rev |
line source |
nuclear@12
|
1 /* vim: set ft=opencl:ts=4:sw=4 */
|
nuclear@45
|
2 #include "common.h"
|
nuclear@12
|
3
|
nuclear@2
|
4 struct RendInfo {
|
nuclear@22
|
5 float4 ambient;
|
nuclear@2
|
6 int xsz, ysz;
|
nuclear@9
|
7 int num_faces, num_lights;
|
nuclear@2
|
8 int max_iter;
|
nuclear@28
|
9 int kd_depth;
|
nuclear@2
|
10 };
|
nuclear@2
|
11
|
nuclear@9
|
12 struct Vertex {
|
nuclear@2
|
13 float4 pos;
|
nuclear@9
|
14 float4 normal;
|
nuclear@12
|
15 float4 tex;
|
nuclear@12
|
16 float4 padding;
|
nuclear@9
|
17 };
|
nuclear@9
|
18
|
nuclear@9
|
19 struct Face {
|
nuclear@9
|
20 struct Vertex v[3];
|
nuclear@9
|
21 float4 normal;
|
nuclear@9
|
22 int matid;
|
nuclear@12
|
23 int padding[3];
|
nuclear@9
|
24 };
|
nuclear@9
|
25
|
nuclear@9
|
26 struct Material {
|
nuclear@5
|
27 float4 kd, ks;
|
nuclear@9
|
28 float kr, kt;
|
nuclear@9
|
29 float spow;
|
nuclear@12
|
30 float padding;
|
nuclear@2
|
31 };
|
nuclear@2
|
32
|
nuclear@3
|
33 struct Light {
|
nuclear@3
|
34 float4 pos, color;
|
nuclear@3
|
35 };
|
nuclear@3
|
36
|
nuclear@2
|
37 struct Ray {
|
nuclear@2
|
38 float4 origin, dir;
|
nuclear@2
|
39 };
|
nuclear@2
|
40
|
nuclear@2
|
41 struct SurfPoint {
|
nuclear@2
|
42 float t;
|
nuclear@12
|
43 float4 pos, norm, dbg;
|
nuclear@9
|
44 global const struct Face *obj;
|
nuclear@19
|
45 struct Material mat;
|
nuclear@2
|
46 };
|
nuclear@2
|
47
|
nuclear@16
|
48 struct Scene {
|
nuclear@16
|
49 float4 ambient;
|
nuclear@16
|
50 global const struct Face *faces;
|
nuclear@16
|
51 int num_faces;
|
nuclear@16
|
52 global const struct Light *lights;
|
nuclear@16
|
53 int num_lights;
|
nuclear@16
|
54 global const struct Material *matlib;
|
nuclear@43
|
55 //global const struct KDNode *kdtree;
|
nuclear@28
|
56 };
|
nuclear@28
|
57
|
nuclear@28
|
58 struct AABBox {
|
nuclear@28
|
59 float4 min, max;
|
nuclear@28
|
60 };
|
nuclear@28
|
61
|
nuclear@28
|
62 struct KDNode {
|
nuclear@29
|
63 struct AABBox aabb;
|
nuclear@43
|
64 int face_idx[MAX_NODE_FACES];
|
nuclear@28
|
65 int num_faces;
|
nuclear@35
|
66 int left, right;
|
nuclear@35
|
67 int padding;
|
nuclear@16
|
68 };
|
nuclear@2
|
69
|
nuclear@16
|
70 #define MIN_ENERGY 0.001
|
nuclear@21
|
71 #define EPSILON 1e-5
|
nuclear@16
|
72
|
nuclear@43
|
73 float4 shade(struct Ray ray, struct Scene *scn, const struct SurfPoint *sp, read_only image2d_t kdimg);
|
nuclear@43
|
74 bool find_intersection(struct Ray ray, const struct Scene *scn, struct SurfPoint *sp, read_only image2d_t kdimg);
|
nuclear@9
|
75 bool intersect(struct Ray ray, global const struct Face *face, struct SurfPoint *sp);
|
nuclear@28
|
76 bool intersect_aabb(struct Ray ray, struct AABBox aabb);
|
nuclear@16
|
77
|
nuclear@8
|
78 float4 reflect(float4 v, float4 n);
