rev |
line source |
nuclear@14
|
1 /*
|
nuclear@14
|
2 * jcparam.c
|
nuclear@14
|
3 *
|
nuclear@14
|
4 * Copyright (C) 1991-1998, Thomas G. Lane.
|
nuclear@14
|
5 * This file is part of the Independent JPEG Group's software.
|
nuclear@14
|
6 * For conditions of distribution and use, see the accompanying README file.
|
nuclear@14
|
7 *
|
nuclear@14
|
8 * This file contains optional default-setting code for the JPEG compressor.
|
nuclear@14
|
9 * Applications do not have to use this file, but those that don't use it
|
nuclear@14
|
10 * must know a lot more about the innards of the JPEG code.
|
nuclear@14
|
11 */
|
nuclear@14
|
12
|
nuclear@14
|
13 #define JPEG_INTERNALS
|
nuclear@14
|
14 #include "jinclude.h"
|
nuclear@14
|
15 #include "jpeglib.h"
|
nuclear@14
|
16
|
nuclear@14
|
17
|
nuclear@14
|
18 /*
|
nuclear@14
|
19 * Quantization table setup routines
|
nuclear@14
|
20 */
|
nuclear@14
|
21
|
nuclear@14
|
22 GLOBAL(void)
|
nuclear@14
|
23 jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,
|
nuclear@14
|
24 const unsigned int *basic_table,
|
nuclear@14
|
25 int scale_factor, boolean force_baseline)
|
nuclear@14
|
26 /* Define a quantization table equal to the basic_table times
|
nuclear@14
|
27 * a scale factor (given as a percentage).
|
nuclear@14
|
28 * If force_baseline is TRUE, the computed quantization table entries
|
nuclear@14
|
29 * are limited to 1..255 for JPEG baseline compatibility.
|
nuclear@14
|
30 */
|
nuclear@14
|
31 {
|
nuclear@14
|
32 JQUANT_TBL ** qtblptr;
|
nuclear@14
|
33 int i;
|
nuclear@14
|
34 long temp;
|
nuclear@14
|
35
|
nuclear@14
|
36 /* Safety check to ensure start_compress not called yet. */
|
nuclear@14
|
37 if (cinfo->global_state != CSTATE_START)
|
nuclear@14
|
38 ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
nuclear@14
|
39
|
nuclear@14
|
40 if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS)
|
nuclear@14
|
41 ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl);
|
nuclear@14
|
42
|
nuclear@14
|
43 qtblptr = & cinfo->quant_tbl_ptrs[which_tbl];
|
nuclear@14
|
44
|
nuclear@14
|
45 if (*qtblptr == NULL)
|
nuclear@14
|
46 *qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo);
|
nuclear@14
|
47
|
nuclear@14
|
48 for (i = 0; i < DCTSIZE2; i++) {
|
nuclear@14
|
49 temp = ((long) basic_table[i] * scale_factor + 50L) / 100L;
|
nuclear@14
|
50 /* limit the values to the valid range */
|
nuclear@14
|
51 if (temp <= 0L) temp = 1L;
|
nuclear@14
|
52 if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */
|
nuclear@14
|
53 if (force_baseline && temp > 255L)
|
nuclear@14
|
54 temp = 255L; /* limit to baseline range if requested */
|
nuclear@14
|
55 (*qtblptr)->quantval[i] = (UINT16) temp;
|
nuclear@14
|
56 }
|
nuclear@14
|
57
|
nuclear@14
|
58 /* Initialize sent_table FALSE so table will be written to JPEG file. */
|
nuclear@14
|
59 (*qtblptr)->sent_table = FALSE;
|
nuclear@14
|
60 }
|
nuclear@14
|
61
|
nuclear@14
|
62
|
nuclear@14
|
63 GLOBAL(void)
|
nuclear@14
|
64 jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
|
nuclear@14
|
65 boolean force_baseline)
|
nuclear@14
|
66 /* Set or change the 'quality' (quantization) setting, using default tables
|
nuclear@14
|
67 * and a straight percentage-scaling quality scale. In most cases it's better
|
nuclear@14
|
68 * to use jpeg_set_quality (below); this entry point is provided for
|
nuclear@14
|
69 * applications that insist on a linear percentage scaling.
|
nuclear@14
|
70 */
|
nuclear@14
|
71 {
|
nuclear@14
|
72 /* These are the sample quantization tables given in JPEG spec section K.1.
|
nuclear@14
|
73 * The spec says that the values given produce "good" quality, and
|
nuclear@14
|
74 * when divided by 2, "very good" quality.
