nuclear@0: /* nuclear@0: * jmemmgr.c nuclear@0: * nuclear@0: * Copyright (C) 1991-1997, Thomas G. Lane. nuclear@0: * This file is part of the Independent JPEG Group's software. nuclear@0: * For conditions of distribution and use, see the accompanying README file. nuclear@0: * nuclear@0: * This file contains the JPEG system-independent memory management nuclear@0: * routines. This code is usable across a wide variety of machines; most nuclear@0: * of the system dependencies have been isolated in a separate file. nuclear@0: * The major functions provided here are: nuclear@0: * * pool-based allocation and freeing of memory; nuclear@0: * * policy decisions about how to divide available memory among the nuclear@0: * virtual arrays; nuclear@0: * * control logic for swapping virtual arrays between main memory and nuclear@0: * backing storage. nuclear@0: * The separate system-dependent file provides the actual backing-storage nuclear@0: * access code, and it contains the policy decision about how much total nuclear@0: * main memory to use. nuclear@0: * This file is system-dependent in the sense that some of its functions nuclear@0: * are unnecessary in some systems. For example, if there is enough virtual nuclear@0: * memory so that backing storage will never be used, much of the virtual nuclear@0: * array control logic could be removed. (Of course, if you have that much nuclear@0: * memory then you shouldn't care about a little bit of unused code...) nuclear@0: */ nuclear@0: nuclear@0: #define JPEG_INTERNALS nuclear@0: #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */ nuclear@0: #include "jinclude.h" nuclear@0: #include "jpeglib.h" nuclear@0: #include "jmemsys.h" /* import the system-dependent declarations */ nuclear@0: nuclear@0: #ifndef NO_GETENV nuclear@0: #ifndef HAVE_STDLIB_H /* should declare getenv() */ nuclear@0: extern char * getenv JPP((const char * name)); nuclear@0: #endif nuclear@0: #endif nuclear@0: nuclear@0: nuclear@0: /* nuclear@0: * Some important notes: nuclear@0: * The allocation routines provided here must never return NULL. nuclear@0: * They should exit to error_exit if unsuccessful. nuclear@0: * nuclear@0: * It's not a good idea to try to merge the sarray and barray routines, nuclear@0: * even though they are textually almost the same, because samples are nuclear@0: * usually stored as bytes while coefficients are shorts or ints. Thus, nuclear@0: * in machines where byte pointers have a different representation from nuclear@0: * word pointers, the resulting machine code could not be the same. nuclear@0: */ nuclear@0: nuclear@0: nuclear@0: /* nuclear@0: * Many machines require storage alignment: longs must start on 4-byte nuclear@0: * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc() nuclear@0: * always returns pointers that are multiples of the worst-case alignment nuclear@0: * requirement, and we had better do so too. nuclear@0: * There isn't any really portable way to determine the worst-case alignment nuclear@0: * requirement. This module assumes that the alignment requirement is nuclear@0: * multiples of sizeof(ALIGN_TYPE). nuclear@0: * By default, we define ALIGN_TYPE as double. This is necessary on some nuclear@0: * workstations (where doubles really do need 8-byte alignment) and will work nuclear@0: * fine on nearly everything. If your machine has lesser alignment needs, nuclear@0: * you can save a few bytes by making ALIGN_TYPE smaller. nuclear@0: * The only place I know of where this will NOT work is certain Macintosh nuclear@0: * 680x0 compilers that define double as a 10-byte IEEE extended float. nuclear@0: * Doing 10-byte alignment is counterproductive because longwords won't be nuclear@0: * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have nuclear@0: * such a compiler. nuclear@0: */ nuclear@0: nuclear@0: #ifndef ALIGN_TYPE /* so can override from jconfig.h */ nuclear@0: #define ALIGN_TYPE double nuclear@0: #endif nuclear@0: nuclear@0: nuclear@0: /* nuclear@0: * We allocate objects from "pools", where each pool is gotten with a single nuclear@0: * request to jpeg_get_small() or