rev |
line source |
nuclear@1
|
1 /********************************************************************
|
nuclear@1
|
2 * *
|
nuclear@1
|
3 * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE. *
|
nuclear@1
|
4 * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS *
|
nuclear@1
|
5 * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
|
nuclear@1
|
6 * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. *
|
nuclear@1
|
7 * *
|
nuclear@1
|
8 * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2009 *
|
nuclear@1
|
9 * by the Xiph.Org Foundation http://www.xiph.org/ *
|
nuclear@1
|
10 * *
|
nuclear@1
|
11 ********************************************************************
|
nuclear@1
|
12
|
nuclear@1
|
13 function: LSP (also called LSF) conversion routines
|
nuclear@1
|
14 last mod: $Id: lsp.c 17538 2010-10-15 02:52:29Z tterribe $
|
nuclear@1
|
15
|
nuclear@1
|
16 The LSP generation code is taken (with minimal modification and a
|
nuclear@1
|
17 few bugfixes) from "On the Computation of the LSP Frequencies" by
|
nuclear@1
|
18 Joseph Rothweiler (see http://www.rothweiler.us for contact info).
|
nuclear@1
|
19 The paper is available at:
|
nuclear@1
|
20
|
nuclear@1
|
21 http://www.myown1.com/joe/lsf
|
nuclear@1
|
22
|
nuclear@1
|
23 ********************************************************************/
|
nuclear@1
|
24
|
nuclear@1
|
25 /* Note that the lpc-lsp conversion finds the roots of polynomial with
|
nuclear@1
|
26 an iterative root polisher (CACM algorithm 283). It *is* possible
|
nuclear@1
|
27 to confuse this algorithm into not converging; that should only
|
nuclear@1
|
28 happen with absurdly closely spaced roots (very sharp peaks in the
|
nuclear@1
|
29 LPC f response) which in turn should be impossible in our use of
|
nuclear@1
|
30 the code. If this *does* happen anyway, it's a bug in the floor
|
nuclear@1
|
31 finder; find the cause of the confusion (probably a single bin
|
nuclear@1
|
32 spike or accidental near-float-limit resolution problems) and
|
nuclear@1
|
33 correct it. */
|
nuclear@1
|
34
|
nuclear@1
|
35 #include <math.h>
|
nuclear@1
|
36 #include <string.h>
|
nuclear@1
|
37 #include <stdlib.h>
|
nuclear@1
|
38 #include "lsp.h"
|
nuclear@1
|
39 #include "os.h"
|
nuclear@1
|
40 #include "misc.h"
|
nuclear@1
|
41 #include "lookup.h"
|
nuclear@1
|
42 #include "scales.h"
|
nuclear@1
|
43
|
nuclear@1
|
44 /* three possible LSP to f curve functions; the exact computation
|
nuclear@1
|
45 (float), a lookup based float implementation, and an integer
|
nuclear@1
|
46 implementation. The float lookup is likely the optimal choice on
|
nuclear@1
|
47 any machine with an FPU. The integer implementation is *not* fixed
