clray

annotate rt.cl @ 18:4b1604f9798a

debugging...
author John Tsiombikas <nuclear@member.fsf.org>
date Mon, 09 Aug 2010 05:38:51 +0100
parents 074a64b9d6bd
children 8baea9b66b50
rev   line source
nuclear@12 1 /* vim: set ft=opencl:ts=4:sw=4 */
nuclear@12 2
nuclear@2 3 struct RendInfo {
nuclear@2 4 int xsz, ysz;
nuclear@9 5 int num_faces, num_lights;
nuclear@2 6 int max_iter;
nuclear@16 7 float4 ambient;
John@15 8 int dbg;
nuclear@2 9 };
nuclear@2 10
nuclear@9 11 struct Vertex {
nuclear@2 12 float4 pos;
nuclear@9 13 float4 normal;
nuclear@12 14 float4 tex;
nuclear@12 15 float4 padding;
nuclear@9 16 };
nuclear@9 17
nuclear@9 18 struct Face {
nuclear@9 19 struct Vertex v[3];
nuclear@9 20 float4 normal;
nuclear@9 21 int matid;
nuclear@12 22 int padding[3];
nuclear@9 23 };
nuclear@9 24
nuclear@9 25 struct Material {
nuclear@5 26 float4 kd, ks;
nuclear@9 27 float kr, kt;
nuclear@9 28 float spow;
nuclear@12 29 float padding;
nuclear@2 30 };
nuclear@2 31
nuclear@3 32 struct Light {
nuclear@3 33 float4 pos, color;
nuclear@3 34 };
nuclear@3 35
nuclear@2 36 struct Ray {
nuclear@2 37 float4 origin, dir;
nuclear@2 38 };
nuclear@2 39
nuclear@2 40 struct SurfPoint {
nuclear@2 41 float t;
nuclear@12 42 float4 pos, norm, dbg;
nuclear@9 43 global const struct Face *obj;
nuclear@9 44 global const struct Material *mat;
nuclear@2 45 };
nuclear@2 46
nuclear@16 47 struct Scene {
nuclear@16 48 float4 ambient;
nuclear@16 49 global const struct Face *faces;
nuclear@16 50 int num_faces;
nuclear@16 51 global const struct Light *lights;
nuclear@16 52 int num_lights;
nuclear@16 53 global const struct Material *matlib;
nuclear@16 54 };
nuclear@2 55
nuclear@16 56 #define MIN_ENERGY 0.001
nuclear@16 57 #define EPSILON 1e-6
nuclear@16 58
nuclear@17 59 //float4 trace(struct Ray ray, struct Scene *scn);
nuclear@16 60 float4 shade(struct Ray ray, struct Scene *scn, const struct SurfPoint *sp);
nuclear@16 61 bool find_intersection(struct Ray ray, const struct Scene *scn, struct SurfPoint *sp);
nuclear@9 62 bool intersect(struct Ray ray, global const struct Face *face, struct SurfPoint *sp);
nuclear@16 63
nuclear@8 64 float4 reflect(float4 v, float4 n);
nuclear@8 65 float4 transform(float4 v, global const float *xform);
nuclear@16 66 void transform_ray(struct Ray *ray, global const float *xform, global const float *invtrans);
nuclear@12 67 float4 calc_bary(float4 pt, global const struct Face *face, float4 norm);
nuclear@4 68
nuclear@4 69 kernel void render(global float4 *fb,
nuclear@4 70 global const struct RendInfo *rinf,
nuclear@9 71 global const struct Face *faces,
nuclear@9 72 global const struct Material *matlib,
nuclear@4 73 global const struct Light *lights,
nuclear@7 74 global const struct Ray *primrays,
nuclear@12 75 global const float *xform,
John@15 76 global const float *invtrans,
John@15 77 global struct Face *outfaces)
nuclear@2 78 {
nuclear@2 79 int idx = get_global_id(0);
nuclear@2 80
nuclear@18 81 if(!idx) {
nuclear@18 82 for(int i=0; i<rinf->num_faces; i++) {
nuclear@18 83 outfaces[i] = faces[i];
nuclear@18 84 }
nuclear@18 85 }
nuclear@18 86
nuclear@16 87 struct Scene scn;
nuclear@16 88 scn.ambient = rinf->ambient;
nuclear@16 89 scn.faces = faces;
nuclear@16 90 scn.num_faces = rinf->num_faces;
nuclear@16 91 scn.lights = lights;
nuclear@16 92 scn.num_lights = rinf->num_lights;
nuclear@16 93 scn.matlib = matlib;
nuclear@8 94
