if (cinfo->restart_interval)
|
nuclear@1
|
479 if (entropy->restarts_to_go == 0)
|
nuclear@1
|
480 emit_restart(entropy, entropy->next_restart_num);
|
nuclear@1
|
481
|
nuclear@1
|
482 /* Encode the MCU data block */
|
nuclear@1
|
483 block = MCU_data[0];
|
nuclear@1
|
484
|
nuclear@1
|
485 /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
|
nuclear@1
|
486
|
nuclear@1
|
487 r = 0; /* r = run length of zeros */
|
nuclear@1
|
488
|
nuclear@1
|
489 for (k = cinfo->Ss; k <= Se; k++) {
|
nuclear@1
|
490 if ((temp = (*block)[jpeg_natural_order[k]]) == 0) {
|
nuclear@1
|
491 r++;
|
nuclear@1
|
492 continue;
|
nuclear@1
|
493 }
|
nuclear@1
|
494 /* We must apply the point transform by Al. For AC coefficients this
|
nuclear@1
|
495 * is an integer division with rounding towards 0. To do this portably
|
nuclear@1
|
496 * in C, we shift after obtaining the absolute value; so the code is
|
nuclear@1
|
497 * interwoven with finding the abs value (temp) and output bits (temp2).
|
nuclear@1
|
498 */
|
nuclear@1
|
499 if (temp < 0) {
|
nuclear@1
|
500 temp = -temp; /* temp is abs value of input */
|
nuclear@1
|
501 temp >>= Al; /* apply the point transform */
|
nuclear@1
|
502 /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
|
nuclear@1
|
503 temp2 = ~temp;
|
nuclear@1
|
504 } else {
|
nuclear@1
|
505 temp >>= Al; /* apply the point transform */
|
nuclear@1
|
506 temp2 = temp;
|
nuclear@1
|
507 }
|
nuclear@1
|
508 /* Watch out for case that nonzero coef is zero after point transform */
|
nuclear@1
|
509 if (temp == 0) {
|
nuclear@1
|
510 r++;
|
nuclear@1
|
511 continue;
|
nuclear@1
|
512 }
|
nuclear@1
|
513
|
nuclear@1
|
514 /* Emit any pending EOBRUN */
|
nuclear@1
|
515 if (entropy->EOBRUN > 0)
|
nuclear@1
|
516 emit_eobrun(entropy);
|
nuclear@1
|
517 /* if run length > 15, must emit special run-length-16 codes (0xF0) */
|
nuclear@1
|
518 while (r > 15) {
|
nuclear@1
|
519 emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
|
nuclear@1
|
520 r -= 16;
|
nuclear@1
|
521 }
|
nuclear@1
|
522
|
nuclear@1
|
523 /* Find the number of bits needed for the magnitude of the coefficient */
|
nuclear@1
|
524 nbits = 1; /* there must be at least one 1 bit */
|
nuclear@1
|
525 while ((temp >>= 1))
|
nuclear@1
|
526 nbits++;
|
nuclear@1
|
527 /* Check for out-of-range coefficient values */
|
nuclear@1
|
528 if (nbits > MAX_COEF_BITS)
|
nuclear@1
|
529 ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
nuclear@1
|
530
|
nuclear@1
|
531 /* Count/emit Huffman symbol for run length / number of bits */
|
nuclear@1
|
532 emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
|
nuclear@1
|
533
|
nuclear@1
|
534 /* Emit that number of bits of the value, if positive, */
|
nuclear@1
|
535 /* or the complement of its magnitude, if negative. */
|
nuclear@1
|
536 emit_bits(entropy, (unsigned int) temp2, nbits);
|
nuclear@1
|
537
|
nuclear@1
|
538 r = 0; /* reset zero run length */
|
nuclear@1
|
539 }
|
nuclear@1
|
540
|
nuclear@1
|
541 if (r > 0) { /* If there are trailing zeroes, */
|
nuclear@1
|
542 entropy->EOBRUN++; /* count an EOB */
|
nuclear@1
|
543 if (entropy->EOBRUN == 0x7FFF)
|
nuclear@1
|
544 emit_eobrun(entropy); /* force it out to avoid overflow */
|
nuclear@1
|
545 }
|
nuclear@1
|
546
|
nuclear@1
|
547 cinfo->dest->next_output_byte = entropy->next_output_byte;
|
nuclear@1
|
548 cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
nuclear@1
|
549
|
nuclear@1
|
550 /* Update restart-interval state too */
|
nuclear@1
|
551 if (cinfo->restart_interval) {
|
nuclear@1
|
552 if (entropy->restarts_to_go == 0) {
|
nuclear@1
|
553 entropy->restarts_to_go = cinfo->restart_interval;
|
nuclear@1
|
554 entropy->next_restart_num++;
|
nuclear@1
|
555 entropy->next_restart_num &= 7;
|
nuclear@1
|
556 }
|
nuclear@1
|
557 entropy->restarts_to_go--;
|
nuclear@1
|
558 }
|
nuclear@1
|
559
|
nuclear@1
|
560 return TRUE;
|
nuclear@1
|
561 }
|
nuclear@1
|
562
|
nuclear@1
|
563
|
nuclear@1
|
564 /*
|
nuclear@1
|
565 * MCU encoding for DC successive approximation refinement scan.
