rev |
line source |
nuclear@10
|
1 /*
|
nuclear@10
|
2 libvmath - a vector math library
|
nuclear@10
|
3 Copyright (C) 2004-2015 John Tsiombikas <nuclear@member.fsf.org>
|
nuclear@10
|
4
|
nuclear@10
|
5 This program is free software: you can redistribute it and/or modify
|
nuclear@10
|
6 it under the terms of the GNU Lesser General Public License as published
|
nuclear@10
|
7 by the Free Software Foundation, either version 3 of the License, or
|
nuclear@10
|
8 (at your option) any later version.
|
nuclear@10
|
9
|
nuclear@10
|
10 This program is distributed in the hope that it will be useful,
|
nuclear@10
|
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
|
nuclear@10
|
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
nuclear@10
|
13 GNU Lesser General Public License for more details.
|
nuclear@10
|
14
|
nuclear@10
|
15 You should have received a copy of the GNU Lesser General Public License
|
nuclear@10
|
16 along with this program. If not, see <http://www.gnu.org/licenses/>.
|
nuclear@10
|
17 */
|
nuclear@10
|
18 #include <stdlib.h>
|
nuclear@10
|
19 #include <math.h>
|
nuclear@10
|
20 #include "vmath.h"
|
nuclear@10
|
21
|
nuclear@10
|
22 #if defined(__APPLE__) && !defined(TARGET_IPHONE)
|
nuclear@10
|
23 #include <xmmintrin.h>
|
nuclear@10
|
24
|
nuclear@10
|
25 void enable_fpexcept(void)
|
nuclear@10
|
26 {
|
nuclear@10
|
27 unsigned int bits;
|
nuclear@10
|
28 bits = _MM_MASK_INVALID | _MM_MASK_DIV_ZERO | _MM_MASK_OVERFLOW | _MM_MASK_UNDERFLOW;
|
nuclear@10
|
29 _MM_SET_EXCEPTION_MASK(_MM_GET_EXCEPTION_MASK() & ~bits);
|
nuclear@10
|
30 }
|
nuclear@10
|
31
|
nuclear@10
|
32 void disable_fpexcept(void)
|
nuclear@10
|
33 {
|
nuclear@10
|
34 unsigned int bits;
|
nuclear@10
|
35 bits = _MM_MASK_INVALID | _MM_MASK_DIV_ZERO | _MM_MASK_OVERFLOW | _MM_MASK_UNDERFLOW;
|
nuclear@10
|
36 _MM_SET_EXCEPTION_MASK(_MM_GET_EXCEPTION_MASK() | bits);
|
nuclear@10
|
37 }
|
nuclear@10
|
38
|
nuclear@10
|
39 #elif defined(__GNUC__) && !defined(TARGET_IPHONE) && !defined(__MINGW32__)
|
nuclear@10
|
40 #define __USE_GNU
|
nuclear@10
|
41 #include <fenv.h>
|
nuclear@10
|
42
|
nuclear@10
|
43 void enable_fpexcept(void)
|
nuclear@10
|
44 {
|
nuclear@10
|
45 feenableexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW);
|
nuclear@10
|
46 }
|
nuclear@10
|
47
|
nuclear@10
|
48 void disable_fpexcept(void)
|
nuclear@10
|
49 {
|
nuclear@10
|
50 fedisableexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW);
|
nuclear@10
|
51 }
|
nuclear@10
|
52
|
nuclear@10
|
53 #elif defined(_MSC_VER) || defined(__MINGW32__)
|
nuclear@10
|
54 #include <float.h>
|
nuclear@10
|
55
|
nuclear@10
|
56 #if defined(__MINGW32__) && !defined(_EM_OVERFLOW)
|
nuclear@10
|
57 /* if gcc's float.h gets precedence, the mingw MSVC includes won't be declared */
