rev |
line source |
nuclear@12
|
1 /* vim: set ft=opencl:ts=4:sw=4 */
|
nuclear@12
|
2
|
nuclear@2
|
3 struct RendInfo {
|
nuclear@22
|
4 float4 ambient;
|
nuclear@2
|
5 int xsz, ysz;
|
nuclear@9
|
6 int num_faces, num_lights;
|
nuclear@2
|
7 int max_iter;
|
nuclear@28
|
8 int kd_depth;
|
nuclear@2
|
9 };
|
nuclear@2
|
10
|
nuclear@9
|
11 struct Vertex {
|
nuclear@2
|
12 float4 pos;
|
nuclear@9
|
13 float4 normal;
|
nuclear@12
|
14 float4 tex;
|
nuclear@12
|
15 float4 padding;
|
nuclear@9
|
16 };
|
nuclear@9
|
17
|
nuclear@9
|
18 struct Face {
|
nuclear@9
|
19 struct Vertex v[3];
|
nuclear@9
|
20 float4 normal;
|
nuclear@9
|
21 int matid;
|
nuclear@12
|
22 int padding[3];
|
nuclear@9
|
23 };
|
nuclear@9
|
24
|
nuclear@9
|
25 struct Material {
|
nuclear@5
|
26 float4 kd, ks;
|
nuclear@9
|
27 float kr, kt;
|
nuclear@9
|
28 float spow;
|
nuclear@12
|
29 float padding;
|
nuclear@2
|
30 };
|
nuclear@2
|
31
|
nuclear@3
|
32 struct Light {
|
nuclear@3
|
33 float4 pos, color;
|
nuclear@3
|
34 };
|
nuclear@3
|
35
|
nuclear@2
|
36 struct Ray {
|
nuclear@2
|
37 float4 origin, dir;
|
nuclear@2
|
38 };
|
nuclear@2
|
39
|
nuclear@2
|
40 struct SurfPoint {
|
nuclear@2
|
41 float t;
|
nuclear@12
|
42 float4 pos, norm, dbg;
|
nuclear@9
|
43 global const struct Face *obj;
|
nuclear@19
|
44 struct Material mat;
|
nuclear@2
|
45 };
|
nuclear@2
|
46
|
nuclear@16
|
47 struct Scene {
|
nuclear@16
|
48 float4 ambient;
|
nuclear@16
|
49 global const struct Face *faces;
|
nuclear@16
|
50 int num_faces;
|
nuclear@16
|
51 global const struct Light *lights;
|
nuclear@16
|
52 int num_lights;
|
nuclear@16
|
53 global const struct Material *matlib;
|
nuclear@28
|
54 global const struct KDNode *kdtree;
|
nuclear@28
|
55 };
|
nuclear@28
|
56
|
nuclear@28
|
57 struct AABBox {
|
nuclear@28
|
58 float4 min, max;
|
nuclear@28
|
59 };
|
nuclear@28
|
60
|
nuclear@28
|
61 struct KDNode {
|
nuclear@29
|
62 struct AABBox aabb;
|
nuclear@28
|
63 int face_idx[32];
|
nuclear@28
|
64 int num_faces;
|
nuclear@35
|
65 int left, right;
|
nuclear@35
|
66 int padding;
|
nuclear@16
|
67 };
|
nuclear@2
|
68
|
nuclear@16
|
69 #define MIN_ENERGY 0.001
|
nuclear@21
|
70 #define EPSILON 1e-5
|
nuclear@16
|
71
|
nuclear@16
|
72 float4 shade(struct Ray ray, struct Scene *scn, const struct SurfPoint *sp);
|
nuclear@16
|
73 bool find_intersection(struct Ray ray, const struct Scene *scn, struct SurfPoint *sp);
|
nuclear@9
|
74 bool intersect(struct Ray ray, global const struct Face *face, struct SurfPoint *sp);
|
nuclear@28
|
75 bool intersect_aabb(struct Ray ray, struct AABBox aabb);