|
nuclear@14
|
75 */
|
nuclear@14
|
76 static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = {
|
nuclear@14
|
77 16, 11, 10, 16, 24, 40, 51, 61,
|
nuclear@14
|
78 12, 12, 14, 19, 26, 58, 60, 55,
|
nuclear@14
|
79 14, 13, 16, 24, 40, 57, 69, 56,
|
nuclear@14
|
80 14, 17, 22, 29, 51, 87, 80, 62,
|
nuclear@14
|
81 18, 22, 37, 56, 68, 109, 103, 77,
|
nuclear@14
|
82 24, 35, 55, 64, 81, 104, 113, 92,
|
nuclear@14
|
83 49, 64, 78, 87, 103, 121, 120, 101,
|
nuclear@14
|
84 72, 92, 95, 98, 112, 100, 103, 99
|
nuclear@14
|
85 };
|
nuclear@14
|
86 static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = {
|
nuclear@14
|
87 17, 18, 24, 47, 99, 99, 99, 99,
|
nuclear@14
|
88 18, 21, 26, 66, 99, 99, 99, 99,
|
nuclear@14
|
89 24, 26, 56, 99, 99, 99, 99, 99,
|
nuclear@14
|
90 47, 66, 99, 99, 99, 99, 99, 99,
|
nuclear@14
|
91 99, 99, 99, 99, 99, 99, 99, 99,
|
nuclear@14
|
92 99, 99, 99, 99, 99, 99, 99, 99,
|
nuclear@14
|
93 99, 99, 99, 99, 99, 99, 99, 99,
|
nuclear@14
|
94 99, 99, 99, 99, 99, 99, 99, 99
|
nuclear@14
|
95 };
|
nuclear@14
|
96
|
nuclear@14
|
97 /* Set up two quantization tables using the specified scaling */
|
nuclear@14
|
98 jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
|
nuclear@14
|
99 scale_factor, force_baseline);
|
nuclear@14
|
100 jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
|
nuclear@14
|
101 scale_factor, force_baseline);
|
nuclear@14
|
102 }
|
nuclear@14
|
103
|
nuclear@14
|
104
|
nuclear@14
|
105 GLOBAL(int)
|
nuclear@14
|
106 jpeg_quality_scaling (int quality)
|
nuclear@14
|
107 /* Convert a user-specified quality rating to a percentage scaling factor
|
nuclear@14
|
108 * for an underlying quantization table, using our recommended scaling curve.
|
nuclear@14
|
109 * The input 'quality' factor should be 0 (terrible) to 100 (very good).
|
nuclear@14
|
110 */
|
nuclear@14
|
111 {
|
nuclear@14
|
112 /* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */
|
nuclear@14
|
113 if (quality <= 0) quality = 1;
|
nuclear@14
|
114 if (quality > 100) quality = 100;
|
nuclear@14
|
115
|
nuclear@14
|
116 /* The basic table is used as-is (scaling 100) for a quality of 50.
|
nuclear@14
|
117 * Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
|
nuclear@14
|
118 * note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table
|
nuclear@14
|
119 * to make all the table entries 1 (hence, minimum quantization loss).
|
nuclear@14
|
120 * Qualities 1..50 are converted to scaling percentage 5000/Q.
|
nuclear@14
|
121 */
|
nuclear@14
|
122 if (quality < 50)
|
nuclear@14
|
123 quality = 5000 / quality;
|
nuclear@14
|
124 else
|
nuclear@14
|
125 quality = 200 - quality*2;
|
nuclear@14
|
126
|
nuclear@14
|
127 return quality;
|
nuclear@14
|
128 }
|
nuclear@14
|
129
|
nuclear@14
|
130
|
nuclear@14
|
131 GLOBAL(void)
|
nuclear@14
|
132 jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline)
|
nuclear@14
|
133 /* Set or change the 'quality' (quantization) setting, using default tables.
|
nuclear@14
|
134 * This is the standard quality-adjusting entry point for typical user
|
nuclear@14
|
135 * interfaces; only those who want detailed control over quantization tables
|
nuclear@14
|
136 * would use the preceding three routines directly.