jpeg_get_large(). There is no per-object nuclear@0: * overhead within a pool, except for alignment padding. Each pool has a nuclear@0: * header with a link to the next pool of the same class. nuclear@0: * Small and large pool headers are identical except that the latter's nuclear@0: * link pointer must be FAR on 80x86 machines. nuclear@0: * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE nuclear@0: * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple nuclear@0: * of the alignment requirement of ALIGN_TYPE. nuclear@0: */ nuclear@0: nuclear@0: typedef union small_pool_struct * small_pool_ptr; nuclear@0: nuclear@0: typedef union small_pool_struct { nuclear@0: struct { nuclear@0: small_pool_ptr next; /* next in list of pools */ nuclear@0: size_t bytes_used; /* how many bytes already used within pool */ nuclear@0: size_t bytes_left; /* bytes still available in this pool */ nuclear@0: } hdr; nuclear@0: ALIGN_TYPE dummy; /* included in union to ensure alignment */ nuclear@0: } small_pool_hdr; nuclear@0: nuclear@0: typedef union large_pool_struct FAR * large_pool_ptr; nuclear@0: nuclear@0: typedef union large_pool_struct { nuclear@0: struct { nuclear@0: large_pool_ptr next; /* next in list of pools */ nuclear@0: size_t bytes_used; /* how many bytes already used within pool */ nuclear@0: size_t bytes_left; /* bytes still available in this pool */ nuclear@0: } hdr; nuclear@0: ALIGN_TYPE dummy; /* included in union to ensure alignment */ nuclear@0: } large_pool_hdr; nuclear@0: nuclear@0: nuclear@0: /* nuclear@0: * Here is the full definition of a memory manager object. nuclear@0: */ nuclear@0: nuclear@0: typedef struct { nuclear@0: struct jpeg_memory_mgr pub; /* public fields */ nuclear@0: nuclear@0: /* Each pool identifier (lifetime class) names a linked list of pools. */ nuclear@0: small_pool_ptr small_list[JPOOL_NUMPOOLS]; nuclear@0: large_pool_ptr large_list[JPOOL_NUMPOOLS]; nuclear@0: nuclear@0: /* Since we only have one lifetime class of virtual arrays, only one nuclear@0: * linked list is necessary (for each datatype). Note that the virtual nuclear@0: * array control blocks being linked together are actually stored somewhere nuclear@0: * in the small-pool list. nuclear@0: */ nuclear@0: jvirt_sarray_ptr virt_sarray_list; nuclear@0: jvirt_barray_ptr virt_barray_list; nuclear@0: nuclear@0: /* This counts total space obtained from jpeg_get_small/large */ nuclear@0: long total_space_allocated; nuclear@0: nuclear@0: /* alloc_sarray and alloc_barray set this value for use by virtual nuclear@0: * array routines. nuclear@0: */ nuclear@0: JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */ nuclear@0: } my_memory_mgr; nuclear@0: nuclear@0: typedef my_memory_mgr * my_mem_ptr; nuclear@0: nuclear@0: nuclear@0: /* nuclear@0: * The control blocks for virtual arrays. nuclear@0: * Note that these blocks are allocated in the "small" pool area. nuclear@0: * System-dependent info for the associated backing store (if any) is hidden nuclear@0: * inside the backing_store_info struct. nuclear@0: */ nuclear@0: nuclear@0: struct jvirt_sarray_control { nuclear@0: JSAMPARRAY mem_buffer; /* => the in-memory buffer */ nuclear@0: JDIMENSION rows_in_array; /* total virtual array height */ nuclear@0: JDIMENSION samplesperrow; /* width of array (and of memory buffer) */ nuclear@0: JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */ nuclear@0: JDIMENSION rows_in_mem; /* height of memory buffer */ nuclear@0: JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ nuclear@0: JDIMENSION cur_start_row; /* first logical row # in the buffer */ nuclear@0: JDIMENSION first_undef_row; /* row # of first uninitialized row */ nuclear@0: boolean pre_zero; /* pre-zero mode requested? */ nuclear@0: boolean dirty; /* do current buffer contents need written? */ nuclear@0: boolean b_s_open; /* is backing-store data valid? */ nuclear@0: jvirt_sarray_ptr next; /* link to next virtual sarray control block */ nuclear@0: backing_store_info b_s_info; /* System-dependent control info */ nuclear@0: }; nuclear@0: nuclear@0: struct jvirt_barray_control { nuclear@0: JBLOCKARRAY