|
nuclear@1
|
566 * Note: we assume such scans can be multi-component, although the spec
|
nuclear@1
|
567 * is not very clear on the point.
|
nuclear@1
|
568 */
|
nuclear@1
|
569
|
nuclear@1
|
570 METHODDEF(boolean)
|
nuclear@1
|
571 encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
nuclear@1
|
572 {
|
nuclear@1
|
573 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
nuclear@1
|
574 register int temp;
|
nuclear@1
|
575 int blkn;
|
nuclear@1
|
576 int Al = cinfo->Al;
|
nuclear@1
|
577 JBLOCKROW block;
|
nuclear@1
|
578
|
nuclear@1
|
579 entropy->next_output_byte = cinfo->dest->next_output_byte;
|
nuclear@1
|
580 entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
nuclear@1
|
581
|
nuclear@1
|
582 /* Emit restart marker if needed */
|
nuclear@1
|
583 if (cinfo->restart_interval)
|
nuclear@1
|
584 if (entropy->restarts_to_go == 0)
|
nuclear@1
|
585 emit_restart(entropy, entropy->next_restart_num);
|
nuclear@1
|
586
|
nuclear@1
|
587 /* Encode the MCU data blocks */
|
nuclear@1
|
588 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
nuclear@1
|
589 block = MCU_data[blkn];
|
nuclear@1
|
590
|
nuclear@1
|
591 /* We simply emit the Al'th bit of the DC coefficient value. */
|
nuclear@1
|
592 temp = (*block)[0];
|
nuclear@1
|
593 emit_bits(entropy, (unsigned int) (temp >> Al), 1);
|
nuclear@1
|
594 }
|
nuclear@1
|
595
|
nuclear@1
|
596 cinfo->dest->next_output_byte = entropy->next_output_byte;
|
nuclear@1
|
597 cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
nuclear@1
|
598
|
nuclear@1
|
599 /* Update restart-interval state too */
|
nuclear@1
|
600 if (cinfo->restart_interval) {
|
nuclear@1
|
601 if (entropy->restarts_to_go == 0) {
|
nuclear@1
|
602 entropy->restarts_to_go = cinfo->restart_interval;
|
nuclear@1
|
603 entropy->next_restart_num++;
|
nuclear@1
|
604 entropy->next_restart_num &= 7;
|
nuclear@1
|
605 }
|
nuclear@1
|
606 entropy->restarts_to_go--;
|
nuclear@1
|
607 }
|
nuclear@1
|
608
|
nuclear@1
|
609 return TRUE;
|
nuclear@1
|
610 }
|
nuclear@1
|
611
|
nuclear@1
|
612
|
nuclear@1
|
613 /*
|
nuclear@1
|
614 * MCU encoding for AC successive approximation refinement scan.