|
nuclear@14
|
137 */
|
nuclear@14
|
138 {
|
nuclear@14
|
139 /* Convert user 0-100 rating to percentage scaling */
|
nuclear@14
|
140 quality = jpeg_quality_scaling(quality);
|
nuclear@14
|
141
|
nuclear@14
|
142 /* Set up standard quality tables */
|
nuclear@14
|
143 jpeg_set_linear_quality(cinfo, quality, force_baseline);
|
nuclear@14
|
144 }
|
nuclear@14
|
145
|
nuclear@14
|
146
|
nuclear@14
|
147 /*
|
nuclear@14
|
148 * Huffman table setup routines
|
nuclear@14
|
149 */
|
nuclear@14
|
150
|
nuclear@14
|
151 LOCAL(void)
|
nuclear@14
|
152 add_huff_table (j_compress_ptr cinfo,
|
nuclear@14
|
153 JHUFF_TBL **htblptr, const UINT8 *bits, const UINT8 *val)
|
nuclear@14
|
154 /* Define a Huffman table */
|
nuclear@14
|
155 {
|
nuclear@14
|
156 int nsymbols, len;
|
nuclear@14
|
157
|
nuclear@14
|
158 if (*htblptr == NULL)
|
nuclear@14
|
159 *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
|
nuclear@14
|
160
|
nuclear@14
|
161 /* Copy the number-of-symbols-of-each-code-length counts */
|
nuclear@14
|
162 MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits));
|
nuclear@14
|
163
|
nuclear@14
|
164 /* Validate the counts. We do this here mainly so we can copy the right
|
nuclear@14
|
165 * number of symbols from the val[] array, without risking marching off
|
nuclear@14
|
166 * the end of memory. jchuff.c will do a more thorough test later.
|
nuclear@14
|
167 */
|
nuclear@14
|
168 nsymbols = 0;
|
nuclear@14
|
169 for (len = 1; len <= 16; len++)
|
nuclear@14
|
170 nsymbols += bits[len];
|
nuclear@14
|
171 if (nsymbols < 1 || nsymbols > 256)
|
nuclear@14
|
172 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
nuclear@14
|
173
|
nuclear@14
|
174 MEMCOPY((*htblptr)->huffval, val, nsymbols * SIZEOF(UINT8));
|
nuclear@14
|
175
|
nuclear@14
|
176 /* Initialize sent_table FALSE so table will be written to JPEG file. */
|
nuclear@14
|
177 (*htblptr)->sent_table = FALSE;
|
nuclear@14
|
178 }
|
nuclear@14
|
179
|
nuclear@14
|
180
|
nuclear@14
|
181 LOCAL(void)
|
nuclear@14
|
182 std_huff_tables (j_compress_ptr cinfo)
|
nuclear@14
|
183 /* Set up the standard Huffman tables (cf. JPEG standard section K.3) */
|
nuclear@14
|
184 /* IMPORTANT: these are only valid for 8-bit data precision! */
|
nuclear@14
|
185 {
|
nuclear@14
|
186 static const UINT8 bits_dc_luminance[17] =
|
nuclear@14
|
187 { /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
|
nuclear@14
|
188 static const UINT8 val_dc_luminance[] =
|
nuclear@14
|
189 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
|
nuclear@14
|
190
|
nuclear@14
|
191 static const UINT8 bits_dc_chrominance[17] =
|
nuclear@14
|
192 { /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
|
nuclear@14
|
193 static const UINT8 val_dc_chrominance[] =
|
nuclear@14
|
194 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
|
nuclear@14
|
195
|
nuclear@14
|
196 static const UINT8 bits_ac_luminance[17] =
|
nuclear@14
|
197 { /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
|
nuclear@14
|
198 static const UINT8 val_ac_luminance[] =
|
nuclear@14
|
199 { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
|
nuclear@14
|
200 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
|
nuclear@14
|
201 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
|
nuclear@14
|
202 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
|
nuclear@14
|
203 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
|
nuclear@14
|
204 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
|
nuclear@14
|
205 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
|
nuclear@14
|
206 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
|
nuclear@14
|
207 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
|
nuclear@14
|
208 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
|
nuclear@14
|
209 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
|
nuclear@14
|
210 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
|
nuclear@14
|
211 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
|
nuclear@14
|
212 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
|
nuclear@14
|
213 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
|
nuclear@14
|
214 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
|
nuclear@14
|
215 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
|
nuclear@14
|
216 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
|
nuclear@14
|
217 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
|
nuclear@14
|
218 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
|
nuclear@14
|
219 0xf9, 0xfa };
|
nuclear@14
|
220
|
nuclear@14
|
221 static const UINT8 bits_ac_chrominance[17] =
|
nuclear@14
|
222 { /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
|
nuclear@14
|
223 static const UINT8 val_ac_chrominance[] =
|
nuclear@14
|
224 { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
|
nuclear@14
|
225 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
|
nuclear@14
|
226 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
|
nuclear@14
|
227 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
|
nuclear@14
|
228 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
|
nuclear@14
|
229 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
|
nuclear@14
|
230 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
|
nuclear@14
|
231 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
|
nuclear@14
|
232 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
|
nuclear@14
|
233 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
|
nuclear@14
|
234 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
|
nuclear@14
|
235 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
|
nuclear@14
|
236 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
|
nuclear@14
|
237 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
|
nuclear@14
|
238 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
|
nuclear@14
|
239 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
|
nuclear@14
|
240 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
|
nuclear@14
|
241 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
|
nuclear@14
|
242 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
|
nuclear@14
|
243 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
|
nuclear@14
|
244 0xf9, 0xfa };
|
nuclear@14
|
245
|
nuclear@14
|
246 add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[0],
|
nuclear@14
|
247 bits_dc_luminance, val_dc_luminance);
|
nuclear@14
|
248 add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[0],
|
nuclear@14
|
249 bits_ac_luminance, val_ac_luminance);
|
nuclear@14
|
250 add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[1],
|
nuclear@14
|
251 bits_dc_chrominance, val_dc_chrominance);
|
nuclear@14
|
252 add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[1],
|
nuclear@14
|
253 bits_ac_chrominance, val_ac_chrominance);
|
nuclear@14
|
254 }
|
nuclear@14
|
255
|
nuclear@14
|
256
|
nuclear@14
|
257 /*
|
nuclear@14
|
258 * Default parameter setup for compression.
