nuclear@0: /* nuclear@0: * jddctmgr.c nuclear@0: * nuclear@0: * Copyright (C) 1994-1996, Thomas G. Lane. nuclear@0: * This file is part of the Independent JPEG Group's software. nuclear@0: * For conditions of distribution and use, see the accompanying README file. nuclear@0: * nuclear@0: * This file contains the inverse-DCT management logic. nuclear@0: * This code selects a particular IDCT implementation to be used, nuclear@0: * and it performs related housekeeping chores. No code in this file nuclear@0: * is executed per IDCT step, only during output pass setup. nuclear@0: * nuclear@0: * Note that the IDCT routines are responsible for performing coefficient nuclear@0: * dequantization as well as the IDCT proper. This module sets up the nuclear@0: * dequantization multiplier table needed by the IDCT routine. nuclear@0: */ nuclear@0: nuclear@0: #define JPEG_INTERNALS nuclear@0: #include "jinclude.h" nuclear@0: #include "jpeglib.h" nuclear@0: #include "jdct.h" /* Private declarations for DCT subsystem */ nuclear@0: nuclear@0: nuclear@0: /* nuclear@0: * The decompressor input side (jdinput.c) saves away the appropriate nuclear@0: * quantization table for each component at the start of the first scan nuclear@0: * involving that component. (This is necessary in order to correctly nuclear@0: * decode files that reuse Q-table slots.) nuclear@0: * When we are ready to make an output pass, the saved Q-table is converted nuclear@0: * to a multiplier table that will actually be used by the IDCT routine. nuclear@0: * The multiplier table contents are IDCT-method-dependent. To support nuclear@0: * application changes in IDCT method between scans, we can remake the nuclear@0: * multiplier tables if necessary. nuclear@0: * In buffered-image mode, the first output pass may occur before any data nuclear@0: * has been seen for some components, and thus before their Q-tables have nuclear@0: * been saved away. To handle this case, multiplier tables are preset nuclear@0: * to zeroes; the result of the IDCT will be a neutral gray level. nuclear@0: */ nuclear@0: nuclear@0: nuclear@0: /* Private subobject for this module */ nuclear@0: nuclear@0: typedef struct { nuclear@0: struct jpeg_inverse_dct pub; /* public fields */ nuclear@0: nuclear@0: /* This array contains the IDCT method code that each multiplier table nuclear@0: * is currently set up for, or -1 if it's not yet set up. nuclear@0: * The actual multiplier tables are pointed to by dct_table in the nuclear@0: * per-component comp_info structures. nuclear@0: */ nuclear@0: int cur_method[MAX_COMPONENTS]; nuclear@0: } my_idct_controller; nuclear@0: nuclear@0: typedef my_idct_controller * my_idct_ptr; nuclear@0: nuclear@0: nuclear@0: /* Allocated multiplier tables: big enough for any supported variant */ nuclear@0: nuclear@0: typedef union { nuclear@0: ISLOW_MULT_TYPE islow_array[DCTSIZE2]; nuclear@0: #ifdef DCT_IFAST_SUPPORTED nuclear@0: IFAST_MULT_TYPE ifast_array[DCTSIZE2]; nuclear@0: #endif nuclear@0: #ifdef DCT_FLOAT_SUPPORTED nuclear@0: FLOAT_MULT_TYPE float_array[DCTSIZE2]; nuclear@0: #endif nuclear@0: } multiplier_table; nuclear@0: nuclear@0: nuclear@0: /* The current scaled-IDCT routines require ISLOW-style multiplier tables, nuclear@0: * so be sure to compile that code if either ISLOW or SCALING is requested. nuclear@0: */ nuclear@0: #ifdef DCT_ISLOW_SUPPORTED nuclear@0: #define PROVIDE_ISLOW_TABLES nuclear@0: #else nuclear@0: #ifdef IDCT_SCALING_SUPPORTED nuclear@0: #define PROVIDE_ISLOW_TABLES nuclear@0: #endif nuclear@0: #endif nuclear@0: nuclear@0: nuclear@0: /* nuclear@0: * Prepare for an output pass. nuclear@0: * Here we select the proper IDCT routine for each component and build nuclear@0: * a matching multiplier table. nuclear@0: */ nuclear@0: nuclear@0: METHODDEF(void) nuclear@0: start_pass (j_decompress_ptr cinfo) nuclear@0: { nuclear@0: my_idct_ptr idct = (my_idct_ptr) cinfo->idct; nuclear@0: int ci, i; nuclear@0: jpeg_component_info *compptr; nuclear@0: int method = 0; nuclear@0: inverse_DCT_method_ptr method_ptr = NULL; nuclear@0: JQUANT_TBL * qtbl; nuclear@0: nuclear@0: for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; nuclear@0: ci++, compptr++) { nuclear@0: /* Select the proper IDCT routine for this component's scaling */ nuclear@0: switch (compptr->DCT_scaled_size) { nuclear@0: #ifdef IDCT_SCALING_SUPPORTED nuclear@0: case 1: nuclear@0: method_ptr = jpeg_idct_1x1; nuclear@0: method = JDCT_ISLOW; /* jidctred uses islow-style table */ nuclear@0: break; nuclear@0: case 2: nuclear@0: method_ptr = jpeg_idct_2x2; nuclear@0: method = JDCT_ISLOW; /* jidctred uses islow-style table */ nuclear@0: break; nuclear@0: case 4: nuclear@0: method_ptr = jpeg_idct_4x4; nuclear@0: method = JDCT_ISLOW; /* jidctred uses islow-style table */ nuclear@0: break; nuclear@0: #endif nuclear@0: case DCTSIZE: nuclear@0: switch (cinfo->dct_method) { nuclear@0: #ifdef DCT_ISLOW_SUPPORTED nuclear@0: case JDCT_ISLOW: nuclear@0: method_ptr = jpeg_idct_islow; nuclear@0: method = JDCT_ISLOW; nuclear@0: break; nuclear@0: #endif nuclear@0: #ifdef DCT_IFAST_SUPPORTED nuclear@0: case JDCT_IFAST: nuclear@0: method_ptr = jpeg_idct_ifast; nuclear@0: method = JDCT_IFAST; nuclear@0: break; nuclear@0: #endif nuclear@0: #ifdef DCT_FLOAT_SUPPORTED nuclear@0: case JDCT_FLOAT: nuclear@0: method_ptr = jpeg_idct_float; nuclear@0: method = JDCT_FLOAT; nuclear@0: break; nuclear@0: #endif nuclear@0: default: nuclear@0: ERREXIT(cinfo, JERR_NOT_COMPILED); nuclear@0: break; nuclear@0: } nuclear@0: break; nuclear@0: default: nuclear@0: ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size); nuclear@0: break; nuclear@0: } nuclear@0: idct->pub.inverse_DCT[ci] = method_ptr; nuclear@0: /* Create multiplier table from quant table. nuclear@0: * However, we can skip this if the component is uninteresting nuclear@0: * or if we already built the table. Also, if no quant table nuclear@0: * has yet been saved for the component, we leave the nuclear@0: * multiplier table all-zero; we'll be reading zeroes from the nuclear@0: * coefficient controller's buffer anyway. nuclear@0: */ nuclear@0: if (! compptr->component_needed || idct->cur_method[ci] == method) nuclear@0: continue; nuclear@0: qtbl = compptr->quant_table; nuclear@0: if (qtbl == NULL) /* happens if no data yet for component */ nuclear@0: continue; nuclear@0: idct->cur_method[ci] = method; nuclear@0: switch (method) { nuclear@0: #ifdef PROVIDE_ISLOW_TABLES nuclear@0: case JDCT_ISLOW: nuclear@0: { nuclear@0: /* For LL&M IDCT method, multipliers are equal to raw quantization nuclear@0: * coefficients, but are stored as ints to ensure access efficiency. nuclear@0: */ nuclear@0: ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table; nuclear@0: for (i = 0; i < DCTSIZE2; i++) { nuclear@0: ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i]; nuclear@0: } nuclear@0: } nuclear@0: break; nuclear@0: #endif nuclear@0: #ifdef DCT_IFAST_SUPPORTED nuclear@0: case JDCT_IFAST: nuclear@0: { nuclear@0: /* For AA&N IDCT method, multipliers are equal to quantization nuclear@0: * coefficients scaled by scalefactor[row]*scalefactor[col], where nuclear@0: * scalefactor[0] = 1 nuclear@0: * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 nuclear@0: * For integer operation, the multiplier table is to be scaled by nuclear@0: * IFAST_SCALE_BITS. nuclear@0: */ nuclear@0: IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table; nuclear@0: #define CONST_BITS 14 nuclear@0: static const INT16 aanscales[DCTSIZE2] = { nuclear@0: /* precomputed values scaled up by 14 bits */ nuclear@0: 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, nuclear@0: 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, nuclear@0: 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, nuclear@0: 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, nuclear@0: 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, nuclear@0: 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, nuclear@0: 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, nuclear@0: 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 nuclear@0: }; nuclear@0: SHIFT_TEMPS nuclear@0: nuclear@0: for (i = 0; i < DCTSIZE2; i++) { nuclear@0: ifmtbl[i] = (IFAST_MULT_TYPE) nuclear@0: DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], nuclear@0: (INT32) aanscales[i]), nuclear@0: CONST_BITS-IFAST_SCALE_BITS); nuclear@0: } nuclear@0: } nuclear@0: break; nuclear@0: #endif nuclear@0: #ifdef DCT_FLOAT_SUPPORTED nuclear@0: case JDCT_FLOAT: nuclear@0: { nuclear@0: /* For float AA&N IDCT method, multipliers are equal to quantization nuclear@0: * coefficients scaled by scalefactor[row]*scalefactor[col], where nuclear@0: * scalefactor[0] = 1 nuclear@0: * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 nuclear@0: */ nuclear@0: FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table; nuclear@0: int row, col; nuclear@0: static const double aanscalefactor[DCTSIZE] = { nuclear@0: 1.0, 1.387039845, 1.306562965, 1.175875602, nuclear@0: 1.0, 0.785694958, 0.541196100, 0.275899379 nuclear@0: }; nuclear@0: nuclear@0: i = 0; nuclear@0: for (row = 0; row < DCTSIZE; row++) { nuclear@0: for (col = 0; col < DCTSIZE; col++) { nuclear@0: fmtbl[i] = (FLOAT_MULT_TYPE) nuclear@0: ((double) qtbl->quantval[i] * nuclear@0: aanscalefactor[row] * aanscalefactor[col]); nuclear@0: i++; nuclear@0: } nuclear@0: } nuclear@0: } nuclear@0: break; nuclear@0: #endif nuclear@0: default: nuclear@0: ERREXIT(cinfo, JERR_NOT_COMPILED); nuclear@0: break; nuclear@0: } nuclear@0: } nuclear@0: } nuclear@0: nuclear@0: nuclear@0: /* nuclear@0: * Initialize IDCT manager. nuclear@0: */ nuclear@0: nuclear@0: GLOBAL(void) nuclear@0: jinit_inverse_dct (j_decompress_ptr cinfo) nuclear@0: { nuclear@0: my_idct_ptr idct; nuclear@0: int ci; nuclear@0: jpeg_component_info *compptr; nuclear@0: nuclear@0: idct = (my_idct_ptr) nuclear@0: (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, nuclear@0: SIZEOF(my_idct_controller)); nuclear@0: cinfo->idct = (struct jpeg_inverse_dct *) idct; nuclear@0: idct->pub.start_pass = start_pass; nuclear@0: nuclear@0: for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; nuclear@0: ci++, compptr++) { nuclear@0: /* Allocate and pre-zero a multiplier table for each component */ nuclear@0: compptr->dct_table = nuclear@0: (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, nuclear@0: SIZEOF(multiplier_table)); nuclear@0: MEMZERO(compptr->dct_table, SIZEOF(multiplier_table)); nuclear@0: /* Mark multiplier table not yet set up for any method */ nuclear@0: idct->cur_method[ci] = -1; nuclear@0: } nuclear@0: }