nuclear@1: /******************************************************************** nuclear@1: * * nuclear@1: * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE. * nuclear@1: * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS * nuclear@1: * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE * nuclear@1: * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. * nuclear@1: * * nuclear@1: * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2009 * nuclear@1: * by the Xiph.Org Foundation http://www.xiph.org/ * nuclear@1: * * nuclear@1: ******************************************************************** nuclear@1: nuclear@1: function: LSP (also called LSF) conversion routines nuclear@1: last mod: $Id: lsp.c 17538 2010-10-15 02:52:29Z tterribe $ nuclear@1: nuclear@1: The LSP generation code is taken (with minimal modification and a nuclear@1: few bugfixes) from "On the Computation of the LSP Frequencies" by nuclear@1: Joseph Rothweiler (see http://www.rothweiler.us for contact info). nuclear@1: The paper is available at: nuclear@1: nuclear@1: http://www.myown1.com/joe/lsf nuclear@1: nuclear@1: ********************************************************************/ nuclear@1: nuclear@1: /* Note that the lpc-lsp conversion finds the roots of polynomial with nuclear@1: an iterative root polisher (CACM algorithm 283). It *is* possible nuclear@1: to confuse this algorithm into not converging; that should only nuclear@1: happen with absurdly closely spaced roots (very sharp peaks in the nuclear@1: LPC f response) which in turn should be impossible in our use of nuclear@1: the code. If this *does* happen anyway, it's a bug in the floor nuclear@1: finder; find the cause of the confusion (probably a single bin nuclear@1: spike or accidental near-float-limit resolution problems) and nuclear@1: correct it. */ nuclear@1: nuclear@1: #include nuclear@1: #include nuclear@1: #include nuclear@1: #include "lsp.h" nuclear@1: #include "os.h" nuclear@1: #include "misc.h" nuclear@1: #include "lookup.h" nuclear@1: #include "scales.h" nuclear@1: nuclear@1: /* three possible LSP to f curve functions; the exact computation nuclear@1: (float), a lookup based float implementation, and an integer nuclear@1: implementation. The float lookup is likely the optimal choice on nuclear@1: any machine with an FPU. The integer implementation is *not* fixed nuclear@1: point (due to the need for a large dynamic range and thus a nuclear@1: separately tracked exponent) and thus much more complex than the nuclear@1: relatively simple float implementations. It's mostly for future nuclear@1: work on a fully fixed point implementation for processors like the nuclear@1: ARM family. */ nuclear@1: nuclear@1: /* define either of these (preferably FLOAT_LOOKUP) to have faster nuclear@1: but less precise implementation. */ nuclear@1: #undef FLOAT_LOOKUP nuclear@1: #undef INT_LOOKUP nuclear@1: nuclear@1: #ifdef FLOAT_LOOKUP nuclear@1: #include "lookup.c" /* catch this in the build system; we #include for nuclear@1: compilers (like gcc) that can't inline across nuclear@1: modules */ nuclear@1: nuclear@1: /* side effect: changes *lsp to cosines of lsp */ nuclear@1: void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m, nuclear@1: float amp,float ampoffset){ nuclear@1: int i; nuclear@1: float wdel=M_PI/ln; nuclear@1: vorbis_fpu_control fpu; nuclear@1: nuclear@1: vorbis_fpu_setround(&fpu); nuclear@1: for(i=0;i>1; nuclear@1: nuclear@1: while(c--){ nuclear@1: q*=ftmp[0]-w; nuclear@1: p*=ftmp[1]-w; nuclear@1: ftmp+=2; nuclear@1: } nuclear@1: nuclear@1: if(m&1){ nuclear@1: /* odd order filter; slightly assymetric */ nuclear@1: /* the last coefficient */ nuclear@1: q*=ftmp[0]-w; nuclear@1: q*=q; nuclear@1: p*=p*(1.f-w*w); nuclear@1: }else{ nuclear@1: /* even order filter; still symmetric */ nuclear@1: q*=q*(1.f+w); nuclear@1: p*=p*(1.f-w); nuclear@1: } nuclear@1: nuclear@1: q=frexp(p+q,&qexp); nuclear@1: q=vorbis_fromdBlook(amp* nuclear@1: vorbis_invsqlook(q)* nuclear@1: vorbis_invsq2explook(qexp+m)- nuclear@1: ampoffset); nuclear@1: nuclear@1: do{ nuclear@1: curve[i++]*=q; nuclear@1: }while(map[i]==k); nuclear@1: } nuclear@1: vorbis_fpu_restore(fpu); nuclear@1: } nuclear@1: nuclear@1: #else nuclear@1: nuclear@1: #ifdef INT_LOOKUP nuclear@1: #include "lookup.c" /* catch this in the build system; we #include for nuclear@1: compilers (like gcc) that can't inline across nuclear@1: modules */ nuclear@1: nuclear@1: static const int MLOOP_1[64]={ nuclear@1: 0,10,11,11, 12,12,12,12, 13,13,13,13, 13,13,13,13, nuclear@1: 14,14,14,14, 14,14,14,14, 14,14,14,14, 14,14,14,14, nuclear@1: 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15, nuclear@1: 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15, nuclear@1: }; nuclear@1: nuclear@1: static const int MLOOP_2[64]={ nuclear@1: 0,4,5,5, 6,6,6,6, 7,7,7,7, 7,7,7,7, nuclear@1: 8,8,8,8, 8,8,8,8, 8,8,8,8, 8,8,8,8, nuclear@1: 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9, nuclear@1: 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9, nuclear@1: }; nuclear@1: nuclear@1: static const int MLOOP_3[8]={0,1,2,2,3,3,3,3}; nuclear@1: nuclear@1: nuclear@1: /* side effect: changes *lsp to cosines of lsp */ nuclear@1: void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m, nuclear@1: float amp,float ampoffset){ nuclear@1: nuclear@1: /* 0 <= m < 256 */ nuclear@1: nuclear@1: /* set up for using all int later */ nuclear@1: int i; nuclear@1: int ampoffseti=rint(ampoffset*4096.f); nuclear@1: int ampi=rint(amp*16.f); nuclear@1: long *ilsp=alloca(m*sizeof(*ilsp)); nuclear@1: for(i=0;i>25])) nuclear@1: if(!(shift=MLOOP_2[(pi|qi)>>19])) nuclear@1: shift=MLOOP_3[(pi|qi)>>16]; nuclear@1: qi=(qi>>shift)*labs(ilsp[j-1]-wi); nuclear@1: pi=(pi>>shift)*labs(ilsp[j]-wi); nuclear@1: qexp+=shift; nuclear@1: } nuclear@1: if(!(shift=MLOOP_1[(pi|qi)>>25])) nuclear@1: if(!(shift=MLOOP_2[(pi|qi)>>19])) nuclear@1: shift=MLOOP_3[(pi|qi)>>16]; nuclear@1: nuclear@1: /* pi,qi normalized collectively, both tracked using qexp */ nuclear@1: nuclear@1: if(m&1){ nuclear@1: /* odd order filter; slightly assymetric */ nuclear@1: /* the last coefficient */ nuclear@1: qi=(qi>>shift)*labs(ilsp[j-1]-wi); nuclear@1: pi=(pi>>shift)<<14; nuclear@1: qexp+=shift; nuclear@1: nuclear@1: if(!(shift=MLOOP_1[(pi|qi)>>25])) nuclear@1: if(!