cubemapper

annotate src/geom.cc @ 4:2bfafdced01a

added README, COPYING, and copyright headers
author John Tsiombikas <nuclear@member.fsf.org>
date Sun, 30 Jul 2017 16:11:19 +0300
parents 8fc9e1d3aad2
children
rev   line source
nuclear@4 1 /*
nuclear@4 2 Cubemapper - a program for converting panoramic images into cubemaps
nuclear@4 3 Copyright (C) 2017 John Tsiombikas <nuclear@member.fsf.org>
nuclear@4 4
nuclear@4 5 This program is free software: you can redistribute it and/or modify
nuclear@4 6 it under the terms of the GNU General Public License as published by
nuclear@4 7 the Free Software Foundation, either version 3 of the License, or
nuclear@4 8 (at your option) any later version.
nuclear@4 9
nuclear@4 10 This program is distributed in the hope that it will be useful,
nuclear@4 11 but WITHOUT ANY WARRANTY; without even the implied warranty of
nuclear@4 12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
nuclear@4 13 GNU General Public License for more details.
nuclear@4 14
nuclear@4 15 You should have received a copy of the GNU General Public License
nuclear@4 16 along with this program. If not, see <http://www.gnu.org/licenses/>.
nuclear@4 17 */
nuclear@0 18 #include <assert.h>
nuclear@0 19 #include <float.h>
nuclear@0 20 #include <algorithm>
nuclear@0 21 #include "geom.h"
nuclear@0 22
nuclear@0 23 GeomObject::~GeomObject()
nuclear@0 24 {
nuclear@0 25 }
nuclear@0 26
nuclear@0 27
nuclear@0 28 Sphere::Sphere()
nuclear@0 29 {
nuclear@0 30 radius = 1.0;
nuclear@0 31 }
nuclear@0 32
nuclear@0 33 Sphere::Sphere(const Vec3 &cent, float radius)
nuclear@0 34 : center(cent)
nuclear@0 35 {
nuclear@0 36 this->radius = radius;
nuclear@0 37 }
nuclear@0 38
nuclear@0 39 void Sphere::set_union(const GeomObject *obj1, const GeomObject *obj2)
nuclear@0 40 {
nuclear@0 41 const Sphere *sph1 = dynamic_cast<const Sphere*>(obj1);
nuclear@0 42 const Sphere *sph2 = dynamic_cast<const Sphere*>(obj2);
nuclear@0 43
nuclear@0 44 if(!sph1 || !sph2) {
nuclear@0 45 fprintf(stderr, "Sphere::set_union: arguments must be spheres");
nuclear@0 46 return;
nuclear@0 47 }
nuclear@0 48
nuclear@0 49 float dist = length(sph1->center - sph2->center);
nuclear@0 50 float surf_dist = dist - (sph1->radius + sph2->radius);
nuclear@0 51 float d1 = sph1->radius + surf_dist / 2.0;
nuclear@0 52 float d2 = sph2->radius + surf_dist / 2.0;
nuclear@0 53 float t = d1 / (d1 + d2);
nuclear@0 54
nuclear@0 55 if(t < 0.0) t = 0.0;
nuclear@0 56 if(t > 1.0) t = 1.0;
nuclear@0 57
nuclear@0 58 center = sph1->center * t + sph2->center * (1.0 - t);
nuclear@0 59 radius = std::max(dist * t + sph2->radius, dist * (1.0f - t) + sph1->radius);
nuclear@0 60 }
nuclear@0 61
nuclear@0 62 void Sphere::set_intersection(const GeomObject *obj1, const GeomObject *obj2)
nuclear@0 63 {
nuclear@0 64 fprintf(stderr, "Sphere::intersection undefined\n");
nuclear@0 65 }
nuclear@0 66
nuclear@0 67 bool Sphere::intersect(const Ray &ray, HitPoint *hit) const
nuclear@0 68 {
nuclear@0 69 float a = dot(ray.dir, ray.dir);
nuclear@0 70 float b = 2.0 * ray.dir.x * (ray.origin.x - center.x) +
nuclear@0 71 2.0 * ray.dir.y * (ray.origin.y - center.y) +
nuclear@0 72 2.0 * ray.dir.z * (ray.origin.z - center.z);
nuclear@0 73 float c = dot(ray.origin, ray.origin) + dot(center, center) -