|
nuclear@14
|
259 *
|
nuclear@14
|
260 * Applications that don't choose to use this routine must do their
|
nuclear@14
|
261 * own setup of all these parameters. Alternately, you can call this
|
nuclear@14
|
262 * to establish defaults and then alter parameters selectively. This
|
nuclear@14
|
263 * is the recommended approach since, if we add any new parameters,
|
nuclear@14
|
264 * your code will still work (they'll be set to reasonable defaults).
|
nuclear@14
|
265 */
|
nuclear@14
|
266
|
nuclear@14
|
267 GLOBAL(void)
|
nuclear@14
|
268 jpeg_set_defaults (j_compress_ptr cinfo)
|
nuclear@14
|
269 {
|
nuclear@14
|
270 int i;
|
nuclear@14
|
271
|
nuclear@14
|
272 /* Safety check to ensure start_compress not called yet. */
|
nuclear@14
|
273 if (cinfo->global_state != CSTATE_START)
|
nuclear@14
|
274 ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
nuclear@14
|
275
|
nuclear@14
|
276 /* Allocate comp_info array large enough for maximum component count.
|
nuclear@14
|
277 * Array is made permanent in case application wants to compress
|
nuclear@14
|
278 * multiple images at same param settings.
|
nuclear@14
|
279 */
|
nuclear@14
|
280 if (cinfo->comp_info == NULL)
|
nuclear@14
|
281 cinfo->comp_info = (jpeg_component_info *)
|
nuclear@14
|
282 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
|
nuclear@14
|
283 MAX_COMPONENTS * SIZEOF(jpeg_component_info));
|
nuclear@14
|
284
|
nuclear@14
|
285 /* Initialize everything not dependent on the color space */
|
nuclear@14
|
286
|
nuclear@14
|
287 cinfo->data_precision = BITS_IN_JSAMPLE;
|
nuclear@14
|
288 /* Set up two quantization tables using default quality of 75 */
|
nuclear@14
|
289 jpeg_set_quality(cinfo, 75, TRUE);
|
nuclear@14
|
290 /* Set up two Huffman tables */
|
nuclear@14
|
291 std_huff_tables(cinfo);
|
nuclear@14
|
292
|
nuclear@14
|
293 /* Initialize default arithmetic coding conditioning */
|
nuclear@14
|
294 for (i = 0; i < NUM_ARITH_TBLS; i++) {
|
nuclear@14
|
295 cinfo->arith_dc_L[i] = 0;
|
nuclear@14
|
296 cinfo->arith_dc_U[i] = 1;
|
nuclear@14
|
297 cinfo->arith_ac_K[i] = 5;
|
nuclear@14
|
298 }
|
nuclear@14
|
299
|
nuclear@14
|
300 /* Default is no multiple-scan output */
|
nuclear@14
|
301 cinfo->scan_info = NULL;
|
nuclear@14
|
302 cinfo->num_scans = 0;
|
nuclear@14
|
303
|
nuclear@14
|
304 /* Expect normal source image, not raw downsampled data */
|
nuclear@14
|
305 cinfo->raw_data_in = FALSE;
|
nuclear@14
|
306
|
nuclear@14
|
307 /* Use Huffman coding, not arithmetic coding, by default */
|
nuclear@14
|
308 cinfo->arith_code = FALSE;
|
nuclear@14
|
309
|
nuclear@14
|
310 /* By default, don't do extra passes to optimize entropy coding */
|
nuclear@14
|
311 cinfo->optimize_coding = FALSE;
|
nuclear@14
|
312 /* The standard Huffman tables are only valid for 8-bit data precision.