|
nuclear@10
|
58 #define _MCW_EM 0x8001f
|
nuclear@10
|
59 #define _EM_INVALID 0x10
|
nuclear@10
|
60 #define _EM_ZERODIVIDE 0x08
|
nuclear@10
|
61 #define _EM_OVERFLOW 0x04
|
nuclear@10
|
62 unsigned int __cdecl _clearfp(void);
|
nuclear@10
|
63 unsigned int __cdecl _controlfp(unsigned int, unsigned int);
|
nuclear@10
|
64 #endif
|
nuclear@10
|
65
|
nuclear@10
|
66 void enable_fpexcept(void)
|
nuclear@10
|
67 {
|
nuclear@10
|
68 _clearfp();
|
nuclear@10
|
69 _controlfp(_controlfp(0, 0) & ~(_EM_INVALID | _EM_ZERODIVIDE | _EM_OVERFLOW), _MCW_EM);
|
nuclear@10
|
70 }
|
nuclear@10
|
71
|
nuclear@10
|
72 void disable_fpexcept(void)
|
nuclear@10
|
73 {
|
nuclear@10
|
74 _clearfp();
|
nuclear@10
|
75 _controlfp(_controlfp(0, 0) | (_EM_INVALID | _EM_ZERODIVIDE | _EM_OVERFLOW), _MCW_EM);
|
nuclear@10
|
76 }
|
nuclear@10
|
77 #else
|
nuclear@10
|
78 void enable_fpexcept(void) {}
|
nuclear@10
|
79 void disable_fpexcept(void) {}
|
nuclear@10
|
80 #endif
|
nuclear@10
|
81
|
nuclear@10
|
82
|
nuclear@10
|
83 /** Numerical calculation of integrals using simpson's rule */
|
nuclear@10
|
84 scalar_t integral(scalar_t (*f)(scalar_t), scalar_t low, scalar_t high, int samples)
|
nuclear@10
|
85 {
|
nuclear@10
|
86 int i;
|
nuclear@10
|
87 scalar_t h = (high - low) / (scalar_t)samples;
|
nuclear@10
|
88 scalar_t sum = 0.0;
|
nuclear@10
|
89
|
nuclear@10
|
90 for(i=0; i<samples+1; i++) {
|
nuclear@10
|
91 scalar_t y = f((scalar_t)i * h + low);
|
nuclear@10
|
92 sum += ((!i || i == samples) ? y : ((i % 2) ? 4.0 * y : 2.0 * y)) * (h / 3.0);
|
nuclear@10
|
93 }
|
nuclear@10
|
94 return sum;
|
nuclear@10
|
95 }
|
nuclear@10
|
96
|
nuclear@10
|
97 /** Gaussuan function */
|
nuclear@10
|
98 scalar_t gaussian(scalar_t x, scalar_t mean, scalar_t sdev)
|
nuclear@10
|
99 {
|
nuclear@10
|
100 scalar_t exponent = -SQ(x - mean) / (2.0 * SQ(sdev));
|
nuclear@10
|
101 return 1.0 - -pow(M_E, exponent) / (sdev * sqrt(TWO_PI));
|
nuclear@10
|
102 }
|
nuclear@10
|
103
|
nuclear@10
|
104
|
nuclear@10
|
105 /** b-spline approximation */
|
nuclear@10
|
106 scalar_t bspline(scalar_t a, scalar_t b, scalar_t c, scalar_t d, scalar_t t)
|
nuclear@10
|
107 {
|
nuclear@10
|
108 vec4_t tmp;
|
nuclear@10
|
109 scalar_t tsq = t * t;
|
nuclear@10
|
110
|
nuclear@10
|
111 static mat4_t bspline_mat = {
|
nuclear@10
|
112 {-1, 3, -3, 1},
|
nuclear@10
|
113 {3, -6, 3, 0},
|
nuclear@10
|
114 {-3, 0, 3, 0},
|
nuclear@10
|
115 {1, 4, 1, 0}
|
nuclear@10
|
116 };
|
nuclear@10
|
117
|
nuclear@10
|
118 tmp = v4_scale(v4_transform(v4_cons(a, b, c, d), bspline_mat), 1.0 / 6.0);
|
nuclear@10
|
119 return v4_dot(v4_cons(tsq * t, tsq, t, 1.0), tmp);
|
nuclear@10
|
120 }
|
nuclear@10
|
121
|
nuclear@10
|