|
nuclear@1
|
48 point (due to the need for a large dynamic range and thus a
|
nuclear@1
|
49 separately tracked exponent) and thus much more complex than the
|
nuclear@1
|
50 relatively simple float implementations. It's mostly for future
|
nuclear@1
|
51 work on a fully fixed point implementation for processors like the
|
nuclear@1
|
52 ARM family. */
|
nuclear@1
|
53
|
nuclear@1
|
54 /* define either of these (preferably FLOAT_LOOKUP) to have faster
|
nuclear@1
|
55 but less precise implementation. */
|
nuclear@1
|
56 #undef FLOAT_LOOKUP
|
nuclear@1
|
57 #undef INT_LOOKUP
|
nuclear@1
|
58
|
nuclear@1
|
59 #ifdef FLOAT_LOOKUP
|
nuclear@1
|
60 #include "lookup.c" /* catch this in the build system; we #include for
|
nuclear@1
|
61 compilers (like gcc) that can't inline across
|
nuclear@1
|
62 modules */
|
nuclear@1
|
63
|
nuclear@1
|
64 /* side effect: changes *lsp to cosines of lsp */
|
nuclear@1
|
65 void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
|
nuclear@1
|
66 float amp,float ampoffset){
|
nuclear@1
|
67 int i;
|
nuclear@1
|
68 float wdel=M_PI/ln;
|
nuclear@1
|
69 vorbis_fpu_control fpu;
|
nuclear@1
|
70
|
nuclear@1
|
71 vorbis_fpu_setround(&fpu);
|
nuclear@1
|
72 for(i=0;i<m;i++)lsp[i]=vorbis_coslook(lsp[i]);
|
nuclear@1
|
73
|
nuclear@1
|
74 i=0;
|
nuclear@1
|
75 while(i<n){
|
nuclear@1
|
76 int k=map[i];
|
nuclear@1
|
77 int qexp;
|
nuclear@1
|
78 float p=.7071067812f;
|
nuclear@1
|
79 float q=.7071067812f;
|
nuclear@1
|
80 float w=vorbis_coslook(wdel*k);
|
nuclear@1
|
81 float *ftmp=lsp;
|
nuclear@1
|
82 int c=m>>1;
|
nuclear@1
|
83
|
nuclear@1
|
84 while(c--){
|
nuclear@1
|
85 q*=ftmp[0]-w;
|
nuclear@1
|
86 p*=ftmp[1]-w;
|
nuclear@1
|
87 ftmp+=2;
|
nuclear@1
|
88 }
|
nuclear@1
|
89
|
nuclear@1
|
90 if(m&1){
|
nuclear@1
|
91 /* odd order filter; slightly assymetric */
|
nuclear@1
|
92 /* the last coefficient */
|
nuclear@1
|
93 q*=ftmp[0]-w;
|
nuclear@1
|
94 q*=q;
|
nuclear@1
|
95 p*=p*(1.f-w*w);
|
nuclear@1
|
96 }else{
|
nuclear@1
|
97 /* even order filter; still symmetric */
|
nuclear@1
|
98 q*=q*(1.f+w);
|
nuclear@1
|
99 p*=p*(1.f-w);
|
nuclear@1
|
100 }
|
nuclear@1
|
101
|
nuclear@1
|
102 q=frexp(p+q,&qexp);
|
nuclear@1
|
103 q=vorbis_fromdBlook(amp*
|
nuclear@1
|
104 vorbis_invsqlook(q)*
|
nuclear@1
|
105 vorbis_invsq2explook(qexp+m)-
|
nuclear@1
|
106 ampoffset);
|
nuclear@1
|
107
|
nuclear@1
|
108 do{
|
nuclear@1
|
109 curve[i++]*=q;
|
nuclear@1
|
110 }while(map[i]==k);
|
nuclear@1
|
111 }
|
nuclear@1
|
112 vorbis_fpu_restore(fpu);
|
nuclear@1
|
113 }
|
nuclear@1
|
114
|
nuclear@1
|
115 #else
|
nuclear@1
|
116
|
nuclear@1
|
117 #ifdef INT_LOOKUP
|
nuclear@1
|