|
nuclear@14
|
313 * If the precision is higher, force optimization on so that usable
|
nuclear@14
|
314 * tables will be computed. This test can be removed if default tables
|
nuclear@14
|
315 * are supplied that are valid for the desired precision.
|
nuclear@14
|
316 */
|
nuclear@14
|
317 if (cinfo->data_precision > 8)
|
nuclear@14
|
318 cinfo->optimize_coding = TRUE;
|
nuclear@14
|
319
|
nuclear@14
|
320 /* By default, use the simpler non-cosited sampling alignment */
|
nuclear@14
|
321 cinfo->CCIR601_sampling = FALSE;
|
nuclear@14
|
322
|
nuclear@14
|
323 /* No input smoothing */
|
nuclear@14
|
324 cinfo->smoothing_factor = 0;
|
nuclear@14
|
325
|
nuclear@14
|
326 /* DCT algorithm preference */
|
nuclear@14
|
327 cinfo->dct_method = JDCT_DEFAULT;
|
nuclear@14
|
328
|
nuclear@14
|
329 /* No restart markers */
|
nuclear@14
|
330 cinfo->restart_interval = 0;
|
nuclear@14
|
331 cinfo->restart_in_rows = 0;
|
nuclear@14
|
332
|
nuclear@14
|
333 /* Fill in default JFIF marker parameters. Note that whether the marker
|
nuclear@14
|
334 * will actually be written is determined by jpeg_set_colorspace.
|
nuclear@14
|
335 *
|
nuclear@14
|
336 * By default, the library emits JFIF version code 1.01.
|
nuclear@14
|
337 * An application that wants to emit JFIF 1.02 extension markers should set
|
nuclear@14
|
338 * JFIF_minor_version to 2. We could probably get away with just defaulting
|
nuclear@14
|
339 * to 1.02, but there may still be some decoders in use that will complain
|
nuclear@14
|
340 * about that; saying 1.01 should minimize compatibility problems.
|
nuclear@14
|
341 */
|
nuclear@14
|
342 cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */
|
nuclear@14
|
343 cinfo->JFIF_minor_version = 1;
|
nuclear@14
|
344 cinfo->density_unit = 0; /* Pixel size is unknown by default */
|
nuclear@14
|
345 cinfo->X_density = 1; /* Pixel aspect ratio is square by default */
|
nuclear@14
|
346 cinfo->Y_density = 1;
|
nuclear@14
|
347
|
nuclear@14
|
348 /* Choose JPEG colorspace based on input space, set defaults accordingly */
|
nuclear@14
|
349
|
nuclear@14
|
350 jpeg_default_colorspace(cinfo);
|
nuclear@14
|
351 }
|
nuclear@14
|
352
|
nuclear@14
|
353
|
nuclear@14
|
354 /*
|
nuclear@14
|
355 * Select an appropriate JPEG colorspace for in_color_space.
|
nuclear@14
|
356 */
|
nuclear@14
|
357
|
nuclear@14
|
358 GLOBAL(void)
|
nuclear@14
|
359 jpeg_default_colorspace (j_compress_ptr cinfo)
|
nuclear@14
|
360 {
|
nuclear@14
|
361 switch (cinfo->in_color_space) {
|
nuclear@14
|
362 case JCS_GRAYSCALE:
|
nuclear@14
|
363 jpeg_set_colorspace(cinfo, JCS_GRAYSCALE);
|
nuclear@14
|
364 break;
|
nuclear@14
|
365 case JCS_RGB:
|
nuclear@14
|
366 jpeg_set_colorspace(cinfo, JCS_YCbCr);
|
nuclear@14
|
367 break;
|
nuclear@14
|
368 case JCS_YCbCr:
|
nuclear@14
|
369 jpeg_set_colorspace(cinfo, JCS_YCbCr);
|
nuclear@14
|
370 break;
|
nuclear@14
|
371 case JCS_CMYK:
|
nuclear@14
|
372 jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */
|
nuclear@14
|
373 break;
|
nuclear@14
|
374 case JCS_YCCK:
|
nuclear@14
|
375 jpeg_set_colorspace(cinfo, JCS_YCCK);
|
nuclear@14
|
376 break;
|
nuclear@14
|
377 case JCS_UNKNOWN:
|
nuclear@14
|
378 jpeg_set_colorspace(cinfo, JCS_UNKNOWN);
|
nuclear@14
|
379 break;
|
nuclear@14
|
380 default:
|
nuclear@14
|
381 ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
nuclear@14
|
382 }
|
nuclear@14
|
383 }
|
nuclear@14
|
384
|
nuclear@14
|
385
|
nuclear@14
|
386 /*
|
nuclear@14
|
387 * Set the JPEG colorspace, and choose colorspace-dependent default values.