122 /** Catmull-rom spline interpolation */
|
nuclear@10
|
123 scalar_t spline(scalar_t a, scalar_t b, scalar_t c, scalar_t d, scalar_t t)
|
nuclear@10
|
124 {
|
nuclear@10
|
125 vec4_t tmp;
|
nuclear@10
|
126 scalar_t tsq = t * t;
|
nuclear@10
|
127
|
nuclear@10
|
128 static mat4_t crspline_mat = {
|
nuclear@10
|
129 {-1, 3, -3, 1},
|
nuclear@10
|
130 {2, -5, 4, -1},
|
nuclear@10
|
131 {-1, 0, 1, 0},
|
nuclear@10
|
132 {0, 2, 0, 0}
|
nuclear@10
|
133 };
|
nuclear@10
|
134
|
nuclear@10
|
135 tmp = v4_scale(v4_transform(v4_cons(a, b, c, d), crspline_mat), 0.5);
|
nuclear@10
|
136 return v4_dot(v4_cons(tsq * t, tsq, t, 1.0), tmp);
|
nuclear@10
|
137 }
|
nuclear@10
|
138
|
nuclear@10
|
139 /** Bezier interpolation */
|
nuclear@10
|
140 scalar_t bezier(scalar_t a, scalar_t b, scalar_t c, scalar_t d, scalar_t t)
|
nuclear@10
|
141 {
|
nuclear@10
|
142 scalar_t omt, omt3, t3, f;
|
nuclear@10
|
143 t3 = t * t * t;
|
nuclear@10
|
144 omt = 1.0f - t;
|
nuclear@10
|
145 omt3 = omt * omt * omt;
|
nuclear@10
|
146 f = 3 * t * omt;
|
nuclear@10
|
147
|
nuclear@10
|
148 return (a * omt3) + (b * f * omt) + (c * f * t) + (d * t3);
|
nuclear@10
|
149 }
|
nuclear@10
|
150
|
nuclear@10
|
151 /* ---- Ken Perlin's implementation of noise ---- */
|
nuclear@10
|
152
|
nuclear@10
|
153 #define B 0x100
|
nuclear@10
|
154 #define BM 0xff
|
nuclear@10
|
155 #define N 0x1000
|
nuclear@10
|
156 #define NP 12 /* 2^N */
|
nuclear@10
|
157 #define NM 0xfff
|
nuclear@10
|
158
|
nuclear@10
|
159 #define s_curve(t) (t * t * (3.0f - 2.0f * t))
|
nuclear@10
|
160
|
nuclear@10
|
161 #define setup(elem, b0, b1, r0, r1) \
|
nuclear@10
|
162 do { \
|
nuclear@10
|
163 scalar_t t = elem + N; \
|
nuclear@10
|
164 b0 = ((int)t) & BM; \
|
nuclear@10
|
165 b1 = (b0 + 1) & BM; \
|
nuclear@10
|
166 r0 = t - (int)t; \
|
nuclear@10
|
167 r1 = r0 - 1.0f; \
|
nuclear@10
|
168 } while(0)
|
nuclear@10
|
169
|
nuclear@10
|
170
|
nuclear@10
|
171 static int perm[B + B + 2]; /* permuted index from g_n onto themselves */
|
nuclear@10
|
172 static vec3_t grad3[B + B + 2]; /* 3D random gradients */
|
nuclear@10
|
173 static vec2_t grad2[B + B + 2]; /* 2D random gradients */
|
nuclear@10
|
174 static scalar_t grad1[B + B + 2]; /* 1D random ... slopes */
|
nuclear@10
|
175 static int tables_valid;
|
nuclear@10
|
176
|
nuclear@10
|
177 static void init_noise()
|
nuclear@10
|
178 {
|
nuclear@10
|
179 int i;
|
nuclear@10
|
180
|
nuclear@10
|
181 /* calculate random gradients */
|
nuclear@10
|
182 for(i=0; i<B; i++) {
|
nuclear@10
|
183 perm[i] = i; /* .. and initialize permutation mapping to identity */
|
nuclear@10
|
184
|
nuclear@10
|
185 grad1[i] = (scalar_t)((rand() % (B + B)) - B) / B;
|
nuclear@10
|
186
|
nuclear@10
|
187 grad2[i].x = (scalar_t)((rand() % (B + B)) - B) / B;