118 #include "lookup.c" /* catch this in the build system; we #include for
|
nuclear@1
|
119 compilers (like gcc) that can't inline across
|
nuclear@1
|
120 modules */
|
nuclear@1
|
121
|
nuclear@1
|
122 static const int MLOOP_1[64]={
|
nuclear@1
|
123 0,10,11,11, 12,12,12,12, 13,13,13,13, 13,13,13,13,
|
nuclear@1
|
124 14,14,14,14, 14,14,14,14, 14,14,14,14, 14,14,14,14,
|
nuclear@1
|
125 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
|
nuclear@1
|
126 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
|
nuclear@1
|
127 };
|
nuclear@1
|
128
|
nuclear@1
|
129 static const int MLOOP_2[64]={
|
nuclear@1
|
130 0,4,5,5, 6,6,6,6, 7,7,7,7, 7,7,7,7,
|
nuclear@1
|
131 8,8,8,8, 8,8,8,8, 8,8,8,8, 8,8,8,8,
|
nuclear@1
|
132 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
|
nuclear@1
|
133 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
|
nuclear@1
|
134 };
|
nuclear@1
|
135
|
nuclear@1
|
136 static const int MLOOP_3[8]={0,1,2,2,3,3,3,3};
|
nuclear@1
|
137
|
nuclear@1
|
138
|
nuclear@1
|
139 /* side effect: changes *lsp to cosines of lsp */
|
nuclear@1
|
140 void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
|
nuclear@1
|
141 float amp,float ampoffset){
|
nuclear@1
|
142
|
nuclear@1
|
143 /* 0 <= m < 256 */
|
nuclear@1
|
144
|
nuclear@1
|
145 /* set up for using all int later */
|
nuclear@1
|
146 int i;
|
nuclear@1
|
147 int ampoffseti=rint(ampoffset*4096.f);
|
nuclear@1
|
148 int ampi=rint(amp*16.f);
|
nuclear@1
|
149 long *ilsp=alloca(m*sizeof(*ilsp));
|
nuclear@1
|
150 for(i=0;i<m;i++)ilsp[i]=vorbis_coslook_i(lsp[i]/M_PI*65536.f+.5f);
|
nuclear@1
|
151
|
nuclear@1
|
152 i=0;
|
nuclear@1
|
153 while(i<n){
|
nuclear@1
|
154 int j,k=map[i];
|
nuclear@1
|
155 unsigned long pi=46341; /* 2**-.5 in 0.16 */
|
nuclear@1
|
156 unsigned long qi=46341;
|
nuclear@1
|
157 int qexp=0,shift;
|
nuclear@1
|
158 long wi=vorbis_coslook_i(k*65536/ln);
|
nuclear@1
|
159
|
nuclear@1
|
160 qi*=labs(ilsp[0]-wi);
|
nuclear@1
|
161 pi*=labs(ilsp[1]-wi);
|
nuclear@1
|
162
|
nuclear@1
|
163 for(j=3;j<m;j+=2){
|
nuclear@1
|
164 if(!(shift=MLOOP_1[(pi|qi)>>25]))
|
nuclear@1
|
165 if(!(shift=MLOOP_2[(pi|qi)>>19]))
|
nuclear@1
|
166 shift=MLOOP_3[(pi|qi)>>16];
|
nuclear@1
|
167 qi=(qi>>shift)*labs(ilsp[j-1]-wi);
|
nuclear@1
|
168 pi=(pi>>shift)*labs(ilsp[j]-wi);
|
nuclear@1
|
169 qexp+=shift;
|
nuclear@1
|
170 }
|
nuclear@1
|
171 if(!(shift=MLOOP_1[(pi|qi)>>25]))
|
nuclear@1
|
172 if(!(shift=MLOOP_2[(pi|qi)>>19]))
|
nuclear@1
|
173 shift=MLOOP_3[(pi|qi)>>16];
|
nuclear@1
|
174
|
nuclear@1
|
175 /* pi,qi normalized collectively, both tracked using qexp */
|
nuclear@1
|
176
|
nuclear@1
|
177 if(m&1){
|
nuclear@1
|
178 /* odd order filter; slightly assymetric */
