clray

view rt.cl @ 40:1bcbb53b3505

segfault on exit?
author John Tsiombikas <nuclear@member.fsf.org>
date Fri, 27 Aug 2010 19:00:14 +0100
parents 980bc07be868
children f9eec11e5acc
line source
1 /* vim: set ft=opencl:ts=4:sw=4 */
3 struct RendInfo {
4 float4 ambient;
5 int xsz, ysz;
6 int num_faces, num_lights;
7 int max_iter;
8 int kd_depth;
9 };
11 struct Vertex {
12 float4 pos;
13 float4 normal;
14 float4 tex;
15 float4 padding;
16 };
18 struct Face {
19 struct Vertex v[3];
20 float4 normal;
21 int matid;
22 int padding[3];
23 };
25 struct Material {
26 float4 kd, ks;
27 float kr, kt;
28 float spow;
29 float padding;
30 };
32 struct Light {
33 float4 pos, color;
34 };
36 struct Ray {
37 float4 origin, dir;
38 };
40 struct SurfPoint {
41 float t;
42 float4 pos, norm, dbg;
43 global const struct Face *obj;
44 struct Material mat;
45 };
47 struct Scene {
48 float4 ambient;
49 global const struct Face *faces;
50 int num_faces;
51 global const struct Light *lights;
52 int num_lights;
53 global const struct Material *matlib;
54 global const struct KDNode *kdtree;
55 };
57 struct AABBox {
58 float4 min, max;
59 };
61 struct KDNode {
62 struct AABBox aabb;
63 int face_idx[32];
64 int num_faces;
65 int left, right;
66 int padding;
67 };
69 #define MIN_ENERGY 0.001
70 #define EPSILON 1e-5
72 float4 shade(struct Ray ray, struct Scene *scn, const struct SurfPoint *sp);
73 bool find_intersection(struct Ray ray, const struct Scene *scn, struct SurfPoint *sp);
74 bool intersect(struct Ray ray, global const struct Face *face, struct SurfPoint *sp);
75 bool intersect_aabb(struct Ray ray, struct AABBox aabb);
77 float4 reflect(float4 v, float4 n);
78 float4 transform(float4 v, global const float *xform);
79 void transform_ray(struct Ray *ray, global const float *xform, global const float *invtrans);
80 float4 calc_bary(float4 pt, global const struct Face *face, float4 norm);
81 float mean(float4 v);
84 kernel void render(write_only image2d_t fb,
85 global const struct RendInfo *rinf,
86 global const struct Face *faces,
87 global const struct Material *matlib,
88 global const struct Light *lights,
89 global const struct Ray *primrays,
90 global const float *xform,
91 global const float *invtrans,
92 global const struct KDNode *kdtree)
93 {
94 int idx = get_global_id(0);
96 struct Scene scn;
97 scn.ambient = rinf->ambient;
98 scn.faces = faces;
99 scn.num_faces = rinf->num_faces;
100 scn.lights = lights;
101 scn.num_lights = rinf->num_lights;
102 scn.matlib = matlib;
103 scn.kdtree = kdtree;
105 struct Ray ray = primrays[idx];
106 transform_ray(&ray, xform, invtrans);
108 float4 pixel = (float4)(0, 0, 0, 0);
109 float4 energy = (float4)(1.0, 1.0, 1.0, 0.0);
110 int iter = 0;
112 while(iter++ < rinf->max_iter && mean(energy) > MIN_ENERGY) {
113 struct SurfPoint sp;
114 if(find_intersection(ray, &scn, &sp)) {
115 pixel += shade(ray, &scn, &sp) * energy;
117 float4 refl_col = sp.mat.ks * sp.mat.kr;
119 ray.origin = sp.pos;
120 ray.dir = reflect(-ray.dir, sp.norm);