mem_buffer; /* => the in-memory buffer */ nuclear@0: JDIMENSION rows_in_array; /* total virtual array height */ nuclear@0: JDIMENSION blocksperrow; /* width of array (and of memory buffer) */ nuclear@0: JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */ nuclear@0: JDIMENSION rows_in_mem; /* height of memory buffer */ nuclear@0: JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ nuclear@0: JDIMENSION cur_start_row; /* first logical row # in the buffer */ nuclear@0: JDIMENSION first_undef_row; /* row # of first uninitialized row */ nuclear@0: boolean pre_zero; /* pre-zero mode requested? */ nuclear@0: boolean dirty; /* do current buffer contents need written? */ nuclear@0: boolean b_s_open; /* is backing-store data valid? */ nuclear@0: jvirt_barray_ptr next; /* link to next virtual barray control block */ nuclear@0: backing_store_info b_s_info; /* System-dependent control info */ nuclear@0: }; nuclear@0: nuclear@0: nuclear@0: #ifdef MEM_STATS /* optional extra stuff for statistics */ nuclear@0: nuclear@0: LOCAL(void) nuclear@0: print_mem_stats (j_common_ptr cinfo, int pool_id) nuclear@0: { nuclear@0: my_mem_ptr mem = (my_mem_ptr) cinfo->mem; nuclear@0: small_pool_ptr shdr_ptr; nuclear@0: large_pool_ptr lhdr_ptr; nuclear@0: nuclear@0: /* Since this is only a debugging stub, we can cheat a little by using nuclear@0: * fprintf directly rather than going through the trace message code. nuclear@0: * This is helpful because message parm array can't handle longs. nuclear@0: */ nuclear@0: fprintf(stderr, "Freeing pool %d, total space = %ld\n", nuclear@0: pool_id, mem->total_space_allocated); nuclear@0: nuclear@0: for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL; nuclear@0: lhdr_ptr = lhdr_ptr->hdr.next) { nuclear@0: fprintf(stderr, " Large chunk used %ld\n", nuclear@0: (long) lhdr_ptr->hdr.bytes_used); nuclear@0: } nuclear@0: nuclear@0: for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL; nuclear@0: shdr_ptr = shdr_ptr->hdr.next) { nuclear@0: fprintf(stderr, " Small chunk used %ld free %ld\n", nuclear@0: (long) shdr_ptr->hdr.bytes_used, nuclear@0: (long) shdr_ptr->hdr.bytes_left); nuclear@0: } nuclear@0: } nuclear@0: nuclear@0: #endif /* MEM_STATS */ nuclear@0: nuclear@0: nuclear@0: LOCAL(void) nuclear@0: out_of_memory (j_common_ptr cinfo, int which) nuclear@0: /* Report an out-of-memory error and stop execution */ nuclear@0: /* If we compiled MEM_STATS support, report alloc requests before dying */ nuclear@0: { nuclear@0: #ifdef MEM_STATS nuclear@0: cinfo->err->trace_level = 2; /* force self_destruct to report stats */ nuclear@0: #endif nuclear@0: ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which); nuclear@0: } nuclear@0: nuclear@0: nuclear@0: /* nuclear@0: * Allocation of "small" objects. nuclear@0: * nuclear@0: * For these, we use pooled storage. When a new pool must be created, nuclear@0: * we try to get enough space for the current request plus a "slop" factor, nuclear@0: * where the slop will be the amount of leftover space in the new pool. nuclear@0: * The speed vs. space tradeoff is largely determined by the slop values. nuclear@0: * A different slop value is provided for each pool class (lifetime), nuclear@0: * and we also distinguish the first pool of a class from later ones. nuclear@0: * NOTE: the values given work fairly well on both 16- and 32-bit-int nuclear@0: * machines, but may be too small if longs are 64 bits or more. nuclear@0: */ nuclear@0: nuclear@0: static const size_t first_pool_slop[JPOOL_NUMPOOLS] = nuclear@0: { nuclear@0: 1600, /* first PERMANENT pool */ nuclear@0: 16000 /* first IMAGE pool */ nuclear@0: }; nuclear@0: nuclear@0: static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = nuclear@0: { nuclear@0: 0, /* additional PERMANENT pools */ nuclear@0: 5000 /* additional IMAGE pools */ nuclear@0: }; nuclear@0: nuclear@0: #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */ nuclear@0: nuclear@0: nuclear@0: METHODDEF(void *) nuclear@0: alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject) nuclear@0: /* Allocate a "small" object */ nuclear@0: { nuclear@0: my_mem_ptr mem = (my_mem_ptr) cinfo->mem; nuclear@0: small_pool_ptr hdr_ptr, prev_hdr_ptr; nuclear@0: char * data_ptr; nuclear@0: size_t odd_bytes, min_request, slop; nuclear@0: nuclear@0: /* Check for unsatisfiable request (do now to ensure no overflow below) */ nuclear@0: if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr))) nuclear@0: out_of_memory(cinfo, 1); /* request exceeds malloc's ability */ nuclear@0: nuclear@0: /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ nuclear@0: odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); nuclear@0: if (odd_bytes > 0) nuclear@0: sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; nuclear@0: nuclear@0: /* See if space is available in any existing pool */ nuclear@0: if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) nuclear@0: ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ nuclear@0: prev_hdr_ptr = NULL; nuclear@0: hdr_ptr = mem->small_list[pool_id]; nuclear@0: while (hdr_ptr != NULL) { nuclear@0: if (hdr_ptr->hdr.bytes_left >= sizeofobject) nuclear@0: break; /* found pool with enough space */ nuclear@0: prev_hdr_ptr = hdr_ptr; nuclear@0: hdr_ptr = hdr_ptr->hdr.next; nuclear@0: } nuclear@0: nuclear@0: /* Time to make a new pool? */ nuclear@0: if (hdr_ptr == NULL) { nuclear@0: /* min_request is what we need now, slop is what will be leftover */ nuclear@0: min_request = sizeofobject + SIZEOF(small_pool_hdr); nuclear@0: if (prev_hdr_ptr == NULL) /* first pool in class? */ nuclear@0: slop = first_pool_slop[pool_id]; nuclear@0: else nuclear@0: slop = extra_pool_slop[pool_id]; nuclear@0: /* Don't ask for more than MAX_ALLOC_CHUNK */ nuclear@0: if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request)) nuclear@0: slop = (size_t) (MAX_ALLOC_CHUNK-min_request); nuclear@0: /* Try to get space, if fail reduce slop and try again */ nuclear@0: for (;;) { nuclear@0: hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop); nuclear@0: if (hdr_ptr != NULL) nuclear@0: break; nuclear@0: slop /= 2; nuclear@0: if (slop < MIN_SLOP) /* give up when it gets real small */ nuclear@0: out_of_memory(cinfo, 2); /* jpeg_get_small failed */ nuclear@0: } nuclear@0: mem->total_space_allocated += min_request + slop; nuclear@0: /* Success, initialize the new pool header and add to end of list */ nuclear@0: hdr_ptr->hdr.next = NULL; nuclear@0: hdr_ptr->hdr.bytes_used = 0; nuclear@0: hdr_ptr->hdr.bytes_left = sizeofobject + slop; nuclear@0: if (prev_hdr_ptr == NULL) /* first pool in class? */ nuclear@0: mem->small_list[pool_id] = hdr_ptr; nuclear@0: else nuclear@0: prev_hdr_ptr->hdr.next = hdr_ptr; nuclear@0: } nuclear@0: nuclear@0: /* OK, allocate the object from the current pool */ nuclear@0: data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */ nuclear@0: data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */ nuclear@0: hdr_ptr->hdr.bytes_used += sizeofobject; nuclear@0: hdr_ptr->hdr.bytes_left -= sizeofobject; nuclear@0: nuclear@0: return (void *) data_ptr; nuclear@0: } nuclear@0: nuclear@0: nuclear@0: /* nuclear@0: * Allocation of "large" objects. nuclear@0: * nuclear@0: * The external semantics of these are the same as "small" objects, nuclear@0: * except that FAR pointers are used on 80x86. However the pool nuclear@0: * management heuristics are quite different. We assume that each nuclear@0: * request is large enough that it may as well be passed directly to nuclear@0: * jpeg_get_large; the pool management just links everything together nuclear@0: * so that we can free it all on demand. nuclear@0: * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY nuclear@0: * structures. The routines that create these structures (see below) nuclear@0: * deliberately bunch rows together to ensure a large request size. nuclear@0: */ nuclear@0: nuclear@0: METHODDEF(void FAR *) nuclear@0: alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject) nuclear@0: /* Allocate a "large" object */ nuclear@0: { nuclear@0: my_mem_ptr mem = (my_mem_ptr) cinfo->mem; nuclear@0: large_pool_ptr hdr_ptr; nuclear@0: size_t odd_bytes; nuclear@0: nuclear@0: /* Check for unsatisfiable request (do