|
nuclear@1
|
615 */
|
nuclear@1
|
616
|
nuclear@1
|
617 METHODDEF(boolean)
|
nuclear@1
|
618 encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
nuclear@1
|
619 {
|
nuclear@1
|
620 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
nuclear@1
|
621 register int temp;
|
nuclear@1
|
622 register int r, k;
|
nuclear@1
|
623 int EOB;
|
nuclear@1
|
624 char *BR_buffer;
|
nuclear@1
|
625 unsigned int BR;
|
nuclear@1
|
626 int Se = cinfo->Se;
|
nuclear@1
|
627 int Al = cinfo->Al;
|
nuclear@1
|
628 JBLOCKROW block;
|
nuclear@1
|
629 int absvalues[DCTSIZE2];
|
nuclear@1
|
630
|
nuclear@1
|
631 entropy->next_output_byte = cinfo->dest->next_output_byte;
|
nuclear@1
|
632 entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
nuclear@1
|
633
|
nuclear@1
|
634 /* Emit restart marker if needed */
|
nuclear@1
|
635 if (cinfo->restart_interval)
|
nuclear@1
|
636 if (entropy->restarts_to_go == 0)
|
nuclear@1
|
637 emit_restart(entropy, entropy->next_restart_num);
|
nuclear@1
|
638
|
nuclear@1
|
639 /* Encode the MCU data block */
|
nuclear@1
|
640 block = MCU_data[0];
|
nuclear@1
|
641
|
nuclear@1
|
642 /* It is convenient to make a pre-pass to determine the transformed
|
nuclear@1
|
643 * coefficients' absolute values and the EOB position.
|
nuclear@1
|
644 */
|
nuclear@1
|
645 EOB = 0;
|
nuclear@1
|
646 for (k = cinfo->Ss; k <= Se; k++) {
|
nuclear@1
|
647 temp = (*block)[jpeg_natural_order[k]];
|
nuclear@1
|
648 /* We must apply the point transform by Al. For AC coefficients this
|
nuclear@1
|
649 * is an integer division with rounding towards 0. To do this portably
|
nuclear@1
|
650 * in C, we shift after obtaining the absolute value.
|
nuclear@1
|
651 */
|
nuclear@1
|
652 if (temp < 0)
|
nuclear@1
|
653 temp = -temp; /* temp is abs value of input */
|
nuclear@1
|
654 temp >>= Al; /* apply the point transform */
|
nuclear@1
|
655 absvalues[k] = temp; /* save abs value for main pass */
|
nuclear@1
|
656 if (temp == 1)
|
nuclear@1
|
657 EOB = k; /* EOB = index of last newly-nonzero coef */
|
nuclear@1
|
658 }
|
nuclear@1
|
659
|
nuclear@1
|
660 /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
|
nuclear@1
|
661
|
nuclear@1
|
662 r = 0; /* r = run length of zeros */
|
nuclear@1
|
663 BR = 0; /* BR = count of buffered bits added now */
|
nuclear@1
|
664 BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
|
nuclear@1
|
665
|
nuclear@1
|
666 for (k = cinfo->Ss; k <= Se; k++) {
|
nuclear@1
|
667 if ((temp = absvalues[k]) == 0) {
|
nuclear@1
|
668 r++;
|
nuclear@1
|
669 continue;
|
nuclear@1
|
670 }
|
nuclear@1
|
671
|
nuclear@1
|
672 /* Emit any required ZRLs, but not if they can be folded into EOB */
|
nuclear@1
|
673 while (r > 15 && k <= EOB) {
|
nuclear@1
|
674 /* emit any pending EOBRUN and the BE correction bits */
|
nuclear@1
|
675 emit_eobrun(entropy);
|
nuclear@1
|
676 /* Emit ZRL */
|
nuclear@1
|
677 emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
|
nuclear@1
|
678 r -= 16;
|
nuclear@1
|
679 /* Emit buffered correction bits that must be associated with ZRL */
|
nuclear@1
|
680 emit_buffered_bits(entropy, BR_buffer, BR);
|
nuclear@1
|
681 BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
|
nuclear@1
|
682 BR = 0;
|
nuclear@1
|
683 }
|
nuclear@1
|
684
|
nuclear@1
|
685 /* If the coef was previously nonzero, it only needs a correction bit.
|
nuclear@1
|
686 * NOTE: a straight translation of the spec's figure G.7 would suggest
|
nuclear@1
|
687 * that we also need to test r > 15. But if r > 15, we can only get here
|
nuclear@1
|
688 * if k > EOB, which implies that this coefficient is not 1.