nuclear@0 74 2.0 * dot(ray.origin, center) - radius * radius;
nuclear@0 75
nuclear@0 76 float discr = b * b - 4.0 * a * c;
nuclear@0 77 if(discr < 1e-4) {
nuclear@0 78 return false;
nuclear@0 79 }
nuclear@0 80
nuclear@0 81 float sqrt_discr = sqrt(discr);
nuclear@0 82 float t0 = (-b + sqrt_discr) / (2.0 * a);
nuclear@0 83 float t1 = (-b - sqrt_discr) / (2.0 * a);
nuclear@0 84
nuclear@0 85 if(t0 < 1e-4)
nuclear@0 86 t0 = t1;
nuclear@0 87 if(t1 < 1e-4)
nuclear@0 88 t1 = t0;
nuclear@0 89
nuclear@0 90 float t = t0 < t1 ? t0 : t1;
nuclear@0 91 if(t < 1e-4) {
nuclear@0 92 return false;
nuclear@0 93 }
nuclear@0 94
nuclear@0 95 // fill the HitPoint structure
nuclear@0 96 if(hit) {
nuclear@0 97 hit->obj = this;
nuclear@0 98 hit->dist = t;
nuclear@0 99 hit->pos = ray.origin + ray.dir * t;
nuclear@0 100 hit->normal = (hit->pos - center) / radius;
nuclear@0 101 }
nuclear@0 102 return true;
nuclear@0 103 }
nuclear@0 104
nuclear@0 105
nuclear@0 106 AABox::AABox()
nuclear@0 107 {
nuclear@0 108 }
nuclear@0 109
nuclear@0 110 AABox::AABox(const Vec3 &vmin, const Vec3 &vmax)
nuclear@0 111 : min(vmin), max(vmax)
nuclear@0 112 {
nuclear@0 113 }
nuclear@0 114
nuclear@0 115 void AABox::set_union(const GeomObject *obj1, const GeomObject *obj2)
nuclear@0 116 {
nuclear@0 117 const AABox *box1 = dynamic_cast<const AABox*>(obj1);
nuclear@0 118 const AABox *box2 = dynamic_cast<const AABox*>(obj2);
nuclear@0 119
nuclear@0 120 if(!box1 || !box2) {
nuclear@0 121 fprintf(stderr, "AABox::set_union: arguments must be AABoxes too\n");
nuclear@0 122 return;
nuclear@0 123 }
nuclear@0 124
nuclear@0 125 min.x = std::min(box1->min.x, box2->min.x);
nuclear@0 126 min.y = std::min(box1->min.y, box2->min.y);
nuclear@0 127 min.z = std::min(box1->min.z, box2->min.z);
nuclear@0 128
nuclear@0 129 max.x = std::max(box1->max.x, box2->max.x);
nuclear@0 130 max.y = std::max(box1->max.y, box2->max.y);
nuclear@0 131 max.z = std::max(box1->max.z, box2->max.z);
nuclear@0 132 }
nuclear@0 133
nuclear@0 134 void AABox::set_intersection(const GeomObject *obj1, const GeomObject *obj2)
nuclear@0 135 {
nuclear@0 136 const AABox *box1 = dynamic_cast<const AABox*>(obj1);
nuclear@0 137 const AABox *box2 = dynamic_cast<const AABox*>(obj2);
nuclear@0 138
nuclear@0 139 if(!box1 || !box2) {
nuclear@0 140 fprintf(stderr, "AABox::set_intersection: arguments must be AABoxes too\n");
nuclear@0 141 return;
nuclear@0 142 }
nuclear@0 143
nuclear@0 144 for(int i=0; i<3; i++) {
nuclear@0 145 min[i] = std::max(box1->min[i], box2->min[i]);
nuclear@0 146 max[i] = std::min(box1->max[i], box2->max[i]);
nuclear@0 147
nuclear@0 148 if(max[i] < min[i]) {
nuclear@0 149 max[i] = min[i];
nuclear@0 150 }
nuclear@0 151 }
nuclear@0 152 }
nuclear@0 153
nuclear@0 154 bool AABox::intersect(const Ray &ray, HitPoint *hit) const
nuclear@0 155 {
nuclear@0 156 Vec3 param[2] = {min, max};
nuclear@0 157 Vec3 inv_dir(1.0 / ray.dir.x, 1.0 / ray.dir.y, 1.0 / ray.dir.z);
nuclear@0 158 int sign[3] = {inv_dir.x < 0, inv_dir.y < 0, inv_dir.z < 0};
nuclear@0 159
nuclear@0 160 float tmin = (param[sign[0]].x - ray.origin.x) * inv_dir.x;
nuclear@0 161 float tmax = (param[1 - sign[0]].x - ray.origin.x) * inv_dir.x;
nuclear@0 162 float tymin = (param[sign[1]].y - ray.origin.y) * inv_dir.y;
nuclear@0 163 float tymax = (param[1 - sign[1]].y - ray.origin.y) * inv_dir.y;