|
nuclear@8
|
79 float4 transform(float4 v, global const float *xform);
|
nuclear@16
|
80 void transform_ray(struct Ray *ray, global const float *xform, global const float *invtrans);
|
nuclear@12
|
81 float4 calc_bary(float4 pt, global const struct Face *face, float4 norm);
|
nuclear@19
|
82 float mean(float4 v);
|
nuclear@4
|
83
|
nuclear@43
|
84 void read_kdnode(int idx, struct KDNode *node, read_only image2d_t kdimg);
|
nuclear@43
|
85
|
nuclear@39
|
86
|
nuclear@39
|
87 kernel void render(write_only image2d_t fb,
|
nuclear@4
|
88 global const struct RendInfo *rinf,
|
nuclear@9
|
89 global const struct Face *faces,
|
nuclear@9
|
90 global const struct Material *matlib,
|
nuclear@4
|
91 global const struct Light *lights,
|
nuclear@7
|
92 global const struct Ray *primrays,
|
nuclear@12
|
93 global const float *xform,
|
nuclear@28
|
94 global const float *invtrans,
|
nuclear@43
|
95 //global const struct KDNode *kdtree
|
nuclear@43
|
96 read_only image2d_t kdtree_img)
|
nuclear@2
|
97 {
|
nuclear@2
|
98 int idx = get_global_id(0);
|
nuclear@2
|
99
|
nuclear@16
|
100 struct Scene scn;
|
nuclear@16
|
101 scn.ambient = rinf->ambient;
|
nuclear@16
|
102 scn.faces = faces;
|
nuclear@16
|
103 scn.num_faces = rinf->num_faces;
|
nuclear@16
|
104 scn.lights = lights;
|
nuclear@16
|
105 scn.num_lights = rinf->num_lights;
|
nuclear@16
|
106 scn.matlib = matlib;
|
nuclear@43
|
107 //scn.kdtree_img = kdtree_img;
|
nuclear@8
|
108
|
nuclear@16
|
109 struct Ray ray = primrays[idx];
|
nuclear@16
|
110 transform_ray(&ray, xform, invtrans);
|
nuclear@4
|
111
|
nuclear@19
|
112 float4 pixel = (float4)(0, 0, 0, 0);
|
nuclear@22
|
113 float4 energy = (float4)(1.0, 1.0, 1.0, 0.0);
|
nuclear@19
|
114 int iter = 0;
|
nuclear@19
|
115
|
nuclear@19
|
116 while(iter++ < rinf->max_iter && mean(energy) > MIN_ENERGY) {
|
nuclear@19
|
117 struct SurfPoint sp;
|
nuclear@43
|
118 if(find_intersection(ray, &scn, &sp, kdtree_img)) {
|
nuclear@43
|
119 pixel += shade(ray, &scn, &sp, kdtree_img) * energy;
|
nuclear@19
|
120
|
nuclear@19
|
121 float4 refl_col = sp.mat.ks * sp.mat.kr;
|
nuclear@19
|
122
|
nuclear@19
|
123 ray.origin = sp.pos;
|
nuclear@19
|
124 ray.dir = reflect(-ray.dir, sp.norm);
|
nuclear@19
|
125
|
nuclear@35
|
126 energy *= refl_col;
|
nuclear@19
|
127 } else {
|
nuclear@43
|
128 energy = (float4)(0.0, 0.0, 0.0, 0.0);
|
nuclear@19
|
129 }
|
nuclear@17
|
130 }
|
nuclear@19
|
131
|
nuclear@39
|
132 int2 coord;
|
nuclear@43
|
133 coord.x = idx % rinf->xsz;
|
nuclear@43
|
134 coord.y = idx / rinf->xsz;
|
nuclear@39
|
135
|
nuclear@39
|
136 write_imagef(fb, coord, pixel);
|
nuclear@4
|
137 }
|
nuclear@4
|
138
|
nuclear@43
|
139 float4 shade(struct Ray ray, struct Scene *scn, const struct SurfPoint *sp, read_only image2d_t kdimg)