now to ensure no overflow below) */ nuclear@0: if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr))) nuclear@0: out_of_memory(cinfo, 3); /* request exceeds malloc's ability */ nuclear@0: nuclear@0: /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ nuclear@0: odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); nuclear@0: if (odd_bytes > 0) nuclear@0: sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; nuclear@0: nuclear@0: /* Always make a new pool */ nuclear@0: if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) nuclear@0: ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ nuclear@0: nuclear@0: hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject + nuclear@0: SIZEOF(large_pool_hdr)); nuclear@0: if (hdr_ptr == NULL) nuclear@0: out_of_memory(cinfo, 4); /* jpeg_get_large failed */ nuclear@0: mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr); nuclear@0: nuclear@0: /* Success, initialize the new pool header and add to list */ nuclear@0: hdr_ptr->hdr.next = mem->large_list[pool_id]; nuclear@0: /* We maintain space counts in each pool header for statistical purposes, nuclear@0: * even though they are not needed for allocation. nuclear@0: */ nuclear@0: hdr_ptr->hdr.bytes_used = sizeofobject; nuclear@0: hdr_ptr->hdr.bytes_left = 0; nuclear@0: mem->large_list[pool_id] = hdr_ptr; nuclear@0: nuclear@0: return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */ nuclear@0: } nuclear@0: nuclear@0: nuclear@0: /* nuclear@0: * Creation of 2-D sample arrays. nuclear@0: * The pointers are in near heap, the samples themselves in FAR heap. nuclear@0: * nuclear@0: * To minimize allocation overhead and to allow I/O of large contiguous nuclear@0: * blocks, we allocate the sample rows in groups of as many rows as possible nuclear@0: * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. nuclear@0: * NB: the virtual array control routines, later in this file, know about nuclear@0: * this chunking of rows. The rowsperchunk value is left in the mem manager nuclear@0: * object so that it can be saved away if this sarray is the workspace for nuclear@0: * a virtual array. nuclear@0: */ nuclear@0: nuclear@0: METHODDEF(JSAMPARRAY) nuclear@0: alloc_sarray (j_common_ptr cinfo, int pool_id, nuclear@0: JDIMENSION samplesperrow, JDIMENSION numrows) nuclear@0: /* Allocate a 2-D sample array */ nuclear@0: { nuclear@0: my_mem_ptr mem = (my_mem_ptr) cinfo->mem; nuclear@0: JSAMPARRAY result; nuclear@0: JSAMPROW workspace; nuclear@0: JDIMENSION rowsperchunk, currow, i; nuclear@0: long ltemp; nuclear@0: nuclear@0: /* Calculate max # of rows allowed in one allocation chunk */ nuclear@0: ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / nuclear@0: ((long) samplesperrow * SIZEOF(JSAMPLE)); nuclear@0: if (ltemp <= 0) nuclear@0: ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); nuclear@0: if (ltemp < (long) numrows) nuclear@0: rowsperchunk = (JDIMENSION) ltemp; nuclear@0: else nuclear@0: rowsperchunk = numrows; nuclear@0: mem->last_rowsperchunk = rowsperchunk; nuclear@0: nuclear@0: /* Get space for row pointers (small object) */ nuclear@0: result = (JSAMPARRAY) alloc_small(cinfo, pool_id, nuclear@0: (size_t) (numrows * SIZEOF(JSAMPROW))); nuclear@0: nuclear@0: /* Get the rows themselves (large objects) */ nuclear@0: currow = 0; nuclear@0: while (currow < numrows) { nuclear@0: rowsperchunk = MIN(rowsperchunk, numrows - currow); nuclear@0: workspace = (JSAMPROW) alloc_large(cinfo, pool_id, nuclear@0: (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow nuclear@0: * SIZEOF(JSAMPLE))); nuclear@0: for (i = rowsperchunk; i > 0; i--) { nuclear@0: result[currow++] = workspace; nuclear@0: workspace += samplesperrow; nuclear@0: } nuclear@0: } nuclear@0: nuclear@0: return result; nuclear@0: } nuclear@0: nuclear@0: nuclear@0: /* nuclear@0: * Creation of 2-D coefficient-block arrays. nuclear@0: * This is essentially the same as the code for sample arrays, above. nuclear@0: */ nuclear@0: nuclear@0: METHODDEF(JBLOCKARRAY) nuclear@0: alloc_barray (j_common_ptr cinfo, int pool_id, nuclear@0: JDIMENSION blocksperrow, JDIMENSION