nuclear@0: /* nuclear@0: Open Asset Import Library (assimp) nuclear@0: ---------------------------------------------------------------------- nuclear@0: nuclear@0: Copyright (c) 2006-2012, assimp team nuclear@0: All rights reserved. nuclear@0: nuclear@0: Redistribution and use of this software in source and binary forms, nuclear@0: with or without modification, are permitted provided that the nuclear@0: following conditions are met: nuclear@0: nuclear@0: * Redistributions of source code must retain the above nuclear@0: copyright notice, this list of conditions and the nuclear@0: following disclaimer. nuclear@0: nuclear@0: * Redistributions in binary form must reproduce the above nuclear@0: copyright notice, this list of conditions and the nuclear@0: following disclaimer in the documentation and/or other nuclear@0: materials provided with the distribution. nuclear@0: nuclear@0: * Neither the name of the assimp team, nor the names of its nuclear@0: contributors may be used to endorse or promote products nuclear@0: derived from this software without specific prior nuclear@0: written permission of the assimp team. nuclear@0: nuclear@0: THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS nuclear@0: "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT nuclear@0: LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR nuclear@0: A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT nuclear@0: OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, nuclear@0: SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT nuclear@0: LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, nuclear@0: DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY nuclear@0: THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT nuclear@0: (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE nuclear@0: OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. nuclear@0: nuclear@0: ---------------------------------------------------------------------- nuclear@0: */ nuclear@0: nuclear@0: #include "AssimpPCH.h" nuclear@0: #include "TargetAnimation.h" nuclear@0: #include nuclear@0: nuclear@0: using namespace Assimp; nuclear@0: nuclear@0: nuclear@0: // ------------------------------------------------------------------------------------------------ nuclear@0: KeyIterator::KeyIterator(const std::vector* _objPos, nuclear@0: const std::vector* _targetObjPos, nuclear@0: const aiVector3D* defaultObjectPos /*= NULL*/, nuclear@0: const aiVector3D* defaultTargetPos /*= NULL*/) nuclear@0: nuclear@0: : reachedEnd (false) nuclear@0: , curTime (-1.) nuclear@0: , objPos (_objPos) nuclear@0: , targetObjPos (_targetObjPos) nuclear@0: , nextObjPos (0) nuclear@0: , nextTargetObjPos(0) nuclear@0: { nuclear@0: // Generate default transformation tracks if necessary nuclear@0: if (!objPos || objPos->empty()) nuclear@0: { nuclear@0: defaultObjPos.resize(1); nuclear@0: defaultObjPos.front().mTime = 10e10; nuclear@0: nuclear@0: if (defaultObjectPos) nuclear@0: defaultObjPos.front().mValue = *defaultObjectPos; nuclear@0: nuclear@0: objPos = & defaultObjPos; nuclear@0: } nuclear@0: if (!targetObjPos || targetObjPos->empty()) nuclear@0: { nuclear@0: defaultTargetObjPos.resize(1); nuclear@0: defaultTargetObjPos.front().mTime = 10e10; nuclear@0: nuclear@0: if (defaultTargetPos) nuclear@0: defaultTargetObjPos.front().mValue = *defaultTargetPos; nuclear@0: nuclear@0: targetObjPos = & defaultTargetObjPos; nuclear@0: } nuclear@0: } nuclear@0: nuclear@0: // ------------------------------------------------------------------------------------------------ nuclear@0: template nuclear@0: inline T Interpolate(const T& one, const T& two, float val) nuclear@0: { nuclear@0: return one + (two-one)*val; nuclear@0: } nuclear@0: nuclear@0: // ------------------------------------------------------------------------------------------------ nuclear@0: void KeyIterator::operator ++() nuclear@0: { nuclear@0: // If we are already at the end of all keyframes, return nuclear@0: if (reachedEnd) { nuclear@0: return; nuclear@0: } nuclear@0: nuclear@0: // Now search in all arrays for the time value closest nuclear@0: // to our current position on the time line nuclear@0: double d0,d1; nuclear@0: nuclear@0: d0 = objPos->at ( std::min ( nextObjPos, objPos->size()-1) ).mTime; nuclear@0: d1 = targetObjPos->at( std::min ( nextTargetObjPos, targetObjPos->size()-1) ).mTime; nuclear@0: nuclear@0: // Easiest case - all are identical. In this nuclear@0: // case we don't need to interpolate so we can nuclear@0: // return earlier nuclear@0: if ( d0 == d1 ) nuclear@0: { nuclear@0: curTime = d0; nuclear@0: curPosition = objPos->at(nextObjPos).mValue; nuclear@0: curTargetPosition = targetObjPos->at(nextTargetObjPos).mValue; nuclear@0: nuclear@0: // increment counters nuclear@0: if (objPos->size() != nextObjPos-1) nuclear@0: ++nextObjPos; nuclear@0: nuclear@0: if (targetObjPos->size() != nextTargetObjPos-1) nuclear@0: ++nextTargetObjPos; nuclear@0: } nuclear@0: nuclear@0: // An object position key is closest to us nuclear@0: else if (d0 < d1) nuclear@0: { nuclear@0: curTime = d0; nuclear@0: nuclear@0: // interpolate the other nuclear@0: if (1 == targetObjPos->size() || !nextTargetObjPos) { nuclear@0: curTargetPosition = targetObjPos->at(0).mValue; nuclear@0: } nuclear@0: else nuclear@0: { nuclear@0: const aiVectorKey& last = targetObjPos->at(nextTargetObjPos); nuclear@0: const aiVectorKey& first = targetObjPos->at(nextTargetObjPos-1); nuclear@0: nuclear@0: curTargetPosition = Interpolate(first.mValue, last.mValue, (float) ( nuclear@0: (curTime-first.mTime) / (last.mTime-first.mTime) )); nuclear@0: } nuclear@0: nuclear@0: if (objPos->size() != nextObjPos-1) nuclear@0: ++nextObjPos; nuclear@0: } nuclear@0: // A target position key is closest to us nuclear@0: else nuclear@0: { nuclear@0: curTime = d1; nuclear@0: nuclear@0: // interpolate the other nuclear@0: if (1 == objPos->size() || !nextObjPos) { nuclear@0: curPosition = objPos->at(0).mValue; nuclear@0: } nuclear@0: else nuclear@0: { nuclear@0: const aiVectorKey& last = objPos->at(nextObjPos); nuclear@0: const aiVectorKey& first = objPos->at(nextObjPos-1); nuclear@0: nuclear@0: curPosition = Interpolate(first.mValue, last.mValue, (float) ( nuclear@0: (curTime-first.mTime) / (last.mTime-first.mTime))); nuclear@0: } nuclear@0: nuclear@0: if (targetObjPos->size() != nextTargetObjPos-1) nuclear@0: ++nextTargetObjPos; nuclear@0: } nuclear@0: nuclear@0: if (nextObjPos >= objPos->size()-1 && nuclear@0: nextTargetObjPos >= targetObjPos->size()-1) nuclear@0: { nuclear@0: // We reached the very last keyframe nuclear@0: reachedEnd = true; nuclear@0: } nuclear@0: } nuclear@0: nuclear@0: // ------------------------------------------------------------------------------------------------ nuclear@0: void TargetAnimationHelper::SetTargetAnimationChannel ( nuclear@0: const std::vector* _targetPositions) nuclear@0: { nuclear@0: ai_assert(NULL != _targetPositions); nuclear@0: targetPositions = _targetPositions; nuclear@0: } nuclear@0: nuclear@0: // ------------------------------------------------------------------------------------------------ nuclear@0: void TargetAnimationHelper::SetMainAnimationChannel ( nuclear@0: const std::vector* _objectPositions) nuclear@0: { nuclear@0: ai_assert(NULL != _objectPositions); nuclear@0: objectPositions = _objectPositions; nuclear@0: } nuclear@0: nuclear@0: // ------------------------------------------------------------------------------------------------ nuclear@0: void TargetAnimationHelper::SetFixedMainAnimationChannel( nuclear@0: const aiVector3D& fixed) nuclear@0: { nuclear@0: objectPositions = NULL; // just to avoid confusion nuclear@0: fixedMain = fixed; nuclear@0: } nuclear@0: nuclear@0: // ------------------------------------------------------------------------------------------------ nuclear@0: void TargetAnimationHelper::Process(std::vector* distanceTrack) nuclear@0: { nuclear@0: ai_assert(NULL != targetPositions && NULL != distanceTrack); nuclear@0: nuclear@0: // TODO: in most cases we won't need the extra array nuclear@0: std::vector real; nuclear@0: nuclear@0: std::vector* fill = (distanceTrack == objectPositions ? &real : distanceTrack); nuclear@0: fill->reserve(std::max( objectPositions->size(), targetPositions->size() )); nuclear@0: nuclear@0: // Iterate through all object keys and interpolate their values if necessary. nuclear@0: // Then get the corresponding target position, compute the difference nuclear@0: // vector between object and target position. Then compute a rotation matrix nuclear@0: // that rotates the base vector of the object coordinate system at that time nuclear@0: // to match the diff vector. nuclear@0: nuclear@0: KeyIterator iter(objectPositions,targetPositions,&fixedMain); nuclear@0: for (;!iter.Finished();++iter) nuclear@0: { nuclear@0: const aiVector3D& position = iter.GetCurPosition(); nuclear@0: const aiVector3D& tposition = iter.GetCurTargetPosition(); nuclear@0: nuclear@0: // diff vector nuclear@0: aiVector3D diff = tposition - position; nuclear@0: float f = diff.Length(); nuclear@0: nuclear@0: // output distance vector nuclear@0: if (f) nuclear@0: { nuclear@0: fill->push_back(aiVectorKey()); nuclear@0: aiVectorKey& v = fill->back(); nuclear@0: v.mTime = iter.GetCurTime(); nuclear@0: v.mValue = diff; nuclear@0: nuclear@0: diff /= f; nuclear@0: } nuclear@0: else nuclear@0: { nuclear@0: // FIXME: handle this nuclear@0: } nuclear@0: nuclear@0: // diff is now the vector in which our camera is pointing nuclear@0: } nuclear@0: nuclear@0: if (real.size()) { nuclear@0: *distanceTrack = real; nuclear@0: } nuclear@0: }