|
nuclear@16
|
140 {
|
nuclear@16
|
141 float4 norm = sp->norm;
|
nuclear@43
|
142 //bool entering = true;
|
nuclear@12
|
143
|
nuclear@12
|
144 if(dot(ray.dir, norm) >= 0.0) {
|
nuclear@12
|
145 norm = -norm;
|
nuclear@43
|
146 //entering = false;
|
nuclear@12
|
147 }
|
nuclear@12
|
148
|
nuclear@19
|
149 float4 dcol = scn->ambient * sp->mat.kd;
|
nuclear@8
|
150 float4 scol = (float4)(0, 0, 0, 0);
|
nuclear@5
|
151
|
nuclear@16
|
152 for(int i=0; i<scn->num_lights; i++) {
|
nuclear@16
|
153 float4 ldir = scn->lights[i].pos - sp->pos;
|
nuclear@5
|
154
|
nuclear@16
|
155 struct Ray shadowray;
|
nuclear@16
|
156 shadowray.origin = sp->pos;
|
nuclear@16
|
157 shadowray.dir = ldir;
|
nuclear@5
|
158
|
nuclear@43
|
159 if(!find_intersection(shadowray, scn, 0, kdimg)) {
|
nuclear@16
|
160 ldir = normalize(ldir);
|
nuclear@43
|
161 float4 vdir = -ray.dir;
|
nuclear@43
|
162 vdir.x = native_divide(vdir.x, RAY_MAG);
|
nuclear@43
|
163 vdir.y = native_divide(vdir.y, RAY_MAG);
|
nuclear@43
|
164 vdir.z = native_divide(vdir.z, RAY_MAG);
|
nuclear@16
|
165 float4 vref = reflect(vdir, norm);
|
nuclear@16
|
166
|
nuclear@16
|
167 float diff = fmax(dot(ldir, norm), 0.0f);
|
nuclear@43
|
168 dcol += sp->mat.kd /* scn->lights[i].color*/ * diff;
|
nuclear@16
|
169
|
nuclear@43
|
170 float spec = native_powr(fmax(dot(ldir, vref), 0.0f), sp->mat.spow);
|
nuclear@43
|
171 scol += sp->mat.ks /* scn->lights[i].color*/ * spec;
|
nuclear@16
|
172 }
|
nuclear@16
|
173 }
|
nuclear@16
|
174
|
nuclear@8
|
175 return dcol + scol;
|
nuclear@2
|
176 }
|
nuclear@2
|
177
|
nuclear@45
|
178 #define STACK_SIZE MAX_TREE_DEPTH
|
nuclear@43
|
179 bool find_intersection(struct Ray ray, const struct Scene *scn, struct SurfPoint *spres, read_only image2d_t kdimg)
|
nuclear@28
|
180 {
|
nuclear@29
|
181 struct SurfPoint sp0;
|
nuclear@29
|
182 sp0.t = 1.0;
|
nuclear@29
|
183 sp0.obj = 0;
|
nuclear@29
|
184
|
nuclear@29
|
185 int idxstack[STACK_SIZE];
|
nuclear@31
|
186 int top = 0; // points after the topmost element of the stack
|
nuclear@35
|
187 idxstack[top++] = 0; // root at tree[0]
|
nuclear@29
|
188
|
nuclear@31
|
189 while(top > 0) {
|
nuclear@31
|
190 int idx = idxstack[--top]; // remove this index from the stack and process it
|
nuclear@30
|
191
|
nuclear@43
|
192 struct KDNode node;
|
nuclear@43
|
193 read_kdnode(idx, &node, kdimg);
|
nuclear@29
|
194
|
nuclear@43
|
195 if(intersect_aabb(ray, node.aabb)) {
|
nuclear@43
|
196 if(node.left == -1) {
|
nuclear@31
|
197 // leaf node... check each face in turn and update the nearest intersection as needed
|
nuclear@43
|
198 for(int i=0; i<node.num_faces; i++) {
|
nuclear@31
|
199 struct SurfPoint spt;
|
nuclear@43
|