|
nuclear@1
|
179 /* the last coefficient */
|
nuclear@1
|
180 qi=(qi>>shift)*labs(ilsp[j-1]-wi);
|
nuclear@1
|
181 pi=(pi>>shift)<<14;
|
nuclear@1
|
182 qexp+=shift;
|
nuclear@1
|
183
|
nuclear@1
|
184 if(!(shift=MLOOP_1[(pi|qi)>>25]))
|
nuclear@1
|
185 if(!(shift=MLOOP_2[(pi|qi)>>19]))
|
nuclear@1
|
186 shift=MLOOP_3[(pi|qi)>>16];
|
nuclear@1
|
187
|
nuclear@1
|
188 pi>>=shift;
|
nuclear@1
|
189 qi>>=shift;
|
nuclear@1
|
190 qexp+=shift-14*((m+1)>>1);
|
nuclear@1
|
191
|
nuclear@1
|
192 pi=((pi*pi)>>16);
|
nuclear@1
|
193 qi=((qi*qi)>>16);
|
nuclear@1
|
194 qexp=qexp*2+m;
|
nuclear@1
|
195
|
nuclear@1
|
196 pi*=(1<<14)-((wi*wi)>>14);
|
nuclear@1
|
197 qi+=pi>>14;
|
nuclear@1
|
198
|
nuclear@1
|
199 }else{
|
nuclear@1
|
200 /* even order filter; still symmetric */
|
nuclear@1
|
201
|
nuclear@1
|
202 /* p*=p(1-w), q*=q(1+w), let normalization drift because it isn't
|
nuclear@1
|
203 worth tracking step by step */
|
nuclear@1
|
204
|
nuclear@1
|
205 pi>>=shift;
|
nuclear@1
|
206 qi>>=shift;
|
nuclear@1
|
207 qexp+=shift-7*m;
|
nuclear@1
|
208
|
nuclear@1
|
209 pi=((pi*pi)>>16);
|
nuclear@1
|
210 qi=((qi*qi)>>16);
|
nuclear@1
|
211 qexp=qexp*2+m;
|
nuclear@1
|
212
|
nuclear@1
|
213 pi*=(1<<14)-wi;
|
nuclear@1
|
214 qi*=(1<<14)+wi;
|
nuclear@1
|
215 qi=(qi+pi)>>14;
|
nuclear@1
|
216
|
nuclear@1
|
217 }
|
nuclear@1
|
218
|
nuclear@1
|
219
|
nuclear@1
|
220 /* we've let the normalization drift because it wasn't important;
|
nuclear@1
|
221 however, for the lookup, things must be normalized again. We
|
nuclear@1
|
222 need at most one right shift or a number of left shifts */
|
nuclear@1
|
223
|
nuclear@1
|
224 if(qi&0xffff0000){ /* checks for 1.xxxxxxxxxxxxxxxx */
|
nuclear@1
|
225 qi>>=1; qexp++;
|
nuclear@1
|
226 }else
|
nuclear@1
|
227 while(qi && !(qi&0x8000)){ /* checks for 0.0xxxxxxxxxxxxxxx or less*/
|
nuclear@1
|
228 qi<<=1; qexp--;
|
nuclear@1
|
229 }
|
nuclear@1
|
230
|
nuclear@1
|
231 amp=vorbis_fromdBlook_i(ampi* /* n.4 */
|
nuclear@1
|
232 vorbis_invsqlook_i(qi,qexp)-
|
nuclear@1
|
233 /* m.8, m+n<=8 */
|
nuclear@1
|
234 ampoffseti); /* 8.12[0] */
|
nuclear@1
|
235
|
nuclear@1
|
236 curve[i]*=amp;
|
nuclear@1
|
237 while(map[++i]==k)curve[i]*=amp;
|
nuclear@1
|
238 }
|
nuclear@1
|
239 }
|
nuclear@1
|
240
|
nuclear@1
|
241 #else
|
nuclear@1
|
242
|
nuclear@1
|
243 /* old, nonoptimized but simple version for any poor sap who needs to
|
nuclear@1
|
244 figure out what the hell this code does, or wants the other
|
nuclear@1
|
245 fraction of a dB precision */
|
nuclear@1
|
246
|
nuclear@1
|
247 /* side effect: changes *lsp to cosines of lsp */
|
nuclear@1
|
248 void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