|
nuclear@16
|
76
|
nuclear@8
|
77 float4 reflect(float4 v, float4 n);
|
nuclear@8
|
78 float4 transform(float4 v, global const float *xform);
|
nuclear@16
|
79 void transform_ray(struct Ray *ray, global const float *xform, global const float *invtrans);
|
nuclear@12
|
80 float4 calc_bary(float4 pt, global const struct Face *face, float4 norm);
|
nuclear@19
|
81 float mean(float4 v);
|
nuclear@4
|
82
|
nuclear@4
|
83 kernel void render(global float4 *fb,
|
nuclear@4
|
84 global const struct RendInfo *rinf,
|
nuclear@9
|
85 global const struct Face *faces,
|
nuclear@9
|
86 global const struct Material *matlib,
|
nuclear@4
|
87 global const struct Light *lights,
|
nuclear@7
|
88 global const struct Ray *primrays,
|
nuclear@12
|
89 global const float *xform,
|
nuclear@28
|
90 global const float *invtrans,
|
nuclear@28
|
91 global const struct KDNode *kdtree)
|
nuclear@2
|
92 {
|
nuclear@2
|
93 int idx = get_global_id(0);
|
nuclear@2
|
94
|
nuclear@16
|
95 struct Scene scn;
|
nuclear@16
|
96 scn.ambient = rinf->ambient;
|
nuclear@16
|
97 scn.faces = faces;
|
nuclear@16
|
98 scn.num_faces = rinf->num_faces;
|
nuclear@16
|
99 scn.lights = lights;
|
nuclear@16
|
100 scn.num_lights = rinf->num_lights;
|
nuclear@16
|
101 scn.matlib = matlib;
|
nuclear@30
|
102 scn.kdtree = kdtree;
|
nuclear@8
|
103
|
nuclear@16
|
104 struct Ray ray = primrays[idx];
|
nuclear@16
|
105 transform_ray(&ray, xform, invtrans);
|
nuclear@4
|
106
|
nuclear@19
|
107 float4 pixel = (float4)(0, 0, 0, 0);
|
nuclear@22
|
108 float4 energy = (float4)(1.0, 1.0, 1.0, 0.0);
|
nuclear@19
|
109 int iter = 0;
|
nuclear@19
|
110
|
nuclear@19
|
111 while(iter++ < rinf->max_iter && mean(energy) > MIN_ENERGY) {
|
nuclear@19
|
112 struct SurfPoint sp;
|
nuclear@19
|
113 if(find_intersection(ray, &scn, &sp)) {
|
nuclear@19
|
114 pixel += shade(ray, &scn, &sp) * energy;
|
nuclear@19
|
115
|
nuclear@19
|
116 float4 refl_col = sp.mat.ks * sp.mat.kr;
|
nuclear@19
|
117
|
nuclear@19
|
118 ray.origin = sp.pos;
|
nuclear@19
|
119 ray.dir = reflect(-ray.dir, sp.norm);
|
nuclear@19
|
120
|
nuclear@35
|
121 energy *= refl_col;
|
nuclear@19
|
122 } else {
|
nuclear@35
|
123 break;
|
nuclear@19
|
124 }
|
nuclear@17
|
125 }
|
nuclear@19
|
126
|
nuclear@19
|
127 fb[idx] = pixel;
|
nuclear@4
|
128 }
|
nuclear@4
|
129
|
nuclear@16
|
130 float4 shade(struct Ray ray, struct Scene *scn, const struct SurfPoint *sp)
|
nuclear@16
|
131 {
|
nuclear@16
|
132 float4 norm = sp->norm;
|
nuclear@12
|
133 bool entering = true;
|
nuclear@12
|
134
|
nuclear@12
|