nuclear@0 164
nuclear@0 165 if(tmin > tymax || tymin > tmax) {
nuclear@0 166 return false;
nuclear@0 167 }
nuclear@0 168 if(tymin > tmin) {
nuclear@0 169 tmin = tymin;
nuclear@0 170 }
nuclear@0 171 if(tymax < tmax) {
nuclear@0 172 tmax = tymax;
nuclear@0 173 }
nuclear@0 174
nuclear@0 175 float tzmin = (param[sign[2]].z - ray.origin.z) * inv_dir.z;
nuclear@0 176 float tzmax = (param[1 - sign[2]].z - ray.origin.z) * inv_dir.z;
nuclear@0 177
nuclear@0 178 if(tmin > tzmax || tzmin > tmax) {
nuclear@0 179 return false;
nuclear@0 180 }
nuclear@0 181 if(tzmin > tmin) {
nuclear@0 182 tmin = tzmin;
nuclear@0 183 }
nuclear@0 184 if(tzmax < tmax) {
nuclear@0 185 tmax = tzmax;
nuclear@0 186 }
nuclear@0 187
nuclear@0 188 float t = tmin < 1e-4 ? tmax : tmin;
nuclear@0 189 if(t >= 1e-4) {
nuclear@0 190
nuclear@0 191 if(hit) {
nuclear@0 192 hit->obj = this;
nuclear@0 193 hit->dist = t;
nuclear@0 194 hit->pos = ray.origin + ray.dir * t;
nuclear@0 195
nuclear@0 196 float min_dist = FLT_MAX;
nuclear@0 197 Vec3 offs = min + (max - min) / 2.0;
nuclear@0 198 Vec3 local_hit = hit->pos - offs;
nuclear@0 199
nuclear@0 200 static const Vec3 axis[] = {
nuclear@0 201 Vec3(1, 0, 0), Vec3(0, 1, 0), Vec3(0, 0, 1)
nuclear@0 202 };
nuclear@0 203 //int tcidx[][2] = {{2, 1}, {0, 2}, {0, 1}};
nuclear@0 204
nuclear@0 205 for(int i=0; i<3; i++) {
nuclear@0 206 float dist = fabs((max[i] - offs[i]) - fabs(local_hit[i]));
nuclear@0 207 if(dist < min_dist) {
nuclear@0 208 min_dist = dist;
nuclear@0 209 hit->normal = axis[i] * (local_hit[i] < 0.0 ? 1.0 : -1.0);
nuclear@0 210 //hit->texcoord = Vec2(hit->pos[tcidx[i][0]], hit->pos[tcidx[i][1]]);
nuclear@0 211 }
nuclear@0 212 }
nuclear@0 213 }
nuclear@0 214 return true;
nuclear@0 215 }
nuclear@0 216 return false;
nuclear@0 217
nuclear@0 218 }
nuclear@0 219
nuclear@0 220 Plane::Plane()
nuclear@0 221 : normal(0.0, 1.0, 0.0)
nuclear@0 222 {
nuclear@0 223 }
nuclear@0 224
nuclear@0 225 Plane::Plane(const Vec3 &p, const Vec3 &norm)
nuclear@0 226 : pt(p)
nuclear@0 227 {
nuclear@0 228 normal = normalize(norm);
nuclear@0 229 }
nuclear@0 230
nuclear@0 231 Plane::Plane(const Vec3 &p1, const Vec3 &p2, const Vec3 &p3)
nuclear@0 232 : pt(p1)
nuclear@0 233 {
nuclear@0 234 normal = normalize(cross(p2 - p1, p3 - p1));
nuclear@0 235 }
nuclear@0 236
nuclear@0 237 Plane::Plane(const Vec3 &normal, float dist)
nuclear@0 238 {
nuclear@0 239 this->normal = normalize(normal);
nuclear@0 240 pt = this->normal * dist;
nuclear@0 241 }
nuclear@0 242
nuclear@0 243 void Plane::set_union(const GeomObject *obj1, const GeomObject *obj2)
nuclear@0 244 {
nuclear@0 245 fprintf(stderr, "Plane::set_union undefined\n");
nuclear@0 246 }
nuclear@0 247
nuclear@0 248 void Plane::set_intersection(const GeomObject *obj1, const GeomObject *obj2)
nuclear@0 249 {
nuclear@0 250 fprintf(stderr, "Plane::set_intersection undefined\n");
nuclear@0 251 }
nuclear@0 252
nuclear@0 253 bool Plane::intersect(const Ray &ray, HitPoint *hit) const
nuclear@0 254 {
nuclear@0 255 float ndotdir = dot(normal, ray.dir);
nuclear@0 256 if(fabs(ndotdir) < 1e-4) {
nuclear@0 257 return false;
nuclear@0 258 }
nuclear@0 259
nuclear@0 260 if(hit) {
nuclear@0 261 Vec3 ptdir = pt - ray.origin;
nuclear@0 262 float t = dot(normal, ptdir) / ndotdir;
nuclear@0 263