|
nuclear@1
|
249 float amp,float ampoffset){
|
nuclear@1
|
250 int i;
|
nuclear@1
|
251 float wdel=M_PI/ln;
|
nuclear@1
|
252 for(i=0;i<m;i++)lsp[i]=2.f*cos(lsp[i]);
|
nuclear@1
|
253
|
nuclear@1
|
254 i=0;
|
nuclear@1
|
255 while(i<n){
|
nuclear@1
|
256 int j,k=map[i];
|
nuclear@1
|
257 float p=.5f;
|
nuclear@1
|
258 float q=.5f;
|
nuclear@1
|
259 float w=2.f*cos(wdel*k);
|
nuclear@1
|
260 for(j=1;j<m;j+=2){
|
nuclear@1
|
261 q *= w-lsp[j-1];
|
nuclear@1
|
262 p *= w-lsp[j];
|
nuclear@1
|
263 }
|
nuclear@1
|
264 if(j==m){
|
nuclear@1
|
265 /* odd order filter; slightly assymetric */
|
nuclear@1
|
266 /* the last coefficient */
|
nuclear@1
|
267 q*=w-lsp[j-1];
|
nuclear@1
|
268 p*=p*(4.f-w*w);
|
nuclear@1
|
269 q*=q;
|
nuclear@1
|
270 }else{
|
nuclear@1
|
271 /* even order filter; still symmetric */
|
nuclear@1
|
272 p*=p*(2.f-w);
|
nuclear@1
|
273 q*=q*(2.f+w);
|
nuclear@1
|
274 }
|
nuclear@1
|
275
|
nuclear@1
|
276 q=fromdB(amp/sqrt(p+q)-ampoffset);
|
nuclear@1
|
277
|
nuclear@1
|
278 curve[i]*=q;
|
nuclear@1
|
279 while(map[++i]==k)curve[i]*=q;
|
nuclear@1
|
280 }
|
nuclear@1
|
281 }
|
nuclear@1
|
282
|
nuclear@1
|
283 #endif
|
nuclear@1
|
284 #endif
|
nuclear@1
|
285
|
nuclear@1
|
286 static void cheby(float *g, int ord) {
|
nuclear@1
|
287 int i, j;
|
nuclear@1
|
288
|
nuclear@1
|
289 g[0] *= .5f;
|
nuclear@1
|
290 for(i=2; i<= ord; i++) {
|
nuclear@1
|
291 for(j=ord; j >= i; j--) {
|
nuclear@1
|
292 g[j-2] -= g[j];
|
nuclear@1
|
293 g[j] += g[j];
|
nuclear@1
|
294 }
|
nuclear@1
|
295 }
|
nuclear@1
|
296 }
|
nuclear@1
|
297
|
nuclear@1
|
298 static int comp(const void *a,const void *b){
|
nuclear@1
|
299 return (*(float *)a<*(float *)b)-(*(float *)a>*(float *)b);
|
nuclear@1
|
300 }
|
nuclear@1
|
301
|
nuclear@1
|
302 /* Newton-Raphson-Maehly actually functioned as a decent root finder,
|
nuclear@1
|
303 but there are root sets for which it gets into limit cycles
|
nuclear@1
|
304 (exacerbated by zero suppression) and fails. We can't afford to
|
nuclear@1
|
305 fail, even if the failure is 1 in 100,000,000, so we now use
|
nuclear@1
|
306 Laguerre and later polish with Newton-Raphson (which can then
|
nuclear@1
|
307 afford to fail) */
|
nuclear@1
|
308
|
nuclear@1
|
309 #define EPSILON 10e-7
|
nuclear@1
|
310 static int Laguerre_With_Deflation(float *a,int ord,float *r){
|
nuclear@1
|
311 int i,m;
|
nuclear@1
|
312 double *defl=alloca(sizeof(*defl)*(ord+1));
|
nuclear@1
|
313 for(i=0;i<=ord;i++)defl[i]=a[i];
|
nuclear@1
|
314
|
nuclear@1
|
315 for(m=ord;m>0;m--){
|
nuclear@1
|
316 double new=0.f,delta;
|
nuclear@1
|
317
|
nuclear@1
|
318 /* iterate a root */
|
nuclear@1
|
319 while(1){
|
nuclear@1