135 if(dot(ray.dir, norm) >= 0.0) {
|
nuclear@12
|
136 norm = -norm;
|
nuclear@12
|
137 entering = false;
|
nuclear@12
|
138 }
|
nuclear@12
|
139
|
nuclear@19
|
140 float4 dcol = scn->ambient * sp->mat.kd;
|
nuclear@8
|
141 float4 scol = (float4)(0, 0, 0, 0);
|
nuclear@5
|
142
|
nuclear@16
|
143 for(int i=0; i<scn->num_lights; i++) {
|
nuclear@16
|
144 float4 ldir = scn->lights[i].pos - sp->pos;
|
nuclear@5
|
145
|
nuclear@16
|
146 struct Ray shadowray;
|
nuclear@16
|
147 shadowray.origin = sp->pos;
|
nuclear@16
|
148 shadowray.dir = ldir;
|
nuclear@5
|
149
|
nuclear@16
|
150 if(!find_intersection(shadowray, scn, 0)) {
|
nuclear@16
|
151 ldir = normalize(ldir);
|
nuclear@16
|
152 float4 vdir = -normalize(ray.dir);
|
nuclear@16
|
153 float4 vref = reflect(vdir, norm);
|
nuclear@16
|
154
|
nuclear@16
|
155 float diff = fmax(dot(ldir, norm), 0.0f);
|
nuclear@22
|
156 dcol += sp->mat.kd * scn->lights[i].color * diff;
|
nuclear@16
|
157
|
nuclear@20
|
158 float spec = powr(fmax(dot(ldir, vref), 0.0f), sp->mat.spow);
|
nuclear@22
|
159 scol += sp->mat.ks * scn->lights[i].color * spec;
|
nuclear@16
|
160 }
|
nuclear@16
|
161 }
|
nuclear@16
|
162
|
nuclear@8
|
163 return dcol + scol;
|
nuclear@2
|
164 }
|
nuclear@2
|
165
|
nuclear@30
|
166 #define STACK_SIZE 64
|
nuclear@28
|
167 bool find_intersection(struct Ray ray, const struct Scene *scn, struct SurfPoint *spres)
|
nuclear@28
|
168 {
|
nuclear@29
|
169 struct SurfPoint sp0;
|
nuclear@29
|
170 sp0.t = 1.0;
|
nuclear@29
|
171 sp0.obj = 0;
|
nuclear@29
|
172
|
nuclear@29
|
173 int idxstack[STACK_SIZE];
|
nuclear@31
|
174 int top = 0; // points after the topmost element of the stack
|
nuclear@35
|
175 idxstack[top++] = 0; // root at tree[0]
|
nuclear@29
|
176
|
nuclear@31
|
177 while(top > 0) {
|
nuclear@31
|
178 int idx = idxstack[--top]; // remove this index from the stack and process it
|
nuclear@30
|
179
|
nuclear@31
|
180 global const struct KDNode *node = scn->kdtree + idx;
|
nuclear@29
|
181
|
nuclear@31
|
182 /*if(get_global_id(0) == 0) {
|
nuclear@31
|
183 for(int i=0; i<top+1; i++) {
|
nuclear@31
|
184 printf(" ");
|
nuclear@31
|
185 }
|
nuclear@31
|
186 printf("(%d) idx: %d (%p) num_faces: %d\n", top+1, idx, node, node->num_faces);
|
nuclear@31
|
187 }*/
|
nuclear@29
|
188
|
nuclear@29
|
189 if(intersect_aabb(ray, node->aabb)) {
|
nuclear@35
|
190 if(node->left == -1) {
|
nuclear@31
|
191 // leaf node... check each face in turn and update the nearest intersection as needed
|
nuclear@29
|
192 for(int i=0; i<node->num_faces; i++) {
|
nuclear@31
|