|
nuclear@10
|
188 grad2[i].y = (scalar_t)((rand() % (B + B)) - B) / B;
|
nuclear@10
|
189 grad2[i] = v2_normalize(grad2[i]);
|
nuclear@10
|
190
|
nuclear@10
|
191 grad3[i].x = (scalar_t)((rand() % (B + B)) - B) / B;
|
nuclear@10
|
192 grad3[i].y = (scalar_t)((rand() % (B + B)) - B) / B;
|
nuclear@10
|
193 grad3[i].z = (scalar_t)((rand() % (B + B)) - B) / B;
|
nuclear@10
|
194 grad3[i] = v3_normalize(grad3[i]);
|
nuclear@10
|
195 }
|
nuclear@10
|
196
|
nuclear@10
|
197 /* permute indices by swapping them randomly */
|
nuclear@10
|
198 for(i=0; i<B; i++) {
|
nuclear@10
|
199 int rand_idx = rand() % B;
|
nuclear@10
|
200
|
nuclear@10
|
201 int tmp = perm[i];
|
nuclear@10
|
202 perm[i] = perm[rand_idx];
|
nuclear@10
|
203 perm[rand_idx] = tmp;
|
nuclear@10
|
204 }
|
nuclear@10
|
205
|
nuclear@10
|
206 /* fill up the rest of the arrays by duplicating the existing gradients */
|
nuclear@10
|
207 /* and permutations */
|
nuclear@10
|
208 for(i=0; i<B+2; i++) {
|
nuclear@10
|
209 perm[B + i] = perm[i];
|
nuclear@10
|
210 grad1[B + i] = grad1[i];
|
nuclear@10
|
211 grad2[B + i] = grad2[i];
|
nuclear@10
|
212 grad3[B + i] = grad3[i];
|
nuclear@10
|
213 }
|
nuclear@10
|
214 }
|
nuclear@10
|
215
|
nuclear@10
|
216 scalar_t noise1(scalar_t x)
|
nuclear@10
|
217 {
|
nuclear@10
|
218 int bx0, bx1;
|
nuclear@10
|
219 scalar_t rx0, rx1, sx, u, v;
|
nuclear@10
|
220
|
nuclear@10
|
221 if(!tables_valid) {
|
nuclear@10
|
222 init_noise();
|
nuclear@10
|
223 tables_valid = 1;
|
nuclear@10
|
224 }
|
nuclear@10
|
225
|
nuclear@10
|
226 setup(x, bx0, bx1, rx0, rx1);
|
nuclear@10
|
227 sx = s_curve(rx0);
|
nuclear@10
|
228 u = rx0 * grad1[perm[bx0]];
|
nuclear@10
|
229 v = rx1 * grad1[perm[bx1]];
|
nuclear@10
|
230
|
nuclear@10
|
231 return lerp(u, v, sx);
|
nuclear@10
|
232 }
|
nuclear@10
|
233
|
nuclear@10
|
234 scalar_t noise2(scalar_t x, scalar_t y)
|
nuclear@10
|
235 {
|
nuclear@10
|
236 int i, j, b00, b10, b01, b11;
|
nuclear@10
|
237 int bx0, bx1, by0, by1;
|
nuclear@10
|
238 scalar_t rx0, rx1, ry0, ry1;
|
nuclear@10
|
239 scalar_t sx, sy, u, v, a, b;
|
nuclear@10
|
240
|
nuclear@10
|
241 if(!tables_valid) {
|
nuclear@10
|
242 init_noise();
|
nuclear@10
|
243 tables_valid = 1;
|
nuclear@10
|
244 }
|
nuclear@10
|
245
|
nuclear@10
|
246 setup(x, bx0, bx1, rx0, rx1);
|
nuclear@10
|
247 setup(y, by0, by1, ry0, ry1);
|
nuclear@10
|
248
|
nuclear@10
|
249 i = perm[bx0];
|
nuclear@10
|
250 j = perm[bx1];
|
nuclear@10
|
251
|
nuclear@10
|
252 b00 = perm[i + by0];
|
nuclear@10
|
253 b10 = perm[j + by0];
|
nuclear@10
|
254 b01 = perm[i + by1];
|
nuclear@10
|
255 b11 = perm[j + by1];
|
nuclear@10
|
256
|
nuclear@10
|
257 /* calculate hermite inteprolating factors */
|
nuclear@10
|
258 sx = s_curve(rx0);
