clray
view rt.cl @ 39:980bc07be868
Implemented OpenGL/OpenCL interop, and removed the texture copy
author | John Tsiombikas <nuclear@member.fsf.org> |
---|---|
date | Fri, 27 Aug 2010 18:30:09 +0100 |
parents | 7d77ded5f890 |
children | 1bcbb53b3505 |
line source
1 /* vim: set ft=opencl:ts=4:sw=4 */
3 struct RendInfo {
4 float4 ambient;
5 int xsz, ysz;
6 int num_faces, num_lights;
7 int max_iter;
8 int kd_depth;
9 };
11 struct Vertex {
12 float4 pos;
13 float4 normal;
14 float4 tex;
15 float4 padding;
16 };
18 struct Face {
19 struct Vertex v[3];
20 float4 normal;
21 int matid;
22 int padding[3];
23 };
25 struct Material {
26 float4 kd, ks;
27 float kr, kt;
28 float spow;
29 float padding;
30 };
32 struct Light {
33 float4 pos, color;
34 };
36 struct Ray {
37 float4 origin, dir;
38 };
40 struct SurfPoint {
41 float t;
42 float4 pos, norm, dbg;
43 global const struct Face *obj;
44 struct Material mat;
45 };
47 struct Scene {
48 float4 ambient;
49 global const struct Face *faces;
50 int num_faces;
51 global const struct Light *lights;
52 int num_lights;
53 global const struct Material *matlib;
54 global const struct KDNode *kdtree;
55 };
57 struct AABBox {
58 float4 min, max;
59 };
61 struct KDNode {
62 struct AABBox aabb;
63 int face_idx[32];
64 int num_faces;
65 int left, right;
66 int padding;
67 };
69 #define MIN_ENERGY 0.001
70 #define EPSILON 1e-5
72 float4 shade(struct Ray ray, struct Scene *scn, const struct SurfPoint *sp);
73 bool find_intersection(struct Ray ray, const struct Scene *scn, struct SurfPoint *sp);
74 bool intersect(struct Ray ray, global const struct Face *face, struct SurfPoint *sp);
75 bool intersect_aabb(struct Ray ray, struct AABBox aabb);
77 float4 reflect(float4 v, float4 n);
78 float4 transform(float4 v, global const float *xform);
79 void transform_ray(struct Ray *ray, global const float *xform, global const float *invtrans);
80 float4 calc_bary(float4 pt, global const struct Face *face, float4 norm);
81 float mean(float4 v);
84 kernel void render(write_only image2d_t fb,
85 global const struct RendInfo *rinf,
86 global const struct Face *faces,
87 global const struct Material *matlib,
88 global const struct Light *lights,
89 global const struct Ray *primrays,
90 global const float *xform,
91 global const float *invtrans,
92 global const struct KDNode *kdtree)
93 {
94 int idx = get_global_id(0);
96 struct Scene scn;
97 scn.ambient = rinf->ambient;
98 scn.faces = faces;
99 scn.num_faces = rinf->num_faces;
100 scn.lights = lights;
101 scn.num_lights = rinf->num_lights;
102 scn.matlib = matlib;
103 scn.kdtree = kdtree;
105 struct Ray ray = primrays[idx];
106 transform_ray(&ray, xform, invtrans);
108 float4 pixel = (float4)(0, 0, 0, 0);
109 float4 energy = (float4)(1.0, 1.0, 1.0, 0.0);
110 int iter = 0;
112 while(iter++ < rinf->max_iter && mean(energy) > MIN_ENERGY) {
113 struct SurfPoint sp;
114 if(find_intersection(ray, &scn, &sp)) {
115 pixel += shade(ray, &scn, &sp) * energy;
117 float4 refl_col = sp.mat.ks * sp.mat.kr;
119 ray.origin = sp.pos;
120 ray.dir = reflect(-ray.dir, sp.norm);
122 energy *= refl_col;
123 } else {
124 break;
125 }
126 }
128 int img_x = get_image_width(fb);
130 int2 coord;
131 coord.x = idx % img_x;
132 coord.y = idx / img_x;
134 write_imagef(fb, coord, pixel);