|
nuclear@14
|
388 */
|
nuclear@14
|
389
|
nuclear@14
|
390 GLOBAL(void)
|
nuclear@14
|
391 jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
|
nuclear@14
|
392 {
|
nuclear@14
|
393 jpeg_component_info * compptr;
|
nuclear@14
|
394 int ci;
|
nuclear@14
|
395
|
nuclear@14
|
396 #define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl) \
|
nuclear@14
|
397 (compptr = &cinfo->comp_info[index], \
|
nuclear@14
|
398 compptr->component_id = (id), \
|
nuclear@14
|
399 compptr->h_samp_factor = (hsamp), \
|
nuclear@14
|
400 compptr->v_samp_factor = (vsamp), \
|
nuclear@14
|
401 compptr->quant_tbl_no = (quant), \
|
nuclear@14
|
402 compptr->dc_tbl_no = (dctbl), \
|
nuclear@14
|
403 compptr->ac_tbl_no = (actbl) )
|
nuclear@14
|
404
|
nuclear@14
|
405 /* Safety check to ensure start_compress not called yet. */
|
nuclear@14
|
406 if (cinfo->global_state != CSTATE_START)
|
nuclear@14
|
407 ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
nuclear@14
|
408
|
nuclear@14
|
409 /* For all colorspaces, we use Q and Huff tables 0 for luminance components,
|
nuclear@14
|
410 * tables 1 for chrominance components.
|
nuclear@14
|
411 */
|
nuclear@14
|
412
|
nuclear@14
|
413 cinfo->jpeg_color_space = colorspace;
|
nuclear@14
|
414
|
nuclear@14
|
415 cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */
|
nuclear@14
|
416 cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */
|
nuclear@14
|
417
|
nuclear@14
|
418 switch (colorspace) {
|
nuclear@14
|
419 case JCS_GRAYSCALE:
|
nuclear@14
|
420 cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
|
nuclear@14
|
421 cinfo->num_components = 1;
|
nuclear@14
|
422 /* JFIF specifies component ID 1 */
|
nuclear@14
|
423 SET_COMP(0, 1, 1,1, 0, 0,0);
|
nuclear@14
|
424 break;
|
nuclear@14
|
425 case JCS_RGB:
|
nuclear@14
|
426 cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */
|
nuclear@14
|
427 cinfo->num_components = 3;
|
nuclear@14
|
428 SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, 0,0);
|
nuclear@14
|
429 SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0);
|
nuclear@14
|
430 SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, 0,0);
|
nuclear@14
|
431 break;
|
nuclear@14
|
432 case JCS_YCbCr:
|
nuclear@14
|
433 cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
|
nuclear@14
|
434 cinfo->num_components = 3;
|
nuclear@14
|
435 /* JFIF specifies component IDs 1,2,3 */
|
nuclear@14
|
436 /* We default to 2x2 subsamples of chrominance */
|
nuclear@14
|
437 SET_COMP(0, 1, 2,2, 0, 0,0);
|
nuclear@14
|
438 SET_COMP(1, 2, 1,1, 1, 1,1);
|
nuclear@14
|
439 SET_COMP(2, 3, 1,1, 1, 1,1);
|
nuclear@14
|
440 break;
|
nuclear@14
|
441 case JCS_CMYK:
|
nuclear@14
|
442 cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */
|
nuclear@14
|
443 cinfo->num_components = 4;
|
nuclear@14
|
444 SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0);
|
nuclear@14
|
445 SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0);
|
nuclear@14
|
446 SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0);
|
nuclear@14
|
447 SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0);
|
nuclear@14
|
448 break;
|
nuclear@14
|
449 case JCS_YCCK:
|
nuclear@14
|
450 cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */
|
nuclear@14
|
451 cinfo->num_components = 4;
|
nuclear@14
|
452 SET_COMP(0, 1, 2,2, 0, 0,0);
|
nuclear@14
|
453 SET_COMP(1, 2, 1,1, 1, 1,1);