200 int fidx = node.face_idx[i];
|
nuclear@29
|
201
|
nuclear@31
|
202 if(intersect(ray, scn->faces + fidx, &spt) && spt.t < sp0.t) {
|
nuclear@31
|
203 sp0 = spt;
|
nuclear@29
|
204 }
|
nuclear@29
|
205 }
|
nuclear@31
|
206 } else {
|
nuclear@31
|
207 // internal node... recurse to the children
|
nuclear@43
|
208 idxstack[top++] = node.left;
|
nuclear@43
|
209 idxstack[top++] = node.right;
|
nuclear@29
|
210 }
|
nuclear@29
|
211 }
|
nuclear@29
|
212 }
|
nuclear@29
|
213
|
nuclear@29
|
214 if(!sp0.obj) {
|
nuclear@29
|
215 return false;
|
nuclear@29
|
216 }
|
nuclear@29
|
217
|
nuclear@29
|
218 if(spres) {
|
nuclear@29
|
219 *spres = sp0;
|
nuclear@29
|
220 spres->mat = scn->matlib[sp0.obj->matid];
|
nuclear@29
|
221 }
|
nuclear@29
|
222 return true;
|
nuclear@28
|
223 }
|
nuclear@16
|
224
|
nuclear@16
|
225 bool intersect(struct Ray ray, global const struct Face *face, struct SurfPoint *sp)
|
nuclear@2
|
226 {
|
nuclear@12
|
227 float4 origin = ray.origin;
|
nuclear@12
|
228 float4 dir = ray.dir;
|
nuclear@12
|
229 float4 norm = face->normal;
|
nuclear@12
|
230
|
nuclear@16
|
231 float ndotdir = dot(dir, norm);
|
nuclear@12
|
232
|
nuclear@9
|
233 if(fabs(ndotdir) <= EPSILON) {
|
nuclear@9
|
234 return false;
|
nuclear@9
|
235 }
|
nuclear@2
|
236
|
nuclear@9
|
237 float4 pt = face->v[0].pos;
|
nuclear@12
|
238 float4 vec = pt - origin;
|
nuclear@2
|
239
|
nuclear@16
|
240 float ndotvec = dot(norm, vec);
|
nuclear@43
|
241 float t = native_divide(ndotvec, ndotdir);
|
nuclear@2
|
242
|
nuclear@2
|
243 if(t < EPSILON || t > 1.0) {
|
nuclear@2
|
244 return false;
|
nuclear@2
|
245 }
|
nuclear@12
|
246 pt = origin + dir * t;
|
nuclear@9
|
247
|
nuclear@12
|
248
|
nuclear@12
|
249 float4 bc = calc_bary(pt, face, norm);
|
nuclear@9
|
250 float bc_sum = bc.x + bc.y + bc.z;
|
nuclear@9
|
251
|
nuclear@20
|
252 if(bc_sum < 1.0 - EPSILON || bc_sum > 1.0 + EPSILON) {
|
nuclear@9
|
253 return false;
|
nuclear@12
|
254 bc *= 1.2;
|
nuclear@9
|
255 }
|
nuclear@2
|
256
|
nuclear@2
|
257 sp->t = t;
|
nuclear@9
|
258 sp->pos = pt;
|
nuclear@21
|
259 sp->norm = normalize(face->v[0].normal * bc.x + face->v[1].normal * bc.y + face->v[2].normal * bc.z);
|
nuclear@9
|
260 sp->obj = face;
|
nuclear@12
|
261 sp->dbg = bc;
|
nuclear@2
|
262 return true;
|
nuclear@2
|
263 }
|
nuclear@5
|
264
|
nuclear@28
|
265 bool intersect_aabb(struct Ray ray, struct AABBox aabb)
|
nuclear@28
|
266 {
|
nuclear@28
|
267 if(ray.origin.x >= aabb.min.x && ray.origin.y >= aabb.min.y && ray.origin.z >= aabb.min.z &&
|
nuclear@28
|
268 ray.origin.x < aabb.max.x && ray.origin.y < aabb.max.y && ray.origin.z < aabb.max.z) {
|
nuclear@28
|
269 return true;
|
nuclear@28
|
270 }
|
nuclear@28
|
271
|
nuclear@29
|
272 float4 bbox[2] = {
|