135 //fb[idx] = pixel;
136 }
138 float4 shade(struct Ray ray, struct Scene *scn, const struct SurfPoint *sp)
139 {
140 float4 norm = sp->norm;
141 bool entering = true;
143 if(dot(ray.dir, norm) >= 0.0) {
144 norm = -norm;
145 entering = false;
146 }
148 float4 dcol = scn->ambient * sp->mat.kd;
149 float4 scol = (float4)(0, 0, 0, 0);
151 for(int i=0; i<scn->num_lights; i++) {
152 float4 ldir = scn->lights[i].pos - sp->pos;
154 struct Ray shadowray;
155 shadowray.origin = sp->pos;
156 shadowray.dir = ldir;
158 if(!find_intersection(shadowray, scn, 0)) {
159 ldir = normalize(ldir);
160 float4 vdir = -normalize(ray.dir);
161 float4 vref = reflect(vdir, norm);
163 float diff = fmax(dot(ldir, norm), 0.0f);
164 dcol += sp->mat.kd * scn->lights[i].color * diff;
166 float spec = powr(fmax(dot(ldir, vref), 0.0f), sp->mat.spow);
167 scol += sp->mat.ks * scn->lights[i].color * spec;
168 }
169 }
171 return dcol + scol;
172 }
174 #define STACK_SIZE 64
175 bool find_intersection(struct Ray ray, const struct Scene *scn, struct SurfPoint *spres)
176 {
177 struct SurfPoint sp0;
178 sp0.t = 1.0;
179 sp0.obj = 0;
181 int idxstack[STACK_SIZE];
182 int top = 0; // points after the topmost element of the stack
183 idxstack[top++] = 0; // root at tree[0]
185 while(top > 0) {
186 int idx = idxstack[--top]; // remove this index from the stack and process it
188 global const struct KDNode *node = scn->kdtree + idx;
190 /*if(get_global_id(0) == 0) {
191 for(int i=0; i<top+1; i++) {
192 printf(" ");
193 }
194 printf("(%d) idx: %d (%p) num_faces: %d\n", top+1, idx, node, node->num_faces);
195 }*/
197 if(intersect_aabb(ray, node->aabb)) {
198 if(node->left == -1) {
199 // leaf node... check each face in turn and update the nearest intersection as needed
200 for(int i=0; i<node->num_faces; i++) {
201 struct SurfPoint spt;
202 int fidx = node->face_idx[i];
204 if(intersect(ray, scn->faces + fidx, &spt) && spt.t < sp0.t) {
205 sp0 = spt;
206 }
207 }
208 } else {
209 // internal node... recurse to the children
210 /*if(get_global_id(0) == 0) {
211 printf("pushing %d's children %d and %d\n", idx, node->left, node->right);
212 }*/
213 idxstack[top++] = node->left;
214 idxstack[top++] = node->right;
215 }
216 }
217 }
219 if(!sp0.obj) {
220 return false;
221 }
223 if(spres) {
224 *spres = sp0;
225 spres->mat = scn->matlib[sp0.obj->matid];
226 }
227 return true;
228 }
230 /*bool find_intersection(struct Ray ray, const struct Scene *scn, struct SurfPoint *spres)
231 {
232 struct SurfPoint sp, sp0;
233 sp0.t = 1.0;
234 sp0.obj = 0;
236 for(int i=0; i<scn->num_faces; i++) {
237 if(intersect(ray, scn->faces + i, &sp) && sp.t < sp0.t) {
238 sp0 = sp;
239 }
240 }
242 if(!sp0.obj) {
243 return false;
244 }
246 if(spres) {
247 *spres = sp0;
248 spres->mat = scn->matlib[sp0.obj->matid];
249 }
250 return true;
251 }*/
253 bool intersect(struct Ray ray, global const struct Face *face, struct SurfPoint *sp)
254 {
255 float4 origin = ray.origin;
256 float4 dir = ray.dir;
257 float4 norm = face->normal;
259 float ndotdir = dot(dir, norm);
261 if(fabs(ndotdir) <= EPSILON) {
262 return false;
263 }
265 float4 pt = face->v[0].pos;
266 float4 vec = pt - origin;
268 float ndotvec = dot(norm, vec);
269 float t = ndotvec / ndotdir;
271 if(t < EPSILON || t > 1.0) {