|
nuclear@14
|
454 SET_COMP(2, 3, 1,1, 1, 1,1);
|
nuclear@14
|
455 SET_COMP(3, 4, 2,2, 0, 0,0);
|
nuclear@14
|
456 break;
|
nuclear@14
|
457 case JCS_UNKNOWN:
|
nuclear@14
|
458 cinfo->num_components = cinfo->input_components;
|
nuclear@14
|
459 if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS)
|
nuclear@14
|
460 ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
|
nuclear@14
|
461 MAX_COMPONENTS);
|
nuclear@14
|
462 for (ci = 0; ci < cinfo->num_components; ci++) {
|
nuclear@14
|
463 SET_COMP(ci, ci, 1,1, 0, 0,0);
|
nuclear@14
|
464 }
|
nuclear@14
|
465 break;
|
nuclear@14
|
466 default:
|
nuclear@14
|
467 ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
nuclear@14
|
468 }
|
nuclear@14
|
469 }
|
nuclear@14
|
470
|
nuclear@14
|
471
|
nuclear@14
|
472 #ifdef C_PROGRESSIVE_SUPPORTED
|
nuclear@14
|
473
|
nuclear@14
|
474 LOCAL(jpeg_scan_info *)
|
nuclear@14
|
475 fill_a_scan (jpeg_scan_info * scanptr, int ci,
|
nuclear@14
|
476 int Ss, int Se, int Ah, int Al)
|
nuclear@14
|
477 /* Support routine: generate one scan for specified component */
|
nuclear@14
|
478 {
|
nuclear@14
|
479 scanptr->comps_in_scan = 1;
|
nuclear@14
|
480 scanptr->component_index[0] = ci;
|
nuclear@14
|
481 scanptr->Ss = Ss;
|
nuclear@14
|
482 scanptr->Se = Se;
|
nuclear@14
|
483 scanptr->Ah = Ah;
|
nuclear@14
|
484 scanptr->Al = Al;
|
nuclear@14
|
485 scanptr++;
|
nuclear@14
|
486 return scanptr;
|
nuclear@14
|
487 }
|
nuclear@14
|
488
|
nuclear@14
|
489 LOCAL(jpeg_scan_info *)
|
nuclear@14
|
490 fill_scans (jpeg_scan_info * scanptr, int ncomps,
|
nuclear@14
|
491 int Ss, int Se, int Ah, int Al)
|
nuclear@14
|
492 /* Support routine: generate one scan for each component */
|
nuclear@14
|
493 {
|
nuclear@14
|
494 int ci;
|
nuclear@14
|
495
|
nuclear@14
|
496 for (ci = 0; ci < ncomps; ci++) {
|
nuclear@14
|
497 scanptr->comps_in_scan = 1;
|
nuclear@14
|
498 scanptr->component_index[0] = ci;
|
nuclear@14
|
499 scanptr->Ss = Ss;
|
nuclear@14
|
500 scanptr->Se = Se;
|
nuclear@14
|
501 scanptr->Ah = Ah;
|
nuclear@14
|
502 scanptr->Al = Al;
|
nuclear@14
|
503 scanptr++;
|
nuclear@14
|
504 }
|
nuclear@14
|
505 return scanptr;
|
nuclear@14
|
506 }
|
nuclear@14
|
507
|
nuclear@14
|
508 LOCAL(jpeg_scan_info *)
|
nuclear@14
|
509 fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al)
|
nuclear@14
|
510 /* Support routine: generate interleaved DC scan if possible, else N scans */
|
nuclear@14
|
511 {
|
nuclear@14
|
512 int ci;
|
nuclear@14
|
513
|
nuclear@14
|
514 if (ncomps <= MAX_COMPS_IN_SCAN) {
|
nuclear@14
|
515 /* Single interleaved DC scan */
|
nuclear@14
|
516 scanptr->comps_in_scan = ncomps;
|
nuclear@14
|
517 for (ci = 0; ci < ncomps; ci++)
|
nuclear@14
|
518 scanptr->component_index[ci] = ci;
|
nuclear@14
|
519 scanptr->Ss = scanptr->Se = 0;
|
nuclear@14
|
520 scanptr->Ah = Ah;
|
nuclear@14
|
521 scanptr->Al = Al;
|
nuclear@14
|
522 scanptr++;
|
nuclear@14
|
523 } else {
|
nuclear@14
|
524 /* Noninterleaved DC scan for each component */
|
nuclear@14
|
525 scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al);
|
nuclear@14
|
526 }
|
nuclear@14
|
527 return scanptr;
|
nuclear@14
|
528 }
|
nuclear@14
|
529
|
nuclear@14
|
530
|
nuclear@14
|
531 /*
|
nuclear@14
|
532 * Create a recommended progressive-JPEG script.
|
nuclear@14
|
533 * cinfo->num_components and cinfo->jpeg_color_space must be correct.