nuclear@29
|
273 aabb.min.x, aabb.min.y, aabb.min.z, 0,
|
nuclear@29
|
274 aabb.max.x, aabb.max.y, aabb.max.z, 0
|
nuclear@29
|
275 };
|
nuclear@28
|
276
|
nuclear@28
|
277 int xsign = (int)(ray.dir.x < 0.0);
|
nuclear@43
|
278 float invdirx = native_recip(ray.dir.x);
|
nuclear@28
|
279 float tmin = (bbox[xsign].x - ray.origin.x) * invdirx;
|
nuclear@28
|
280 float tmax = (bbox[1 - xsign].x - ray.origin.x) * invdirx;
|
nuclear@28
|
281
|
nuclear@28
|
282 int ysign = (int)(ray.dir.y < 0.0);
|
nuclear@43
|
283 float invdiry = native_recip(ray.dir.y);
|
nuclear@28
|
284 float tymin = (bbox[ysign].y - ray.origin.y) * invdiry;
|
nuclear@28
|
285 float tymax = (bbox[1 - ysign].y - ray.origin.y) * invdiry;
|
nuclear@28
|
286
|
nuclear@28
|
287 if(tmin > tymax || tymin > tmax) {
|
nuclear@28
|
288 return false;
|
nuclear@28
|
289 }
|
nuclear@28
|
290
|
nuclear@28
|
291 if(tymin > tmin) tmin = tymin;
|
nuclear@28
|
292 if(tymax < tmax) tmax = tymax;
|
nuclear@28
|
293
|
nuclear@28
|
294 int zsign = (int)(ray.dir.z < 0.0);
|
nuclear@43
|
295 float invdirz = native_recip(ray.dir.z);
|
nuclear@28
|
296 float tzmin = (bbox[zsign].z - ray.origin.z) * invdirz;
|
nuclear@28
|
297 float tzmax = (bbox[1 - zsign].z - ray.origin.z) * invdirz;
|
nuclear@28
|
298
|
nuclear@28
|
299 if(tmin > tzmax || tzmin > tmax) {
|
nuclear@28
|
300 return false;
|
nuclear@28
|
301 }
|
nuclear@28
|
302
|
nuclear@29
|
303 return tmin < 1.0 && tmax > 0.0;
|
nuclear@28
|
304 }
|
nuclear@28
|
305
|
nuclear@8
|
306 float4 reflect(float4 v, float4 n)
|
nuclear@5
|
307 {
|
nuclear@23
|
308 return 2.0f * dot(v, n) * n - v;
|
nuclear@5
|
309 }
|
nuclear@8
|
310
|
nuclear@8
|
311 float4 transform(float4 v, global const float *xform)
|
nuclear@8
|
312 {
|
nuclear@8
|
313 float4 res;
|
nuclear@8
|
314 res.x = v.x * xform[0] + v.y * xform[4] + v.z * xform[8] + xform[12];
|
nuclear@8
|
315 res.y = v.x * xform[1] + v.y * xform[5] + v.z * xform[9] + xform[13];
|
nuclear@8
|
316 res.z = v.x * xform[2] + v.y * xform[6] + v.z * xform[10] + xform[14];
|
nuclear@12
|
317 res.w = 0.0;
|
nuclear@8
|
318 return res;
|
nuclear@8
|
319 }
|
nuclear@8
|
320
|
nuclear@16
|
321 void transform_ray(struct Ray *ray, global const float *xform, global const float *invtrans)
|
nuclear@8
|
322 {
|
nuclear@16
|
323 ray->origin = transform(ray->origin, xform);
|
nuclear@16
|
324 ray->dir = transform(ray->dir, invtrans);
|
nuclear@8
|
325 }
|
nuclear@9
|
326
|
nuclear@12
|
327 float4 calc_bary(float4 pt, global const struct Face *face, float4 norm)
|
nuclear@9
|
328 {
|
nuclear@12
|
329 float4 bc = (float4)(0, 0, 0, 0);
|
nuclear@9
|
330
|
nuclear@12
|
331 // calculate area of the whole triangle
|
nuclear@12
|
332 float4 v1 = face->v[1].pos - face->v[0].pos;