nuclear@16 95 struct Ray ray = primrays[idx];
nuclear@16 96 transform_ray(&ray, xform, invtrans);
nuclear@4 97
nuclear@17 98 //fb[idx] = trace(ray, &scn);
nuclear@17 99
nuclear@17 100 struct SurfPoint sp;
nuclear@17 101 if(find_intersection(ray, &scn, &sp)) {
nuclear@17 102 fb[idx] = shade(ray, &scn, &sp);
nuclear@17 103 } else {
nuclear@17 104 fb[idx] = (float4)(0, 0, 0, 0);
nuclear@17 105 }
nuclear@4 106 }
nuclear@4 107
nuclear@17 108 /*float4 trace(struct Ray ray, struct Scene *scn)
nuclear@4 109 {
nuclear@16 110 float4 color;
nuclear@16 111 struct SurfPoint sp;
nuclear@16 112
nuclear@16 113 if(find_intersection(ray, scn, &sp)) {
nuclear@16 114 color = shade(ray, scn, &sp);
nuclear@16 115 } else {
nuclear@16 116 color = (float4)(0, 0, 0, 0);
nuclear@16 117 }
nuclear@16 118 return color;
nuclear@17 119 }*/
nuclear@16 120
nuclear@16 121 float4 shade(struct Ray ray, struct Scene *scn, const struct SurfPoint *sp)
nuclear@16 122 {
nuclear@16 123 float4 norm = sp->norm;
nuclear@12 124 bool entering = true;
nuclear@16 125 struct Material mat = *sp->mat;
nuclear@12 126
nuclear@12 127 if(dot(ray.dir, norm) >= 0.0) {
nuclear@12 128 norm = -norm;
nuclear@12 129 entering = false;
nuclear@12 130 }
nuclear@12 131
nuclear@16 132 float4 dcol = scn->ambient * mat.kd;
nuclear@8 133 float4 scol = (float4)(0, 0, 0, 0);
nuclear@5 134
nuclear@16 135 for(int i=0; i<scn->num_lights; i++) {
nuclear@16 136 float4 ldir = scn->lights[i].pos - sp->pos;
nuclear@5 137
nuclear@16 138 struct Ray shadowray;
nuclear@16 139 shadowray.origin = sp->pos;
nuclear@16 140 shadowray.dir = ldir;
nuclear@5 141
nuclear@16 142 if(!find_intersection(shadowray, scn, 0)) {
nuclear@16 143 ldir = normalize(ldir);
nuclear@16 144 float4 vdir = -normalize(ray.dir);
nuclear@16 145 float4 vref = reflect(vdir, norm);
nuclear@16 146
nuclear@16 147 float diff = fmax(dot(ldir, norm), 0.0f);
nuclear@16 148 dcol += mat.kd * diff * scn->lights[i].color;
nuclear@16 149
nuclear@16 150 //float spec = powr(fmax(dot(ldir, vref), 0.0f), mat.spow);
nuclear@16 151 //scol += mat.ks * spec * scn->lights[i].color;
nuclear@16 152 }
nuclear@16 153 }
nuclear@16 154
nuclear@17 155 /*float4 refl_col = mat.ks * mat.kr;
nuclear@16 156 float refl_coeff = (refl_col.x + refl_col.y + refl_col.z) / 3.0;
nuclear@16 157
nuclear@16 158 if(refl_coeff > MIN_ENERGY) {
nuclear@16 159 struct Ray refl_ray;
nuclear@16 160 refl_ray.origin = sp->pos;
nuclear@16 161 refl_ray.dir = reflect(-ray.dir, norm);
nuclear@16 162 refl_ray.energy *= refl_coeff;
nuclear@16 163
nuclear@16 164 scol += trace(refl_ray, scn) * refl_col;
nuclear@17 165 }*/
nuclear@5 166
nuclear@8 167 return dcol + scol;
nuclear@2 168 }
nuclear@2 169
nuclear@16 170
nuclear@16 171 bool find_intersection(struct Ray ray, const struct Scene *scn, struct SurfPoint *spres)
nuclear@12 172 {
nuclear@16 173 struct SurfPoint sp, sp0;
nuclear@16 174 sp0.t = 1.0;
nuclear@16 175 sp0.obj = 0;
nuclear@16 176
nuclear@16 177 for(int i=0; i<scn->num_faces; i++) {
nuclear@16 178 if(intersect(ray, scn->faces + i, &sp) && sp.t < sp0.t) {
nuclear@16 179 sp0 = sp;
nuclear@16 180 }
nuclear@16 181 }
nuclear@16 182
nuclear@16 183 if(!sp0.obj) {
nuclear@16 184 return false;
nuclear@16 185 }
nuclear@16 186
nuclear@16 187 if(spres) {
nuclear@16 188 *spres = sp0;
nuclear@16 189 spres->mat = scn->matlib + sp0.obj->matid;
nuclear@16 190 }
nuclear@16 191 return true;
nuclear@12 192 }