|
320 double p=defl[m],pp=0.f,ppp=0.f,denom;
|
nuclear@1
|
321
|
nuclear@1
|
322 /* eval the polynomial and its first two derivatives */
|
nuclear@1
|
323 for(i=m;i>0;i--){
|
nuclear@1
|
324 ppp = new*ppp + pp;
|
nuclear@1
|
325 pp = new*pp + p;
|
nuclear@1
|
326 p = new*p + defl[i-1];
|
nuclear@1
|
327 }
|
nuclear@1
|
328
|
nuclear@1
|
329 /* Laguerre's method */
|
nuclear@1
|
330 denom=(m-1) * ((m-1)*pp*pp - m*p*ppp);
|
nuclear@1
|
331 if(denom<0)
|
nuclear@1
|
332 return(-1); /* complex root! The LPC generator handed us a bad filter */
|
nuclear@1
|
333
|
nuclear@1
|
334 if(pp>0){
|
nuclear@1
|
335 denom = pp + sqrt(denom);
|
nuclear@1
|
336 if(denom<EPSILON)denom=EPSILON;
|
nuclear@1
|
337 }else{
|
nuclear@1
|
338 denom = pp - sqrt(denom);
|
nuclear@1
|
339 if(denom>-(EPSILON))denom=-(EPSILON);
|
nuclear@1
|
340 }
|
nuclear@1
|
341
|
nuclear@1
|
342 delta = m*p/denom;
|
nuclear@1
|
343 new -= delta;
|
nuclear@1
|
344
|
nuclear@1
|
345 if(delta<0.f)delta*=-1;
|
nuclear@1
|
346
|
nuclear@1
|
347 if(fabs(delta/new)<10e-12)break;
|
nuclear@1
|
348 }
|
nuclear@1
|
349
|
nuclear@1
|
350 r[m-1]=new;
|
nuclear@1
|
351
|
nuclear@1
|
352 /* forward deflation */
|
nuclear@1
|
353
|
nuclear@1
|
354 for(i=m;i>0;i--)
|
nuclear@1
|
355 defl[i-1]+=new*defl[i];
|
nuclear@1
|
356 defl++;
|
nuclear@1
|
357
|
nuclear@1
|
358 }
|
nuclear@1
|
359 return(0);
|
nuclear@1
|
360 }
|
nuclear@1
|
361
|
nuclear@1
|
362
|
nuclear@1
|
363 /* for spit-and-polish only */
|
nuclear@1
|
364 static int Newton_Raphson(float *a,int ord,float *r){
|
nuclear@1
|
365 int i, k, count=0;
|
nuclear@1
|
366 double error=1.f;
|
nuclear@1
|
367 double *root=alloca(ord*sizeof(*root));
|
nuclear@1
|
368
|
nuclear@1
|
369 for(i=0; i<ord;i++) root[i] = r[i];
|
nuclear@1
|
370
|
nuclear@1
|
371 while(error>1e-20){
|
nuclear@1
|
372 error=0;
|
nuclear@1
|
373
|
nuclear@1
|
374 for(i=0; i<ord; i++) { /* Update each point. */
|
nuclear@1
|
375 double pp=0.,delta;
|
nuclear@1
|
376 double rooti=root[i];
|
nuclear@1
|
377 double p=a[ord];
|
nuclear@1
|
378 for(k=ord-1; k>= 0; k--) {
|
nuclear@1
|
379
|
nuclear@1
|
380 pp= pp* rooti + p;
|
nuclear@1
|
381 p = p * rooti + a[k];
|
nuclear@1
|
382 }
|
nuclear@1
|
383
|
nuclear@1
|
384 delta = p/pp;
|
nuclear@1
|
385 root[i] -= delta;
|
nuclear@1
|
386 error+= delta*delta;
|
nuclear@1
|
387 }
|
nuclear@1
|
388
|
nuclear@1
|
389 if(count>40)return(-1);
|
nuclear@1
|
390
|
nuclear@1
|
391 count++;
|
nuclear@1
|
392 }
|
nuclear@1
|
393
|
nuclear@1
|
394 /* Replaced the original bubble sort with a real sort. With your
|
nuclear@1
|
395 help, we can eliminate the bubble sort in our lifetime. --Monty */
|
nuclear@1
|
396
|
nuclear@1