193 struct SurfPoint spt;
|
nuclear@29
|
194 int fidx = node->face_idx[i];
|
nuclear@29
|
195
|
nuclear@31
|
196 if(intersect(ray, scn->faces + fidx, &spt) && spt.t < sp0.t) {
|
nuclear@31
|
197 sp0 = spt;
|
nuclear@29
|
198 }
|
nuclear@29
|
199 }
|
nuclear@31
|
200 } else {
|
nuclear@31
|
201 // internal node... recurse to the children
|
nuclear@31
|
202 /*if(get_global_id(0) == 0) {
|
nuclear@35
|
203 printf("pushing %d's children %d and %d\n", idx, node->left, node->right);
|
nuclear@31
|
204 }*/
|
nuclear@35
|
205 idxstack[top++] = node->left;
|
nuclear@35
|
206 idxstack[top++] = node->right;
|
nuclear@29
|
207 }
|
nuclear@29
|
208 }
|
nuclear@29
|
209 }
|
nuclear@29
|
210
|
nuclear@29
|
211 if(!sp0.obj) {
|
nuclear@29
|
212 return false;
|
nuclear@29
|
213 }
|
nuclear@29
|
214
|
nuclear@29
|
215 if(spres) {
|
nuclear@29
|
216 *spres = sp0;
|
nuclear@29
|
217 spres->mat = scn->matlib[sp0.obj->matid];
|
nuclear@29
|
218 }
|
nuclear@29
|
219 return true;
|
nuclear@28
|
220 }
|
nuclear@16
|
221
|
nuclear@28
|
222 /*bool find_intersection(struct Ray ray, const struct Scene *scn, struct SurfPoint *spres)
|
nuclear@12
|
223 {
|
nuclear@16
|
224 struct SurfPoint sp, sp0;
|
nuclear@16
|
225 sp0.t = 1.0;
|
nuclear@16
|
226 sp0.obj = 0;
|
nuclear@16
|
227
|
nuclear@16
|
228 for(int i=0; i<scn->num_faces; i++) {
|
nuclear@16
|
229 if(intersect(ray, scn->faces + i, &sp) && sp.t < sp0.t) {
|
nuclear@16
|
230 sp0 = sp;
|
nuclear@16
|
231 }
|
nuclear@16
|
232 }
|
nuclear@16
|
233
|
nuclear@16
|
234 if(!sp0.obj) {
|
nuclear@16
|
235 return false;
|
nuclear@16
|
236 }
|
nuclear@16
|
237
|
nuclear@16
|
238 if(spres) {
|
nuclear@16
|
239 *spres = sp0;
|
nuclear@19
|
240 spres->mat = scn->matlib[sp0.obj->matid];
|
nuclear@16
|
241 }
|
nuclear@16
|
242 return true;
|
nuclear@28
|
243 }*/
|
nuclear@12
|
244
|
nuclear@16
|
245 bool intersect(struct Ray ray, global const struct Face *face, struct SurfPoint *sp)
|
nuclear@2
|
246 {
|
nuclear@12
|
247 float4 origin = ray.origin;
|
nuclear@12
|
248 float4 dir = ray.dir;
|
nuclear@12
|
249 float4 norm = face->normal;
|
nuclear@12
|
250
|
nuclear@16
|
251 float ndotdir = dot(dir, norm);
|
nuclear@12
|
252
|
nuclear@9
|
253 if(fabs(ndotdir) <= EPSILON) {
|
nuclear@9
|
254 return false;
|
nuclear@9
|
255 }
|
nuclear@2
|
256
|
nuclear@9
|
257 float4 pt = face->v[0].pos;
|
nuclear@12
|
258 float4 vec = pt - origin;
|
nuclear@2
|
259
|
nuclear@16
|
260 float ndotvec = dot(norm, vec);
|
nuclear@9
|
261 float t = ndotvec / ndotdir;
|
nuclear@2
|
262
|
nuclear@2
|
263 if(t < EPSILON || t > 1.0) {
|