(shift=MLOOP_2[(pi|qi)>>19])) nuclear@1: shift=MLOOP_3[(pi|qi)>>16]; nuclear@1: nuclear@1: pi>>=shift; nuclear@1: qi>>=shift; nuclear@1: qexp+=shift-14*((m+1)>>1); nuclear@1: nuclear@1: pi=((pi*pi)>>16); nuclear@1: qi=((qi*qi)>>16); nuclear@1: qexp=qexp*2+m; nuclear@1: nuclear@1: pi*=(1<<14)-((wi*wi)>>14); nuclear@1: qi+=pi>>14; nuclear@1: nuclear@1: }else{ nuclear@1: /* even order filter; still symmetric */ nuclear@1: nuclear@1: /* p*=p(1-w), q*=q(1+w), let normalization drift because it isn't nuclear@1: worth tracking step by step */ nuclear@1: nuclear@1: pi>>=shift; nuclear@1: qi>>=shift; nuclear@1: qexp+=shift-7*m; nuclear@1: nuclear@1: pi=((pi*pi)>>16); nuclear@1: qi=((qi*qi)>>16); nuclear@1: qexp=qexp*2+m; nuclear@1: nuclear@1: pi*=(1<<14)-wi; nuclear@1: qi*=(1<<14)+wi; nuclear@1: qi=(qi+pi)>>14; nuclear@1: nuclear@1: } nuclear@1: nuclear@1: nuclear@1: /* we've let the normalization drift because it wasn't important; nuclear@1: however, for the lookup, things must be normalized again. We nuclear@1: need at most one right shift or a number of left shifts */ nuclear@1: nuclear@1: if(qi&0xffff0000){ /* checks for 1.xxxxxxxxxxxxxxxx */ nuclear@1: qi>>=1; qexp++; nuclear@1: }else nuclear@1: while(qi && !(qi&0x8000)){ /* checks for 0.0xxxxxxxxxxxxxxx or less*/ nuclear@1: qi<<=1; qexp--; nuclear@1: } nuclear@1: nuclear@1: amp=vorbis_fromdBlook_i(ampi* /* n.4 */ nuclear@1: vorbis_invsqlook_i(qi,qexp)- nuclear@1: /* m.8, m+n<=8 */ nuclear@1: ampoffseti); /* 8.12[0] */ nuclear@1: nuclear@1: curve[i]*=amp; nuclear@1: while(map[++i]==k)curve[i]*=amp; nuclear@1: } nuclear@1: } nuclear@1: nuclear@1: #else nuclear@1: nuclear@1: /* old, nonoptimized but simple version for any poor sap who needs to nuclear@1: figure out what the hell this code does, or wants the other nuclear@1: fraction of a dB precision */ nuclear@1: nuclear@1: /* side effect: changes *lsp to cosines of lsp */ nuclear@1: void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m, nuclear@1: float amp,float ampoffset){ nuclear@1: int i; nuclear@1: float wdel=M_PI/ln; nuclear@1: for(i=0;i= i; j--) { nuclear@1: g[j-2] -= g[j]; nuclear@1: g[j] += g[j]; nuclear@1: } nuclear@1: } nuclear@1: } nuclear@1: nuclear@1: static int comp(const void *a,const void *b){ nuclear@1: return (*(float *)a<*(float *)b)-(*(float *)a>*(float *)b); nuclear@1: } nuclear@1: nuclear@1: /* Newton-Raphson-Maehly actually functioned as a decent root finder, nuclear@1: but there are root sets for which it gets into limit cycles nuclear@1: (exacerbated by zero suppression) and fails. We can't afford to nuclear@1: fail, even if the failure is 1 in 100,000,000, so we now use nuclear@1: Laguerre and later polish with Newton-Raphson (which can then nuclear@1: afford to fail) */ nuclear@1: nuclear@1: #define EPSILON 10e-7 nuclear@1: static int Laguerre_With_Deflation(float *a,int ord,float *r){ nuclear@1: int i,m; nuclear@1: double *defl=alloca(sizeof(*defl)*(ord+1)); nuclear@1: for(i=0;i<=ord;i++)defl[i]=a[i]; nuclear@1: nuclear@1: for(m=ord;m>0;m--){ nuclear@1: double new=0.f,delta; nuclear@1: nuclear@1: /* iterate a root */ nuclear@1: while(1){ nuclear@1: double p=defl[m],pp=0.f,ppp=0.f,denom; nuclear@1: nuclear@1: /* eval the polynomial and its first two derivatives */ nuclear@1: for(i=m;i>0;i--){ nuclear@1: ppp = new*ppp + pp; nuclear@1: pp = new*pp + p; nuclear@1: p = new*p + defl[i-1]; nuclear@1: } nuclear@1: nuclear@1: /* Laguerre's method */ nuclear@1: denom=(m-1) * ((m-1)*pp*pp - m*p*ppp); nuclear@1: if(denom<0) nuclear@1: return(-1); /* complex root! The LPC generator handed us a bad filter */ nuclear@1: nuclear@1: if(pp>0){ nuclear@1: denom = pp + sqrt(denom); nuclear@1: if(denom-(EPSILON))denom=-(EPSILON); nuclear@1: } nuclear@1: nuclear@1: delta = m*p/denom; nuclear@1: new -= delta; nuclear@1: nuclear@1: if(delta<0.f)delta*=-1; nuclear@1: nuclear@1: if(fabs(delta/new)<10e-12)break; nuclear@1: } nuclear@1: nuclear@1: r[m-1]=new; nuclear@1: nuclear@1: /* forward deflation */ nuclear@1: nuclear@1: for(i=m;i>0;i--) nuclear@1: defl[i-1]+=new*defl[i]; nuclear@1: defl++; nuclear@1: nuclear@1: } nuclear@1: return(0); nuclear@1: } nuclear@1: nuclear@1: nuclear@1: /* for spit-and-polish only */ nuclear@1: static int Newton_Raphson(float *a,int ord,float *r){ nuclear@1: int i, k, count=0; nuclear@1: double error=1.f; nuclear@1: double *root=alloca(ord*sizeof(*root)); nuclear@1: nuclear@1: for(i=0; i1e-20){ nuclear@1: error=0; nuclear@1: nuclear@1: for(i=0; i= 0; k--) { nuclear@1: nuclear@1: pp= pp* rooti + p; nuclear@1: p = p * rooti + a[k]; nuclear@1: } nuclear@1: nuclear@1: delta = p/pp; nuclear@1: root[i] -= delta; nuclear@1: error+= delta*delta; nuclear@1: } nuclear@1: nuclear@1: if(count>40)return(-1); nuclear@1: nuclear@1: count++; nuclear@1: } nuclear@1: nuclear@1: /* Replaced the original bubble sort with a real sort. With your nuclear@1: help, we can eliminate the bubble sort in our lifetime. --Monty */ nuclear@1: nuclear@1: for(i=0; i>1; nuclear@1: int g1_order,g2_order; nuclear@1: float *g1=alloca(sizeof(*g1)*(order2+1)); nuclear@1: float *g2=alloca(sizeof(*g2)*(order2+1)); nuclear@1: float *g1r=alloca(sizeof(*g1r)*(order2+1)); nuclear@1: float *g2r=alloca(sizeof(*g2r)*(order2+1)); nuclear@1: int i; nuclear@1: nuclear@1: /* even and odd are slightly different base cases */ nuclear@1: g1_order=(m+1)>>1; nuclear@1: g2_order=(m) >>1; nuclear@1: nuclear@1: /* Compute the lengths of the x polynomials. */ nuclear@1: /* Compute the first half of K & R F1 & F2 polynomials. */ nuclear@1: /* Compute half of the symmetric and antisymmetric polynomials. */ nuclear@1: /* Remove the roots at +1 and -1. */ nuclear@1: nuclear@1: g1[g1_order] = 1.f; nuclear@1: for(i=1;i<=g1_order;i++) g1[g1_order-i] = lpc[i-1]+lpc[m-i]; nuclear@1: g2[g2_order] = 1.f; nuclear@1: for(i=1;i<=g2_order;i++) g2[g2_order-i] = lpc[i-1]-lpc[m-i]; nuclear@1: nuclear@1: if(g1_order>g2_order){ nuclear@1: for(i=2; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+2]; nuclear@1: }else{ nuclear@1: for(i=1; i<=g1_order;i++) g1[g1_order-i] -= g1[g1_order-i+1]; nuclear@1: for(i=1; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+1]; nuclear@1: } nuclear@1: nuclear@1: /* Convert into polynomials in cos(alpha) */ nuclear@1: cheby(g1,g1_order); nuclear@1: cheby(g2,g2_order); nuclear@1: nuclear@1: /* Find the roots of the 2 even polynomials.*/ nuclear@1: if(Laguerre_With_Deflation(g1,g1_order,g1r) || nuclear@1: Laguerre_With_Deflation(g2,g2_order,g2r)) nuclear@1: return(-1); nuclear@1: nuclear@1: Newton_Raphson(g1,g1_order,g1r); /* if it fails, it leaves g1r alone */ nuclear@1: Newton_Raphson(g2,g2_order,g2r); /* if it fails, it leaves g2r alone */ nuclear@1: nuclear@1: qsort(g1r,g1_order,sizeof(*g1r),comp); nuclear@1: qsort(g2r,g2_order,sizeof(*g2r),comp); nuclear@1: nuclear@1: for(i=0;i