|
nuclear@10
|
259 sy = s_curve(ry0);
|
nuclear@10
|
260
|
nuclear@10
|
261 /* interpolate along the left edge */
|
nuclear@10
|
262 u = v2_dot(grad2[b00], v2_cons(rx0, ry0));
|
nuclear@10
|
263 v = v2_dot(grad2[b10], v2_cons(rx1, ry0));
|
nuclear@10
|
264 a = lerp(u, v, sx);
|
nuclear@10
|
265
|
nuclear@10
|
266 /* interpolate along the right edge */
|
nuclear@10
|
267 u = v2_dot(grad2[b01], v2_cons(rx0, ry1));
|
nuclear@10
|
268 v = v2_dot(grad2[b11], v2_cons(rx1, ry1));
|
nuclear@10
|
269 b = lerp(u, v, sx);
|
nuclear@10
|
270
|
nuclear@10
|
271 /* interpolate between them */
|
nuclear@10
|
272 return lerp(a, b, sy);
|
nuclear@10
|
273 }
|
nuclear@10
|
274
|
nuclear@10
|
275 scalar_t noise3(scalar_t x, scalar_t y, scalar_t z)
|
nuclear@10
|
276 {
|
nuclear@10
|
277 int i, j;
|
nuclear@10
|
278 int bx0, bx1, by0, by1, bz0, bz1;
|
nuclear@10
|
279 int b00, b10, b01, b11;
|
nuclear@10
|
280 scalar_t rx0, rx1, ry0, ry1, rz0, rz1;
|
nuclear@10
|
281 scalar_t sx, sy, sz;
|
nuclear@10
|
282 scalar_t u, v, a, b, c, d;
|
nuclear@10
|
283
|
nuclear@10
|
284 if(!tables_valid) {
|
nuclear@10
|
285 init_noise();
|
nuclear@10
|
286 tables_valid = 1;
|
nuclear@10
|
287 }
|
nuclear@10
|
288
|
nuclear@10
|
289 setup(x, bx0, bx1, rx0, rx1);
|
nuclear@10
|
290 setup(y, by0, by1, ry0, ry1);
|
nuclear@10
|
291 setup(z, bz0, bz1, rz0, rz1);
|
nuclear@10
|
292
|
nuclear@10
|
293 i = perm[bx0];
|
nuclear@10
|
294 j = perm[bx1];
|
nuclear@10
|
295
|
nuclear@10
|
296 b00 = perm[i + by0];
|
nuclear@10
|
297 b10 = perm[j + by0];
|
nuclear@10
|
298 b01 = perm[i + by1];
|
nuclear@10
|
299 b11 = perm[j + by1];
|
nuclear@10
|
300
|
nuclear@10
|
301 /* calculate hermite interpolating factors */
|
nuclear@10
|
302 sx = s_curve(rx0);
|
nuclear@10
|
303 sy = s_curve(ry0);
|
nuclear@10
|
304 sz = s_curve(rz0);
|
nuclear@10
|
305
|
nuclear@10
|
306 /* interpolate along the top slice of the cell */
|
nuclear@10
|
307 u = v3_dot(grad3[b00 + bz0], v3_cons(rx0, ry0, rz0));
|
nuclear@10
|
308 v = v3_dot(grad3[b10 + bz0], v3_cons(rx1, ry0, rz0));
|
nuclear@10
|
309 a = lerp(u, v, sx);
|
nuclear@10
|
310
|
nuclear@10
|
311 u = v3_dot(grad3[b01 + bz0], v3_cons(rx0, ry1, rz0));
|
nuclear@10
|
312 v = v3_dot(grad3[b11 + bz0], v3_cons(rx1, ry1, rz0));
|
nuclear@10
|
313 b = lerp(u, v, sx);
|
nuclear@10
|
314
|
nuclear@10
|
315 c = lerp(a, b, sy);
|
nuclear@10
|
316
|
nuclear@10
|
317 /* interpolate along the bottom slice of the cell */
|
nuclear@10
|
318 u = v3_dot(grad3[b00 + bz0], v3_cons(rx0, ry0, rz1));
|
nuclear@10
|
319 v = v3_dot(grad3[b10 + bz0], v3_cons(rx1, ry0, rz1));
|
nuclear@10
|
320 a = lerp(u, v, sx);
|
nuclear@10
|
321
|
nuclear@10
|
322 u = v3_dot(grad3[b01 + bz0], v3_cons(rx0, ry1, rz1));
|
nuclear@10
|