122 energy *= refl_col;
123 } else {
124 break;
125 }
126 }
128 int img_x = get_image_width(fb);
130 int2 coord;
131 coord.x = idx % img_x;
132 coord.y = idx / img_x;
134 write_imagef(fb, coord, pixel);
135 }
137 float4 shade(struct Ray ray, struct Scene *scn, const struct SurfPoint *sp)
138 {
139 float4 norm = sp->norm;
140 bool entering = true;
142 if(dot(ray.dir, norm) >= 0.0) {
143 norm = -norm;
144 entering = false;
145 }
147 float4 dcol = scn->ambient * sp->mat.kd;
148 float4 scol = (float4)(0, 0, 0, 0);
150 for(int i=0; i<scn->num_lights; i++) {
151 float4 ldir = scn->lights[i].pos - sp->pos;
153 struct Ray shadowray;
154 shadowray.origin = sp->pos;
155 shadowray.dir = ldir;
157 if(!find_intersection(shadowray, scn, 0)) {
158 ldir = normalize(ldir);
159 float4 vdir = -normalize(ray.dir);
160 float4 vref = reflect(vdir, norm);
162 float diff = fmax(dot(ldir, norm), 0.0f);
163 dcol += sp->mat.kd * scn->lights[i].color * diff;
165 float spec = powr(fmax(dot(ldir, vref), 0.0f), sp->mat.spow);
166 scol += sp->mat.ks * scn->lights[i].color * spec;
167 }
168 }
170 return dcol + scol;
171 }
173 #define STACK_SIZE 64
174 bool find_intersection(struct Ray ray, const struct Scene *scn, struct SurfPoint *spres)
175 {
176 struct SurfPoint sp0;
177 sp0.t = 1.0;
178 sp0.obj = 0;
180 int idxstack[STACK_SIZE];
181 int top = 0; // points after the topmost element of the stack
182 idxstack[top++] = 0; // root at tree[0]
184 while(top > 0) {
185 int idx = idxstack[--top]; // remove this index from the stack and process it
187 global const struct KDNode *node = scn->kdtree + idx;
189 if(intersect_aabb(ray, node->aabb)) {
190 if(node->left == -1) {
191 // leaf node... check each face in turn and update the nearest intersection as needed
192 for(int i=0; i<node->num_faces; i++) {
193 struct SurfPoint spt;
194 int fidx = node->face_idx[i];
196 if(intersect(ray, scn->faces + fidx, &spt) && spt.t < sp0.t) {
197 sp0 = spt;
198 }
199 }
200 } else {
201 // internal node... recurse to the children
202 idxstack[top++] = node->left;
203 idxstack[top++] = node->right;
204 }
205 }
206 }
208 if(!sp0.obj) {
209 return false;
210 }
212 if(spres) {
213 *spres = sp0;
214 spres->mat = scn->matlib[sp0.obj->matid];
215 }
216 return true;
217 }
219 bool intersect(struct Ray ray, global const struct Face *face, struct SurfPoint *sp)
220 {
221 float4 origin = ray.origin;
222 float4 dir = ray.dir;
223 float4 norm = face->normal;
225 float ndotdir = dot(dir, norm);
227 if(fabs(ndotdir) <= EPSILON) {
228 return false;
229 }
231 float4 pt = face->v[0].pos;
232 float4 vec = pt - origin;
234 float ndotvec = dot(norm, vec);
235 float t = ndotvec / ndotdir;
237 if(t < EPSILON || t > 1.0) {
238 return false;
239 }
240 pt = origin + dir * t;
243 float4 bc = calc_bary(pt, face, norm);
244 float bc_sum = bc.x + bc.y + bc.z;
246 if(bc_sum < 1.0 - EPSILON || bc_sum > 1.0 + EPSILON) {
247 return false;
248 bc *= 1.2;
249 }
251 sp->t = t;
252 sp->pos = pt;