|
nuclear@1
|
689 */
|
nuclear@1
|
690 if (temp > 1) {
|
nuclear@1
|
691 /* The correction bit is the next bit of the absolute value. */
|
nuclear@1
|
692 BR_buffer[BR++] = (char) (temp & 1);
|
nuclear@1
|
693 continue;
|
nuclear@1
|
694 }
|
nuclear@1
|
695
|
nuclear@1
|
696 /* Emit any pending EOBRUN and the BE correction bits */
|
nuclear@1
|
697 emit_eobrun(entropy);
|
nuclear@1
|
698
|
nuclear@1
|
699 /* Count/emit Huffman symbol for run length / number of bits */
|
nuclear@1
|
700 emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
|
nuclear@1
|
701
|
nuclear@1
|
702 /* Emit output bit for newly-nonzero coef */
|
nuclear@1
|
703 temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1;
|
nuclear@1
|
704 emit_bits(entropy, (unsigned int) temp, 1);
|
nuclear@1
|
705
|
nuclear@1
|
706 /* Emit buffered correction bits that must be associated with this code */
|
nuclear@1
|
707 emit_buffered_bits(entropy, BR_buffer, BR);
|
nuclear@1
|
708 BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
|
nuclear@1
|
709 BR = 0;
|
nuclear@1
|
710 r = 0; /* reset zero run length */
|
nuclear@1
|
711 }
|
nuclear@1
|
712
|
nuclear@1
|
713 if (r > 0 || BR > 0) { /* If there are trailing zeroes, */
|
nuclear@1
|
714 entropy->EOBRUN++; /* count an EOB */
|
nuclear@1
|
715 entropy->BE += BR; /* concat my correction bits to older ones */
|
nuclear@1
|
716 /* We force out the EOB if we risk either:
|
nuclear@1
|
717 * 1. overflow of the EOB counter;
|
nuclear@1
|
718 * 2. overflow of the correction bit buffer during the next MCU.
|
nuclear@1
|
719 */
|
nuclear@1
|
720 if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
|
nuclear@1
|
721 emit_eobrun(entropy);
|
nuclear@1
|
722 }
|
nuclear@1
|
723
|
nuclear@1
|
724 cinfo->dest->next_output_byte = entropy->next_output_byte;
|
nuclear@1
|
725 cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
nuclear@1
|
726
|
nuclear@1
|
727 /* Update restart-interval state too */
|
nuclear@1
|
728 if (cinfo->restart_interval) {
|
nuclear@1
|
729 if (entropy->restarts_to_go == 0) {
|
nuclear@1
|
730 entropy->restarts_to_go = cinfo->restart_interval;
|
nuclear@1
|
731 entropy->next_restart_num++;
|
nuclear@1
|
732 entropy->next_restart_num &= 7;
|
nuclear@1
|
733 }
|
nuclear@1
|
734 entropy->restarts_to_go--;
|
nuclear@1
|
735 }
|
nuclear@1
|
736
|
nuclear@1
|
737 return TRUE;
|
nuclear@1
|
738 }
|
nuclear@1
|
739
|
nuclear@1
|
740
|
nuclear@1
|
741 /*
|
nuclear@1
|
742 * Finish up at the end of a Huffman-compressed progressive scan.
|
nuclear@1
|
743 */
|
nuclear@1
|
744
|
nuclear@1
|
745 METHODDEF(void)
|
nuclear@1
|
746 finish_pass_phuff (j_compress_ptr cinfo)
|
nuclear@1
|
747 {
|
nuclear@1
|
748 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
nuclear@1
|
749
|
nuclear@1
|
750 entropy->next_output_byte = cinfo->dest->next_output_byte;
|
nuclear@1
|
751 entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
nuclear@1
|
752
|
nuclear@1
|
753 /* Flush out any buffered data */
|
nuclear@1
|
754 emit_eobrun(entropy);
|
nuclear@1
|
755 flush_bits(entropy);
|
nuclear@1
|
756
|
nuclear@1
|
757 cinfo->dest->next_output_byte = entropy->next_output_byte;
|
nuclear@1
|
758 cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
nuclear@1
|
759 }
|
nuclear@1
|
760
|
nuclear@1
|
761
|
nuclear@1
|
762 /*
|
nuclear@1
|
763 * Finish up a statistics-gathering pass and create the new Huffman tables.