272 return false;
273 }
274 pt = origin + dir * t;
277 float4 bc = calc_bary(pt, face, norm);
278 float bc_sum = bc.x + bc.y + bc.z;
280 if(bc_sum < 1.0 - EPSILON || bc_sum > 1.0 + EPSILON) {
281 return false;
282 bc *= 1.2;
283 }
285 sp->t = t;
286 sp->pos = pt;
287 sp->norm = normalize(face->v[0].normal * bc.x + face->v[1].normal * bc.y + face->v[2].normal * bc.z);
288 sp->obj = face;
289 sp->dbg = bc;
290 return true;
291 }
293 bool intersect_aabb(struct Ray ray, struct AABBox aabb)
294 {
295 if(ray.origin.x >= aabb.min.x && ray.origin.y >= aabb.min.y && ray.origin.z >= aabb.min.z &&
296 ray.origin.x < aabb.max.x && ray.origin.y < aabb.max.y && ray.origin.z < aabb.max.z) {
297 return true;
298 }
300 float4 bbox[2] = {
301 aabb.min.x, aabb.min.y, aabb.min.z, 0,
302 aabb.max.x, aabb.max.y, aabb.max.z, 0
303 };
305 int xsign = (int)(ray.dir.x < 0.0);
306 float invdirx = 1.0 / ray.dir.x;
307 float tmin = (bbox[xsign].x - ray.origin.x) * invdirx;
308 float tmax = (bbox[1 - xsign].x - ray.origin.x) * invdirx;
310 int ysign = (int)(ray.dir.y < 0.0);
311 float invdiry = 1.0 / ray.dir.y;
312 float tymin = (bbox[ysign].y - ray.origin.y) * invdiry;
313 float tymax = (bbox[1 - ysign].y - ray.origin.y) * invdiry;
315 if(tmin > tymax || tymin > tmax) {
316 return false;
317 }
319 if(tymin > tmin) tmin = tymin;
320 if(tymax < tmax) tmax = tymax;
322 int zsign = (int)(ray.dir.z < 0.0);
323 float invdirz = 1.0 / ray.dir.z;
324 float tzmin = (bbox[zsign].z - ray.origin.z) * invdirz;
325 float tzmax = (bbox[1 - zsign].z - ray.origin.z) * invdirz;
327 if(tmin > tzmax || tzmin > tmax) {
328 return false;
329 }
331 return tmin < 1.0 && tmax > 0.0;
332 }
334 float4 reflect(float4 v, float4 n)
335 {
336 return 2.0f * dot(v, n) * n - v;
337 }
339 float4 transform(float4 v, global const float *xform)
340 {
341 float4 res;
342 res.x = v.x * xform[0] + v.y * xform[4] + v.z * xform[8] + xform[12];
343 res.y = v.x * xform[1] + v.y * xform[5] + v.z * xform[9] + xform[13];
344 res.z = v.x * xform[2] + v.y * xform[6] + v.z * xform[10] + xform[14];
345 res.w = 0.0;
346 return res;
347 }
349 void transform_ray(struct Ray *ray, global const float *xform, global const float *invtrans)
350 {
351 ray->origin = transform(ray->origin, xform);
352 ray->dir = transform(ray->dir, invtrans);
353 }
355 float4 calc_bary(float4 pt, global const struct Face *face, float4 norm)
356 {
357 float4 bc = (float4)(0, 0, 0, 0);
359 // calculate area of the whole triangle
360 float4 v1 = face->v[1].pos - face->v[0].pos;
361 float4 v2 = face->v[2].pos - face->v[0].pos;
362 float4 xv1v2 = cross(v1, v2);
364 float area = fabs(dot(xv1v2, norm)) * 0.5;
365 if(area < EPSILON) {
366 return bc;
367 }
369 float4 pv0 = face->v[0].pos - pt;
370 float4 pv1 = face->v[1].pos - pt;
371 float4 pv2 = face->v[2].pos - pt;
373 // calculate the area of each sub-triangle
374 float4 x12 = cross(pv1, pv2);
375 float4 x20 = cross(pv2, pv0);
376 float4 x01 = cross(pv0, pv1);
378 float a0 = fabs(dot(x12, norm)) * 0.5;
379 float a1 = fabs(dot(x20, norm)) * 0.5;
380 float a2 = fabs(dot(x01, norm)) * 0.5;
382 bc.x = a0 / area;
383 bc.y = a1 / area;
384 bc.z = a2 / area;
385 return bc;
386 }
388 float mean(float4 v)
389 {
390 return native_divide(v.x + v.y + v.z, 3.0);
391 }