|
nuclear@14
|
534 */
|
nuclear@14
|
535
|
nuclear@14
|
536 GLOBAL(void)
|
nuclear@14
|
537 jpeg_simple_progression (j_compress_ptr cinfo)
|
nuclear@14
|
538 {
|
nuclear@14
|
539 int ncomps = cinfo->num_components;
|
nuclear@14
|
540 int nscans;
|
nuclear@14
|
541 jpeg_scan_info * scanptr;
|
nuclear@14
|
542
|
nuclear@14
|
543 /* Safety check to ensure start_compress not called yet. */
|
nuclear@14
|
544 if (cinfo->global_state != CSTATE_START)
|
nuclear@14
|
545 ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
nuclear@14
|
546
|
nuclear@14
|
547 /* Figure space needed for script. Calculation must match code below! */
|
nuclear@14
|
548 if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
|
nuclear@14
|
549 /* Custom script for YCbCr color images. */
|
nuclear@14
|
550 nscans = 10;
|
nuclear@14
|
551 } else {
|
nuclear@14
|
552 /* All-purpose script for other color spaces. */
|
nuclear@14
|
553 if (ncomps > MAX_COMPS_IN_SCAN)
|
nuclear@14
|
554 nscans = 6 * ncomps; /* 2 DC + 4 AC scans per component */
|
nuclear@14
|
555 else
|
nuclear@14
|
556 nscans = 2 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */
|
nuclear@14
|
557 }
|
nuclear@14
|
558
|
nuclear@14
|
559 /* Allocate space for script.
|
nuclear@14
|
560 * We need to put it in the permanent pool in case the application performs
|
nuclear@14
|
561 * multiple compressions without changing the settings. To avoid a memory
|
nuclear@14
|
562 * leak if jpeg_simple_progression is called repeatedly for the same JPEG
|
nuclear@14
|
563 * object, we try to re-use previously allocated space, and we allocate
|
nuclear@14
|
564 * enough space to handle YCbCr even if initially asked for grayscale.
|
nuclear@14
|
565 */
|
nuclear@14
|
566 if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) {
|
nuclear@14
|
567 cinfo->script_space_size = MAX(nscans, 10);
|
nuclear@14
|
568 cinfo->script_space = (jpeg_scan_info *)
|
nuclear@14
|
569 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
|
nuclear@14
|
570 cinfo->script_space_size * SIZEOF(jpeg_scan_info));
|
nuclear@14
|
571 }
|
nuclear@14
|
572 scanptr = cinfo->script_space;
|
nuclear@14
|
573 cinfo->scan_info = scanptr;
|
nuclear@14
|
574 cinfo->num_scans = nscans;
|
nuclear@14
|
575
|
nuclear@14
|
576 if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
|
nuclear@14
|
577 /* Custom script for YCbCr color images. */
|
nuclear@14
|
578 /* Initial DC scan */
|
nuclear@14
|
579 scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
|
nuclear@14
|
580 /* Initial AC scan: get some luma data out in a hurry */
|
nuclear@14
|
581 scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2);
|
nuclear@14
|
582 /* Chroma data is too small to be worth expending many scans on */
|
nuclear@14
|
583 scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1);
|
nuclear@14
|
584 scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1);
|
nuclear@14
|
585 /* Complete spectral selection for luma AC */
|
nuclear@14
|
586 scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2);
|
nuclear@14
|
587 /* Refine next bit of luma AC */
|
nuclear@14
|
588 scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1);
|
nuclear@14
|
589 /* Finish DC successive approximation */
|
nuclear@14
|
590 scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
|
nuclear@14
|
591 /* Finish AC successive approximation */
|
nuclear@14
|
592 scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0);
|
nuclear@14
|
593 scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0);
|
nuclear@14
|
594 /* Luma bottom bit comes last since it's usually largest scan */
|
nuclear@14
|
595 scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0);
|
nuclear@14
|
596 } else {
|
nuclear@14
|
597 /* All-purpose script for other color spaces. */
|
nuclear@14
|
598 /* Successive approximation first pass */
|
nuclear@14
|
599 scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
|
nuclear@14
|
600 scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2);
|
nuclear@14
|
601 scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2);
|
nuclear@14
|
602 /* Successive approximation second pass */
|
nuclear@14
|
603 scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1);
|
nuclear@14
|
604 /* Successive approximation final pass */
|
nuclear@14
|
605 scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
|
nuclear@14
|
606 scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0);
|
nuclear@14
|
607 }
|
nuclear@14
|
608 }
|
nuclear@14
|
609
|
nuclear@14
|
610 #endif /* C_PROGRESSIVE_SUPPORTED */
|