323 v = v3_dot(grad3[b11 + bz0], v3_cons(rx1, ry1, rz1));
|
nuclear@10
|
324 b = lerp(u, v, sx);
|
nuclear@10
|
325
|
nuclear@10
|
326 d = lerp(a, b, sy);
|
nuclear@10
|
327
|
nuclear@10
|
328 /* interpolate between slices */
|
nuclear@10
|
329 return lerp(c, d, sz);
|
nuclear@10
|
330 }
|
nuclear@10
|
331
|
nuclear@10
|
332 scalar_t fbm1(scalar_t x, int octaves)
|
nuclear@10
|
333 {
|
nuclear@10
|
334 int i;
|
nuclear@10
|
335 scalar_t res = 0.0f, freq = 1.0f;
|
nuclear@10
|
336 for(i=0; i<octaves; i++) {
|
nuclear@10
|
337 res += noise1(x * freq) / freq;
|
nuclear@10
|
338 freq *= 2.0f;
|
nuclear@10
|
339 }
|
nuclear@10
|
340 return res;
|
nuclear@10
|
341 }
|
nuclear@10
|
342
|
nuclear@10
|
343 scalar_t fbm2(scalar_t x, scalar_t y, int octaves)
|
nuclear@10
|
344 {
|
nuclear@10
|
345 int i;
|
nuclear@10
|
346 scalar_t res = 0.0f, freq = 1.0f;
|
nuclear@10
|
347 for(i=0; i<octaves; i++) {
|
nuclear@10
|
348 res += noise2(x * freq, y * freq) / freq;
|
nuclear@10
|
349 freq *= 2.0f;
|
nuclear@10
|
350 }
|
nuclear@10
|
351 return res;
|
nuclear@10
|
352 }
|
nuclear@10
|
353
|
nuclear@10
|
354 scalar_t fbm3(scalar_t x, scalar_t y, scalar_t z, int octaves)
|
nuclear@10
|
355 {
|
nuclear@10
|
356 int i;
|
nuclear@10
|
357 scalar_t res = 0.0f, freq = 1.0f;
|
nuclear@10
|
358 for(i=0; i<octaves; i++) {
|
nuclear@10
|
359 res += noise3(x * freq, y * freq, z * freq) / freq;
|
nuclear@10
|
360 freq *= 2.0f;
|
nuclear@10
|
361 }
|
nuclear@10
|
362 return res;
|
nuclear@10
|
363 }
|
nuclear@10
|
364
|
nuclear@10
|
365 scalar_t turbulence1(scalar_t x, int octaves)
|
nuclear@10
|
366 {
|
nuclear@10
|
367 int i;
|
nuclear@10
|
368 scalar_t res = 0.0f, freq = 1.0f;
|
nuclear@10
|
369 for(i=0; i<octaves; i++) {
|
nuclear@10
|
370 res += fabs(noise1(x * freq) / freq);
|
nuclear@10
|
371 freq *= 2.0f;
|
nuclear@10
|
372 }
|
nuclear@10
|
373 return res;
|
nuclear@10
|
374 }
|
nuclear@10
|
375
|
nuclear@10
|
376 scalar_t turbulence2(scalar_t x, scalar_t y, int octaves)
|
nuclear@10
|
377 {
|
nuclear@10
|
378 int i;
|
nuclear@10
|
379 scalar_t res = 0.0f, freq = 1.0f;
|
nuclear@10
|
380 for(i=0; i<octaves; i++) {
|
nuclear@10
|
381 res += fabs(noise2(x * freq, y * freq) / freq);
|
nuclear@10
|
382 freq *= 2.0f;
|
nuclear@10
|
383 }
|
nuclear@10
|
384 return res;
|
nuclear@10
|
385 }
|
nuclear@10
|
386
|
nuclear@10
|
387 scalar_t turbulence3(scalar_t x, scalar_t y, scalar_t z, int octaves)
|
nuclear@10
|
388 {
|
nuclear@10
|
389 int i;
|
nuclear@10
|
390 scalar_t res = 0.0f, freq = 1.0f;
|
nuclear@10
|
391 for(i=0; i<octaves; i++) {
|
nuclear@10
|
392 res += fabs(noise3(x * freq, y * freq, z * freq) / freq);
|
nuclear@10
|
393 freq *= 2.0f;
|
nuclear@10
|
394 }
|
nuclear@10
|
395 return res;
|
nuclear@10
|
396 }
|