nuclear@2
|
264 return false;
|
nuclear@2
|
265 }
|
nuclear@12
|
266 pt = origin + dir * t;
|
nuclear@9
|
267
|
nuclear@12
|
268
|
nuclear@12
|
269 float4 bc = calc_bary(pt, face, norm);
|
nuclear@9
|
270 float bc_sum = bc.x + bc.y + bc.z;
|
nuclear@9
|
271
|
nuclear@20
|
272 if(bc_sum < 1.0 - EPSILON || bc_sum > 1.0 + EPSILON) {
|
nuclear@9
|
273 return false;
|
nuclear@12
|
274 bc *= 1.2;
|
nuclear@9
|
275 }
|
nuclear@2
|
276
|
nuclear@2
|
277 sp->t = t;
|
nuclear@9
|
278 sp->pos = pt;
|
nuclear@21
|
279 sp->norm = normalize(face->v[0].normal * bc.x + face->v[1].normal * bc.y + face->v[2].normal * bc.z);
|
nuclear@9
|
280 sp->obj = face;
|
nuclear@12
|
281 sp->dbg = bc;
|
nuclear@2
|
282 return true;
|
nuclear@2
|
283 }
|
nuclear@5
|
284
|
nuclear@28
|
285 bool intersect_aabb(struct Ray ray, struct AABBox aabb)
|
nuclear@28
|
286 {
|
nuclear@28
|
287 if(ray.origin.x >= aabb.min.x && ray.origin.y >= aabb.min.y && ray.origin.z >= aabb.min.z &&
|
nuclear@28
|
288 ray.origin.x < aabb.max.x && ray.origin.y < aabb.max.y && ray.origin.z < aabb.max.z) {
|
nuclear@28
|
289 return true;
|
nuclear@28
|
290 }
|
nuclear@28
|
291
|
nuclear@29
|
292 float4 bbox[2] = {
|
nuclear@29
|
293 aabb.min.x, aabb.min.y, aabb.min.z, 0,
|
nuclear@29
|
294 aabb.max.x, aabb.max.y, aabb.max.z, 0
|
nuclear@29
|
295 };
|
nuclear@28
|
296
|
nuclear@28
|
297 int xsign = (int)(ray.dir.x < 0.0);
|
nuclear@28
|
298 float invdirx = 1.0 / ray.dir.x;
|
nuclear@28
|
299 float tmin = (bbox[xsign].x - ray.origin.x) * invdirx;
|
nuclear@28
|
300 float tmax = (bbox[1 - xsign].x - ray.origin.x) * invdirx;
|
nuclear@28
|
301
|
nuclear@28
|
302 int ysign = (int)(ray.dir.y < 0.0);
|
nuclear@28
|
303 float invdiry = 1.0 / ray.dir.y;
|
nuclear@28
|
304 float tymin = (bbox[ysign].y - ray.origin.y) * invdiry;
|
nuclear@28
|
305 float tymax = (bbox[1 - ysign].y - ray.origin.y) * invdiry;
|
nuclear@28
|
306
|
nuclear@28
|
307 if(tmin > tymax || tymin > tmax) {
|
nuclear@28
|
308 return false;
|
nuclear@28
|
309 }
|
nuclear@28
|
310
|
nuclear@28
|
311 if(tymin > tmin) tmin = tymin;
|
nuclear@28
|
312 if(tymax < tmax) tmax = tymax;
|
nuclear@28
|
313
|
nuclear@28
|
314 int zsign = (int)(ray.dir.z < 0.0);
|
nuclear@28
|
315 float invdirz = 1.0 / ray.dir.z;
|
nuclear@28
|
316 float tzmin = (bbox[zsign].z - ray.origin.z) * invdirz;
|
nuclear@28
|
317 float tzmax = (bbox[1 - zsign].z - ray.origin.z) * invdirz;
|
nuclear@28
|
318
|
nuclear@28
|
319 if(tmin > tzmax || tzmin > tmax) {
|
nuclear@28
|
320 return false;
|
nuclear@28
|
321 }
|
nuclear@28
|
322
|
nuclear@29