nuclear@0 264 hit->pos = ray.origin + ray.dir * t;
nuclear@0 265 hit->normal = normal;
nuclear@0 266 hit->obj = this;
nuclear@0 267 }
nuclear@0 268 return true;
nuclear@0 269 }
nuclear@0 270
nuclear@0 271 float sphere_distance(const Vec3 &cent, float rad, const Vec3 &pt)
nuclear@0 272 {
nuclear@0 273 return length(pt - cent) - rad;
nuclear@0 274 }
nuclear@0 275
nuclear@0 276 // TODO version which takes both radii into account
nuclear@0 277 float capsule_distance(const Vec3 &a, float ra, const Vec3 &b, float rb, const Vec3 &pt)
nuclear@0 278 {
nuclear@0 279 Vec3 ab_dir = b - a;
nuclear@0 280 float ab_len_sq = length_sq(ab_dir);
nuclear@0 281
nuclear@0 282 if(fabs(ab_len_sq) < 1e-5) {
nuclear@0 283 // if a == b, the capsule is a sphere with radius the maximum of the capsule radii
nuclear@0 284 return sphere_distance(a, std::max(ra, rb), pt);
nuclear@0 285 }
nuclear@0 286 float ab_len = sqrt(ab_len_sq);
nuclear@0 287
nuclear@0 288 Vec3 ap_dir = pt - a;
nuclear@0 289
nuclear@0 290 float t = dot(ap_dir, ab_dir / ab_len) / ab_len;
nuclear@0 291 if(t < 0.0) {
nuclear@0 292 return sphere_distance(a, ra, pt);
nuclear@0 293 }
nuclear@0 294 if(t >= 1.0) {
nuclear@0 295 return sphere_distance(b, rb, pt);
nuclear@0 296 }
nuclear@0 297
nuclear@0 298 Vec3 pproj = a + ab_dir * t;
nuclear@0 299 return length(pproj - pt) - ra;
nuclear@0 300 }
nuclear@0 301
nuclear@0 302 #if 0
nuclear@0 303 float capsule_distance(const Vec3 &a, float ra, const Vec3 &b, float rb, const Vec3 &pt)
nuclear@0 304 {
nuclear@0 305 Vec3 ab_dir = b - a;
nuclear@0 306
nuclear@0 307 if(fabs(length_sq(ab_dir)) < 1e-5) {
nuclear@0 308 // if a == b, the capsule is a sphere with radius the maximum of the capsule radii
nuclear@0 309 return sphere_distance(a, std::max(ra, rb), pt);
nuclear@0 310 }
nuclear@0 311 float ab_len = length(ab_dir);
nuclear@0 312
nuclear@0 313 Vec3 ap_dir = pt - a;
nuclear@0 314 Vec3 rotaxis = normalize(cross(ab_dir, ap_dir));
nuclear@0 315
nuclear@0 316 Mat4 rmat;
nuclear@0 317 rmat.set_rotation(rotaxis, M_PI / 2.0);
nuclear@0 318 Vec3 right = rmat * ab_dir / ab_len;
nuclear@0 319
nuclear@0 320 // XXX I think this check is redundant, always false, due to the cross product order
nuclear@0 321 //assert(dot(right, ab_dir) >= 0.0);
nuclear@0 322 if(dot(right, ab_dir) < 0.0) {
nuclear@0 323 right = -right;
nuclear@0 324 }
nuclear@0 325 Vec3 aa = a + right * ra;
nuclear@0 326 Vec3 bb = b + right * rb;
nuclear@0 327
nuclear@0 328 // project pt to the line segment bb-aa, see if the projection lies within the interval [0, 1)
nuclear@0 329 Vec3 aabb_dir = bb - aa;
nuclear@0 330 float aabb_len = length(aabb_dir);
nuclear@0 331 Vec3 aap_dir = pt - aa;
nuclear@0 332
nuclear@0 333 float t = dot(aap_dir, aabb_dir / aabb_len) / aabb_len;
nuclear@0 334 if(t < 0.0) {
nuclear@0 335 return sphere_distance(a, ra, pt);
nuclear@0 336 }
nuclear@0 337 if(t >= 1.0) {
nuclear@0 338 return sphere_distance(b, rb, pt);
nuclear@0 339 }
nuclear@0 340
nuclear@0 341 Vec3 ppt = aa + aabb_dir * t;
nuclear@0 342 Vec3 norm = ppt - pt;
nuclear@0 343 float dist = length(norm);
nuclear@0 344
nuclear@0 345 if(dot(norm, right) < 0.0) {
nuclear@0 346 // inside the cone
nuclear@0 347 dist = -dist;
nuclear@0 348 }
nuclear@0 349 return dist;
nuclear@0 350 }
nuclear@0 351 #endif