|
nuclear@12
|
333 float4 v2 = face->v[2].pos - face->v[0].pos;
|
nuclear@12
|
334 float4 xv1v2 = cross(v1, v2);
|
nuclear@12
|
335
|
nuclear@16
|
336 float area = fabs(dot(xv1v2, norm)) * 0.5;
|
nuclear@9
|
337 if(area < EPSILON) {
|
nuclear@9
|
338 return bc;
|
nuclear@9
|
339 }
|
nuclear@9
|
340
|
nuclear@9
|
341 float4 pv0 = face->v[0].pos - pt;
|
nuclear@9
|
342 float4 pv1 = face->v[1].pos - pt;
|
nuclear@9
|
343 float4 pv2 = face->v[2].pos - pt;
|
nuclear@9
|
344
|
nuclear@12
|
345 // calculate the area of each sub-triangle
|
nuclear@12
|
346 float4 x12 = cross(pv1, pv2);
|
nuclear@12
|
347 float4 x20 = cross(pv2, pv0);
|
nuclear@12
|
348 float4 x01 = cross(pv0, pv1);
|
nuclear@12
|
349
|
nuclear@16
|
350 float a0 = fabs(dot(x12, norm)) * 0.5;
|
nuclear@16
|
351 float a1 = fabs(dot(x20, norm)) * 0.5;
|
nuclear@16
|
352 float a2 = fabs(dot(x01, norm)) * 0.5;
|
nuclear@9
|
353
|
nuclear@43
|
354 bc.x = native_divide(a0, area);
|
nuclear@43
|
355 bc.y = native_divide(a1, area);
|
nuclear@43
|
356 bc.z = native_divide(a2, area);
|
nuclear@9
|
357 return bc;
|
nuclear@9
|
358 }
|
nuclear@19
|
359
|
nuclear@19
|
360 float mean(float4 v)
|
nuclear@19
|
361 {
|
nuclear@19
|
362 return native_divide(v.x + v.y + v.z, 3.0);
|
nuclear@19
|
363 }
|
nuclear@43
|
364
|
nuclear@43
|
365
|
nuclear@43
|
366 const sampler_t kdsampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_NONE | CLK_FILTER_NEAREST;
|
nuclear@43
|
367
|
nuclear@43
|
368 // read a KD-tree node from a texture scanline
|
nuclear@43
|
369 void read_kdnode(int idx, struct KDNode *node, read_only image2d_t kdimg)
|
nuclear@43
|
370 {
|
nuclear@45
|
371 int startx = KDIMG_NODE_WIDTH * (idx / KDIMG_MAX_HEIGHT);
|
nuclear@45
|
372
|
nuclear@43
|
373 int2 tc;
|
nuclear@45
|
374 tc.x = startx;
|
nuclear@45
|
375 tc.y = idx % KDIMG_MAX_HEIGHT;
|
nuclear@43
|
376
|
nuclear@43
|
377 node->aabb.min = read_imagef(kdimg, kdsampler, tc); tc.x++;
|
nuclear@43
|
378 node->aabb.max = read_imagef(kdimg, kdsampler, tc);
|
nuclear@43
|
379
|
nuclear@45
|
380 tc.x = startx + 2 + MAX_NODE_FACES / 4;
|
nuclear@43
|
381 float4 pix = read_imagef(kdimg, kdsampler, tc);
|
nuclear@43
|
382 node->num_faces = (int)pix.x;
|
nuclear@43
|
383 node->left = (int)pix.y;
|
nuclear@43
|
384 node->right = (int)pix.z;
|
nuclear@43
|
385
|
nuclear@45
|
386 tc.x = startx + 2;
|
nuclear@43
|
387 for(int i=0; i<node->num_faces; i+=4) {
|
nuclear@43
|
388 float4 pix = read_imagef(kdimg, kdsampler, tc); tc.x++;
|
nuclear@43
|
389 node->face_idx[i] = (int)pix.x;
|
nuclear@43
|
390 node->face_idx[i + 1] = (int)pix.y;
|
nuclear@43
|
391 node->face_idx[i + 2] = (int)pix.z;
|
nuclear@43
|
392 node->face_idx[i + 3] = (int)pix.w;
|
nuclear@43
|
393 }
|
nuclear@43
|
394 }
|