numrows) nuclear@0: /* Allocate a 2-D coefficient-block array */ nuclear@0: { nuclear@0: my_mem_ptr mem = (my_mem_ptr) cinfo->mem; nuclear@0: JBLOCKARRAY result; nuclear@0: JBLOCKROW workspace; nuclear@0: JDIMENSION rowsperchunk, currow, i; nuclear@0: long ltemp; nuclear@0: nuclear@0: /* Calculate max # of rows allowed in one allocation chunk */ nuclear@0: ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / nuclear@0: ((long) blocksperrow * SIZEOF(JBLOCK)); nuclear@0: if (ltemp <= 0) nuclear@0: ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); nuclear@0: if (ltemp < (long) numrows) nuclear@0: rowsperchunk = (JDIMENSION) ltemp; nuclear@0: else nuclear@0: rowsperchunk = numrows; nuclear@0: mem->last_rowsperchunk = rowsperchunk; nuclear@0: nuclear@0: /* Get space for row pointers (small object) */ nuclear@0: result = (JBLOCKARRAY) alloc_small(cinfo, pool_id, nuclear@0: (size_t) (numrows * SIZEOF(JBLOCKROW))); nuclear@0: nuclear@0: /* Get the rows themselves (large objects) */ nuclear@0: currow = 0; nuclear@0: while (currow < numrows) { nuclear@0: rowsperchunk = MIN(rowsperchunk, numrows - currow); nuclear@0: workspace = (JBLOCKROW) alloc_large(cinfo, pool_id, nuclear@0: (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow nuclear@0: * SIZEOF(JBLOCK))); nuclear@0: for (i = rowsperchunk; i > 0; i--) { nuclear@0: result[currow++] = workspace; nuclear@0: workspace += blocksperrow; nuclear@0: } nuclear@0: } nuclear@0: nuclear@0: return result; nuclear@0: } nuclear@0: nuclear@0: nuclear@0: /* nuclear@0: * About virtual array management: nuclear@0: * nuclear@0: * The above "normal" array routines are only used to allocate strip buffers nuclear@0: * (as wide as the image, but just a few rows high). Full-image-sized buffers nuclear@0: * are handled as "virtual" arrays. The array is still accessed a strip at a nuclear@0: * time, but the memory manager must save the whole array for repeated nuclear@0: * accesses. The intended implementation is that there is a strip buffer in nuclear@0: * memory (as high as is possible given the desired memory limit), plus a nuclear@0: * backing file that holds the rest of the array. nuclear@0: * nuclear@0: * The request_virt_array routines are told the total size of the image and nuclear@0: * the maximum number of rows that will be accessed at once. The in-memory nuclear@0: * buffer must be at least as large as the maxaccess value. nuclear@0: * nuclear@0: * The request routines create control blocks but not the in-memory buffers. nuclear@0: * That is postponed until realize_virt_arrays is called. At that time the nuclear@0: * total amount of space needed is known (approximately, anyway), so free nuclear@0: * memory can be divided up fairly. nuclear@0: * nuclear@0: * The access_virt_array routines are responsible for making a specific strip nuclear@0: * area accessible (after reading or writing the backing file, if necessary). nuclear@0: * Note that the access routines are told whether the caller intends to modify nuclear@0: * the accessed strip; during a read-only pass this saves having to rewrite nuclear@0: * data to disk. The access routines are also responsible for pre-zeroing nuclear@0: * any newly accessed rows, if pre-zeroing was requested. nuclear@0: * nuclear@0: * In current usage, the access requests are usually for nonoverlapping nuclear@0: * strips; that is, successive access start_row numbers differ by exactly nuclear@0: * num_rows = maxaccess. This means we can get good performance with simple nuclear@0: * buffer dump/reload logic, by making the in-memory buffer be a multiple nuclear@0: * of the access height; then there will never be accesses across bufferload nuclear@0: * boundaries. The code will still work with overlapping access requests, nuclear@0: * but it doesn't handle bufferload overlaps very efficiently. nuclear@0: */ nuclear@0: nuclear@0: nuclear@0: METHODDEF(jvirt_sarray_ptr) nuclear@0: request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero, nuclear@0: JDIMENSION samplesperrow, JDIMENSION numrows, nuclear@0: JDIMENSION maxaccess) nuclear@0: /* Request a virtual 2-D