253 sp->norm = normalize(face->v[0].normal * bc.x + face->v[1].normal * bc.y + face->v[2].normal * bc.z);
254 sp->obj = face;
255 sp->dbg = bc;
256 return true;
257 }
259 bool intersect_aabb(struct Ray ray, struct AABBox aabb)
260 {
261 if(ray.origin.x >= aabb.min.x && ray.origin.y >= aabb.min.y && ray.origin.z >= aabb.min.z &&
262 ray.origin.x < aabb.max.x && ray.origin.y < aabb.max.y && ray.origin.z < aabb.max.z) {
263 return true;
264 }
266 float4 bbox[2] = {
267 aabb.min.x, aabb.min.y, aabb.min.z, 0,
268 aabb.max.x, aabb.max.y, aabb.max.z, 0
269 };
271 int xsign = (int)(ray.dir.x < 0.0);
272 float invdirx = 1.0 / ray.dir.x;
273 float tmin = (bbox[xsign].x - ray.origin.x) * invdirx;
274 float tmax = (bbox[1 - xsign].x - ray.origin.x) * invdirx;
276 int ysign = (int)(ray.dir.y < 0.0);
277 float invdiry = 1.0 / ray.dir.y;
278 float tymin = (bbox[ysign].y - ray.origin.y) * invdiry;
279 float tymax = (bbox[1 - ysign].y - ray.origin.y) * invdiry;
281 if(tmin > tymax || tymin > tmax) {
282 return false;
283 }
285 if(tymin > tmin) tmin = tymin;
286 if(tymax < tmax) tmax = tymax;
288 int zsign = (int)(ray.dir.z < 0.0);
289 float invdirz = 1.0 / ray.dir.z;
290 float tzmin = (bbox[zsign].z - ray.origin.z) * invdirz;
291 float tzmax = (bbox[1 - zsign].z - ray.origin.z) * invdirz;
293 if(tmin > tzmax || tzmin > tmax) {
294 return false;
295 }
297 return tmin < 1.0 && tmax > 0.0;
298 }
300 float4 reflect(float4 v, float4 n)
301 {
302 return 2.0f * dot(v, n) * n - v;
303 }
305 float4 transform(float4 v, global const float *xform)
306 {
307 float4 res;
308 res.x = v.x * xform[0] + v.y * xform[4] + v.z * xform[8] + xform[12];
309 res.y = v.x * xform[1] + v.y * xform[5] + v.z * xform[9] + xform[13];
310 res.z = v.x * xform[2] + v.y * xform[6] + v.z * xform[10] + xform[14];
311 res.w = 0.0;
312 return res;
313 }
315 void transform_ray(struct Ray *ray, global const float *xform, global const float *invtrans)
316 {
317 ray->origin = transform(ray->origin, xform);
318 ray->dir = transform(ray->dir, invtrans);
319 }
321 float4 calc_bary(float4 pt, global const struct Face *face, float4 norm)
322 {
323 float4 bc = (float4)(0, 0, 0, 0);
325 // calculate area of the whole triangle
326 float4 v1 = face->v[1].pos - face->v[0].pos;
327 float4 v2 = face->v[2].pos - face->v[0].pos;
328 float4 xv1v2 = cross(v1, v2);
330 float area = fabs(dot(xv1v2, norm)) * 0.5;
331 if(area < EPSILON) {
332 return bc;
333 }
335 float4 pv0 = face->v[0].pos - pt;
336 float4 pv1 = face->v[1].pos - pt;
337 float4 pv2 = face->v[2].pos - pt;
339 // calculate the area of each sub-triangle
340 float4 x12 = cross(pv1, pv2);
341 float4 x20 = cross(pv2, pv0);
342 float4 x01 = cross(pv0, pv1);
344 float a0 = fabs(dot(x12, norm)) * 0.5;
345 float a1 = fabs(dot(x20, norm)) * 0.5;
346 float a2 = fabs(dot(x01, norm)) * 0.5;
348 bc.x = a0 / area;
349 bc.y = a1 / area;
350 bc.z = a2 / area;
351 return bc;
352 }
354 float mean(float4 v)
355 {
356 return native_divide(v.x + v.y + v.z, 3.0);
357 }