|
nuclear@1
|
764 */
|
nuclear@1
|
765
|
nuclear@1
|
766 METHODDEF(void)
|
nuclear@1
|
767 finish_pass_gather_phuff (j_compress_ptr cinfo)
|
nuclear@1
|
768 {
|
nuclear@1
|
769 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
nuclear@1
|
770 boolean is_DC_band;
|
nuclear@1
|
771 int ci, tbl;
|
nuclear@1
|
772 jpeg_component_info * compptr;
|
nuclear@1
|
773 JHUFF_TBL **htblptr;
|
nuclear@1
|
774 boolean did[NUM_HUFF_TBLS];
|
nuclear@1
|
775
|
nuclear@1
|
776 /* Flush out buffered data (all we care about is counting the EOB symbol) */
|
nuclear@1
|
777 emit_eobrun(entropy);
|
nuclear@1
|
778
|
nuclear@1
|
779 is_DC_band = (cinfo->Ss == 0);
|
nuclear@1
|
780
|
nuclear@1
|
781 /* It's important not to apply jpeg_gen_optimal_table more than once
|
nuclear@1
|
782 * per table, because it clobbers the input frequency counts!
|
nuclear@1
|
783 */
|
nuclear@1
|
784 MEMZERO(did, SIZEOF(did));
|
nuclear@1
|
785
|
nuclear@1
|
786 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
nuclear@1
|
787 compptr = cinfo->cur_comp_info[ci];
|
nuclear@1
|
788 if (is_DC_band) {
|
nuclear@1
|
789 if (cinfo->Ah != 0) /* DC refinement needs no table */
|
nuclear@1
|
790 continue;
|
nuclear@1
|
791 tbl = compptr->dc_tbl_no;
|
nuclear@1
|
792 } else {
|
nuclear@1
|
793 tbl = compptr->ac_tbl_no;
|
nuclear@1
|
794 }
|
nuclear@1
|
795 if (! did[tbl]) {
|
nuclear@1
|
796 if (is_DC_band)
|
nuclear@1
|
797 htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
|
nuclear@1
|
798 else
|
nuclear@1
|
799 htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
|
nuclear@1
|
800 if (*htblptr == NULL)
|
nuclear@1
|
801 *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
|
nuclear@1
|
802 jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]);
|
nuclear@1
|
803 did[tbl] = TRUE;
|
nuclear@1
|
804 }
|
nuclear@1
|
805 }
|
nuclear@1
|
806 }
|
nuclear@1
|
807
|
nuclear@1
|
808
|
nuclear@1
|
809 /*
|
nuclear@1
|
810 * Module initialization routine for progressive Huffman entropy encoding.
|
nuclear@1
|
811 */
|
nuclear@1
|
812
|
nuclear@1
|
813 GLOBAL(void)
|
nuclear@1
|
814 jinit_phuff_encoder (j_compress_ptr cinfo)
|
nuclear@1
|
815 {
|
nuclear@1
|
816 phuff_entropy_ptr entropy;
|
nuclear@1
|
817 int i;
|
nuclear@1
|
818
|
nuclear@1
|
819 entropy = (phuff_entropy_ptr)
|
nuclear@1
|
820 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
nuclear@1
|
821 SIZEOF(phuff_entropy_encoder));
|
nuclear@1
|
822 cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
|
nuclear@1
|
823 entropy->pub.start_pass = start_pass_phuff;
|
nuclear@1
|
824
|
nuclear@1
|
825 /* Mark tables unallocated */
|
nuclear@1
|
826 for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
nuclear@1
|
827 entropy->derived_tbls[i] = NULL;
|
nuclear@1
|
828 entropy->count_ptrs[i] = NULL;
|
nuclear@1
|
829 }
|
nuclear@1
|
830 entropy->bit_buffer = NULL; /* needed only in AC refinement scan */
|
nuclear@1
|
831 }
|
nuclear@1
|
832
|
nuclear@1
|
833 #endif /* C_PROGRESSIVE_SUPPORTED */
|