|
323 return tmin < 1.0 && tmax > 0.0;
|
nuclear@28
|
324 }
|
nuclear@28
|
325
|
nuclear@8
|
326 float4 reflect(float4 v, float4 n)
|
nuclear@5
|
327 {
|
nuclear@23
|
328 return 2.0f * dot(v, n) * n - v;
|
nuclear@5
|
329 }
|
nuclear@8
|
330
|
nuclear@8
|
331 float4 transform(float4 v, global const float *xform)
|
nuclear@8
|
332 {
|
nuclear@8
|
333 float4 res;
|
nuclear@8
|
334 res.x = v.x * xform[0] + v.y * xform[4] + v.z * xform[8] + xform[12];
|
nuclear@8
|
335 res.y = v.x * xform[1] + v.y * xform[5] + v.z * xform[9] + xform[13];
|
nuclear@8
|
336 res.z = v.x * xform[2] + v.y * xform[6] + v.z * xform[10] + xform[14];
|
nuclear@12
|
337 res.w = 0.0;
|
nuclear@8
|
338 return res;
|
nuclear@8
|
339 }
|
nuclear@8
|
340
|
nuclear@16
|
341 void transform_ray(struct Ray *ray, global const float *xform, global const float *invtrans)
|
nuclear@8
|
342 {
|
nuclear@16
|
343 ray->origin = transform(ray->origin, xform);
|
nuclear@16
|
344 ray->dir = transform(ray->dir, invtrans);
|
nuclear@8
|
345 }
|
nuclear@9
|
346
|
nuclear@12
|
347 float4 calc_bary(float4 pt, global const struct Face *face, float4 norm)
|
nuclear@9
|
348 {
|
nuclear@12
|
349 float4 bc = (float4)(0, 0, 0, 0);
|
nuclear@9
|
350
|
nuclear@12
|
351 // calculate area of the whole triangle
|
nuclear@12
|
352 float4 v1 = face->v[1].pos - face->v[0].pos;
|
nuclear@12
|
353 float4 v2 = face->v[2].pos - face->v[0].pos;
|
nuclear@12
|
354 float4 xv1v2 = cross(v1, v2);
|
nuclear@12
|
355
|
nuclear@16
|
356 float area = fabs(dot(xv1v2, norm)) * 0.5;
|
nuclear@9
|
357 if(area < EPSILON) {
|
nuclear@9
|
358 return bc;
|
nuclear@9
|
359 }
|
nuclear@9
|
360
|
nuclear@9
|
361 float4 pv0 = face->v[0].pos - pt;
|
nuclear@9
|
362 float4 pv1 = face->v[1].pos - pt;
|
nuclear@9
|
363 float4 pv2 = face->v[2].pos - pt;
|
nuclear@9
|
364
|
nuclear@12
|
365 // calculate the area of each sub-triangle
|
nuclear@12
|
366 float4 x12 = cross(pv1, pv2);
|
nuclear@12
|
367 float4 x20 = cross(pv2, pv0);
|
nuclear@12
|
368 float4 x01 = cross(pv0, pv1);
|
nuclear@12
|
369
|
nuclear@16
|
370 float a0 = fabs(dot(x12, norm)) * 0.5;
|
nuclear@16
|
371 float a1 = fabs(dot(x20, norm)) * 0.5;
|
nuclear@16
|
372 float a2 = fabs(dot(x01, norm)) * 0.5;
|
nuclear@9
|
373
|
nuclear@9
|
374 bc.x = a0 / area;
|
nuclear@9
|
375 bc.y = a1 / area;
|
nuclear@9
|
376 bc.z = a2 / area;
|
nuclear@9
|
377 return bc;
|
nuclear@9
|
378 }
|
nuclear@19
|
379
|
nuclear@19
|
380 float mean(float4 v)
|
nuclear@19
|
381 {
|
nuclear@19
|
382 return native_divide(v.x + v.y + v.z, 3.0);
|
nuclear@19
|
383 }
|