|
397 for(i=0; i<ord;i++) r[i] = root[i];
|
nuclear@1
|
398 return(0);
|
nuclear@1
|
399 }
|
nuclear@1
|
400
|
nuclear@1
|
401
|
nuclear@1
|
402 /* Convert lpc coefficients to lsp coefficients */
|
nuclear@1
|
403 int vorbis_lpc_to_lsp(float *lpc,float *lsp,int m){
|
nuclear@1
|
404 int order2=(m+1)>>1;
|
nuclear@1
|
405 int g1_order,g2_order;
|
nuclear@1
|
406 float *g1=alloca(sizeof(*g1)*(order2+1));
|
nuclear@1
|
407 float *g2=alloca(sizeof(*g2)*(order2+1));
|
nuclear@1
|
408 float *g1r=alloca(sizeof(*g1r)*(order2+1));
|
nuclear@1
|
409 float *g2r=alloca(sizeof(*g2r)*(order2+1));
|
nuclear@1
|
410 int i;
|
nuclear@1
|
411
|
nuclear@1
|
412 /* even and odd are slightly different base cases */
|
nuclear@1
|
413 g1_order=(m+1)>>1;
|
nuclear@1
|
414 g2_order=(m) >>1;
|
nuclear@1
|
415
|
nuclear@1
|
416 /* Compute the lengths of the x polynomials. */
|
nuclear@1
|
417 /* Compute the first half of K & R F1 & F2 polynomials. */
|
nuclear@1
|
418 /* Compute half of the symmetric and antisymmetric polynomials. */
|
nuclear@1
|
419 /* Remove the roots at +1 and -1. */
|
nuclear@1
|
420
|
nuclear@1
|
421 g1[g1_order] = 1.f;
|
nuclear@1
|
422 for(i=1;i<=g1_order;i++) g1[g1_order-i] = lpc[i-1]+lpc[m-i];
|
nuclear@1
|
423 g2[g2_order] = 1.f;
|
nuclear@1
|
424 for(i=1;i<=g2_order;i++) g2[g2_order-i] = lpc[i-1]-lpc[m-i];
|
nuclear@1
|
425
|
nuclear@1
|
426 if(g1_order>g2_order){
|
nuclear@1
|
427 for(i=2; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+2];
|
nuclear@1
|
428 }else{
|
nuclear@1
|
429 for(i=1; i<=g1_order;i++) g1[g1_order-i] -= g1[g1_order-i+1];
|
nuclear@1
|
430 for(i=1; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+1];
|
nuclear@1
|
431 }
|
nuclear@1
|
432
|
nuclear@1
|
433 /* Convert into polynomials in cos(alpha) */
|
nuclear@1
|
434 cheby(g1,g1_order);
|
nuclear@1
|
435 cheby(g2,g2_order);
|
nuclear@1
|
436
|
nuclear@1
|
437 /* Find the roots of the 2 even polynomials.*/
|
nuclear@1
|
438 if(Laguerre_With_Deflation(g1,g1_order,g1r) ||
|
nuclear@1
|
439 Laguerre_With_Deflation(g2,g2_order,g2r))
|
nuclear@1
|
440 return(-1);
|
nuclear@1
|
441
|
nuclear@1
|
442 Newton_Raphson(g1,g1_order,g1r); /* if it fails, it leaves g1r alone */
|
nuclear@1
|
443 Newton_Raphson(g2,g2_order,g2r); /* if it fails, it leaves g2r alone */
|
nuclear@1
|
444
|
nuclear@1
|
445 qsort(g1r,g1_order,sizeof(*g1r),comp);
|
nuclear@1
|
446 qsort(g2r,g2_order,sizeof(*g2r),comp);
|
nuclear@1
|
447
|
nuclear@1
|
448 for(i=0;i<g1_order;i++)
|
nuclear@1
|
449 lsp[i*2] = acos(g1r[i]);
|
nuclear@1
|
450
|
nuclear@1
|
451 for(i=0;i<g2_order;i++)
|
nuclear@1
|
452 lsp[i*2+1] = acos(g2r[i]);
|
nuclear@1
|
453 return(0);
|
nuclear@1
|
454 }
|