nuclear@12 193
nuclear@16 194 bool intersect(struct Ray ray, global const struct Face *face, struct SurfPoint *sp)
nuclear@2 195 {
nuclear@12 196 float4 origin = ray.origin;
nuclear@12 197 float4 dir = ray.dir;
nuclear@12 198 float4 norm = face->normal;
nuclear@12 199
nuclear@16 200 float ndotdir = dot(dir, norm);
nuclear@12 201
nuclear@9 202 if(fabs(ndotdir) <= EPSILON) {
nuclear@9 203 return false;
nuclear@9 204 }
nuclear@2 205
nuclear@9 206 float4 pt = face->v[0].pos;
nuclear@12 207 float4 vec = pt - origin;
nuclear@2 208
nuclear@16 209 float ndotvec = dot(norm, vec);
nuclear@9 210 float t = ndotvec / ndotdir;
nuclear@2 211
nuclear@2 212 if(t < EPSILON || t > 1.0) {
nuclear@2 213 return false;
nuclear@2 214 }
nuclear@12 215 pt = origin + dir * t;
nuclear@9 216
nuclear@12 217
nuclear@12 218 float4 bc = calc_bary(pt, face, norm);
nuclear@9 219 float bc_sum = bc.x + bc.y + bc.z;
nuclear@9 220
nuclear@12 221 if(bc_sum < 0.0 || bc_sum > 1.0 + EPSILON) {
nuclear@9 222 return false;
nuclear@12 223 bc *= 1.2;
nuclear@9 224 }
nuclear@2 225
nuclear@2 226 sp->t = t;
nuclear@9 227 sp->pos = pt;
nuclear@12 228 sp->norm = norm;
nuclear@9 229 sp->obj = face;
nuclear@12 230 sp->dbg = bc;
nuclear@2 231 return true;
nuclear@2 232 }
nuclear@5 233
nuclear@8 234 float4 reflect(float4 v, float4 n)
nuclear@5 235 {
nuclear@12 236 float4 res = 2.0f * dot(v, n) * n - v;
nuclear@12 237 return res;
nuclear@5 238 }
nuclear@8 239
nuclear@8 240 float4 transform(float4 v, global const float *xform)
nuclear@8 241 {
nuclear@8 242 float4 res;
nuclear@8 243 res.x = v.x * xform[0] + v.y * xform[4] + v.z * xform[8] + xform[12];
nuclear@8 244 res.y = v.x * xform[1] + v.y * xform[5] + v.z * xform[9] + xform[13];
nuclear@8 245 res.z = v.x * xform[2] + v.y * xform[6] + v.z * xform[10] + xform[14];
nuclear@12 246 res.w = 0.0;
nuclear@8 247 return res;
nuclear@8 248 }
nuclear@8 249
nuclear@16 250 void transform_ray(struct Ray *ray, global const float *xform, global const float *invtrans)
nuclear@8 251 {
nuclear@16 252 ray->origin = transform(ray->origin, xform);
nuclear@16 253 ray->dir = transform(ray->dir, invtrans);
nuclear@8 254 }
nuclear@9 255
nuclear@12 256 float4 calc_bary(float4 pt, global const struct Face *face, float4 norm)
nuclear@9 257 {
nuclear@12 258 float4 bc = (float4)(0, 0, 0, 0);
nuclear@9 259
nuclear@12 260 // calculate area of the whole triangle
nuclear@12 261 float4 v1 = face->v[1].pos - face->v[0].pos;
nuclear@12 262 float4 v2 = face->v[2].pos - face->v[0].pos;
nuclear@12 263 float4 xv1v2 = cross(v1, v2);
nuclear@12 264
nuclear@16 265 float area = fabs(dot(xv1v2, norm)) * 0.5;
nuclear@9 266 if(area < EPSILON) {
nuclear@9 267 return bc;
nuclear@9 268 }
nuclear@9 269
nuclear@9 270 float4 pv0 = face->v[0].pos - pt;
nuclear@9 271 float4 pv1 = face->v[1].pos - pt;
nuclear@9 272 float4 pv2 = face->v[2].pos - pt;
nuclear@9 273
nuclear@12 274 // calculate the area of each sub-triangle
nuclear@12 275 float4 x12 = cross(pv1, pv2);
nuclear@12 276 float4 x20 = cross(pv2, pv0);
nuclear@12 277 float4 x01 = cross(pv0, pv1);
nuclear@12 278
nuclear@16 279 float a0 = fabs(dot(x12, norm)) * 0.5;
nuclear@16 280 float a1 = fabs(dot(x20, norm)) * 0.5;
nuclear@16 281 float a2 = fabs(dot(x01, norm)) * 0.5;
nuclear@9 282
nuclear@9 283 bc.x = a0 / area;
nuclear@9 284 bc.y = a1 / area;
nuclear@9 285 bc.z = a2 / area;
nuclear@9 286 return bc;
nuclear@9 287 }