sample array */ nuclear@0: { nuclear@0: my_mem_ptr mem = (my_mem_ptr) cinfo->mem; nuclear@0: jvirt_sarray_ptr result; nuclear@0: nuclear@0: /* Only IMAGE-lifetime virtual arrays are currently supported */ nuclear@0: if (pool_id != JPOOL_IMAGE) nuclear@0: ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ nuclear@0: nuclear@0: /* get control block */ nuclear@0: result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id, nuclear@0: SIZEOF(struct jvirt_sarray_control)); nuclear@0: nuclear@0: result->mem_buffer = NULL; /* marks array not yet realized */ nuclear@0: result->rows_in_array = numrows; nuclear@0: result->samplesperrow = samplesperrow; nuclear@0: result->maxaccess = maxaccess; nuclear@0: result->pre_zero = pre_zero; nuclear@0: result->b_s_open = FALSE; /* no associated backing-store object */ nuclear@0: result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ nuclear@0: mem->virt_sarray_list = result; nuclear@0: nuclear@0: return result; nuclear@0: } nuclear@0: nuclear@0: nuclear@0: METHODDEF(jvirt_barray_ptr) nuclear@0: request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero, nuclear@0: JDIMENSION blocksperrow, JDIMENSION numrows, nuclear@0: JDIMENSION maxaccess) nuclear@0: /* Request a virtual 2-D coefficient-block array */ nuclear@0: { nuclear@0: my_mem_ptr mem = (my_mem_ptr) cinfo->mem; nuclear@0: jvirt_barray_ptr result; nuclear@0: nuclear@0: /* Only IMAGE-lifetime virtual arrays are currently supported */ nuclear@0: if (pool_id != JPOOL_IMAGE) nuclear@0: ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ nuclear@0: nuclear@0: /* get control block */ nuclear@0: result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id, nuclear@0: SIZEOF(struct jvirt_barray_control)); nuclear@0: nuclear@0: result->mem_buffer = NULL; /* marks array not yet realized */ nuclear@0: result->rows_in_array = numrows; nuclear@0: result->blocksperrow = blocksperrow; nuclear@0: result->maxaccess = maxaccess; nuclear@0: result->pre_zero = pre_zero; nuclear@0: result->b_s_open = FALSE; /* no associated backing-store object */ nuclear@0: result->next = mem->virt_barray_list; /* add to list of virtual arrays */ nuclear@0: mem->virt_barray_list = result; nuclear@0: nuclear@0: return result; nuclear@0: } nuclear@0: nuclear@0: nuclear@0: METHODDEF(void) nuclear@0: realize_virt_arrays (j_common_ptr cinfo) nuclear@0: /* Allocate the in-memory buffers for any unrealized virtual arrays */ nuclear@0: { nuclear@0: my_mem_ptr mem = (my_mem_ptr) cinfo->mem; nuclear@0: long space_per_minheight, maximum_space, avail_mem; nuclear@0: long minheights, max_minheights; nuclear@0: jvirt_sarray_ptr sptr; nuclear@0: jvirt_barray_ptr bptr; nuclear@0: nuclear@0: /* Compute the minimum space needed (maxaccess rows in each buffer) nuclear@0: * and the maximum space needed (full image height in each buffer). nuclear@0: * These may be of use to the system-dependent jpeg_mem_available routine. nuclear@0: */ nuclear@0: space_per_minheight = 0; nuclear@0: maximum_space = 0; nuclear@0: for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { nuclear@0: if (sptr->mem_buffer == NULL) { /* if not realized yet */ nuclear@0: space_per_minheight += (long) sptr->maxaccess * nuclear@0: (long) sptr->samplesperrow * SIZEOF(JSAMPLE); nuclear@0: maximum_space += (long) sptr->rows_in_array * nuclear@0: (long) sptr->samplesperrow * SIZEOF(JSAMPLE); nuclear@0: } nuclear@0: } nuclear@0: for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { nuclear@0: if (bptr->mem_buffer == NULL) { /* if not realized yet */ nuclear@0: space_per_minheight += (long) bptr->maxaccess * nuclear@0: (long) bptr->blocksperrow * SIZEOF(JBLOCK); nuclear@0: maximum_space += (long) bptr->rows_in_array * nuclear@0: (long) bptr->blocksperrow * SIZEOF(JBLOCK); nuclear@0: } nuclear@0: } nuclear@0: nuclear@0: if (space_per_minheight <= 0) nuclear@0: return; /* no unrealized arrays, no work */ nuclear@0: nuclear@0: /* Determine amount of memory to actually use; this is system-dependent. */ nuclear@0: avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space, nuclear@0: mem->total_space_allocated); nuclear@0: nuclear@0: /* If the maximum space needed is available, make all the buffers full nuclear@0: * height; otherwise parcel it out with the same number of minheights nuclear@0: * in each buffer. nuclear@0: */ nuclear@0: if (avail_mem >= maximum_space) nuclear@0: max_minheights = 1000000000L; nuclear@0: else { nuclear@0: max_minheights = avail_mem / space_per_minheight; nuclear@0: /* If there doesn't seem to be enough space, try to get the minimum nuclear@0: * anyway. This allows a "stub" implementation of jpeg_mem_available(). nuclear@0: */ nuclear@0: if (max_minheights <= 0) nuclear@0: max_minheights = 1; nuclear@0: } nuclear@0: nuclear@0: /* Allocate the in-memory buffers and initialize backing store as needed. */ nuclear@0: nuclear@0: for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { nuclear@0: if (sptr->mem_buffer == NULL) { /* if not realized yet */ nuclear@0: minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; nuclear@0: if (minheights <= max_minheights) { nuclear@0: /* This buffer fits in memory */ nuclear@0: sptr->rows_in_mem = sptr->rows_in_array; nuclear@0: } else { nuclear@0: /* It doesn't fit in memory, create backing store. */ nuclear@0: sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess); nuclear@0: jpeg_open_backing_store(cinfo, & sptr->b_s_info, nuclear@0: (long) sptr->rows_in_array * nuclear@0: (long) sptr->samplesperrow * nuclear@0: (long) SIZEOF(JSAMPLE)); nuclear@0: sptr->b_s_open = TRUE; nuclear@0: } nuclear@0: sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE, nuclear@0: sptr->samplesperrow, sptr->rows_in_mem); nuclear@0: sptr->rowsperchunk = mem->last_rowsperchunk; nuclear@0: sptr->cur_start_row = 0; nuclear@0: sptr->first_undef_row = 0; nuclear@0: sptr->dirty = FALSE; nuclear@0: } nuclear@0: } nuclear@0: nuclear@0: for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { nuclear@0: if (bptr->mem_buffer == NULL) { /* if not realized yet */ nuclear@0: minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; nuclear@0: if (minheights <= max_minheights) { nuclear@0: /* This buffer fits in memory */ nuclear@0: bptr->rows_in_mem = bptr->rows_in_array; nuclear@0: } else { nuclear@0: /* It doesn't fit in memory, create backing store. */ nuclear@0: bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess); nuclear@0: jpeg_open_backing_store(cinfo, & bptr->b_s_info, nuclear@0: (long) bptr->rows_in_array * nuclear@0: (long) bptr->blocksperrow * nuclear@0: (long) SIZEOF(JBLOCK)); nuclear@0: bptr->b_s_open = TRUE; nuclear@0: } nuclear@0: bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE, nuclear@0: bptr->blocksperrow, bptr->rows_in_mem); nuclear@0: bptr->rowsperchunk = mem->last_rowsperchunk; nuclear@0: bptr->cur_start_row = 0; nuclear@0: bptr->first_undef_row = 0; nuclear@0: bptr->dirty = FALSE; nuclear@0: } nuclear@0: } nuclear@0: } nuclear@0: nuclear@0: nuclear@0: LOCAL(void) nuclear@0: do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) nuclear@0: /* Do backing store read or write of a virtual sample array */ nuclear@0: { nuclear@0: long bytesperrow, file_offset, byte_count, rows, thisrow, i; nuclear@0: nuclear@0: bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE); nuclear@0: file_offset = ptr->cur_start_row * bytesperrow; nuclear@0: /* Loop to read or write each allocation chunk in mem_buffer */ nuclear@0: for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { nuclear@0: /* One chunk, but check for short chunk at end of buffer */ nuclear@0: rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); nuclear@0: /* Transfer no more than is currently defined */ nuclear@0: thisrow = (long) ptr->cur_start_row + i; nuclear@0: rows = MIN(rows, (long) ptr->first_undef_row - thisrow); nuclear@0: /* Transfer no more than fits in file */ nuclear@0: rows = MIN(rows, (long) ptr->rows_in_array - thisrow); nuclear@0: if (rows <= 0) /* this chunk might be past end of file! */ nuclear@0: break; nuclear@0: byte_count = rows * bytesperrow; nuclear@0: if (writing) nuclear@0: (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, nuclear@0: (void FAR *) ptr->mem_buffer[i], nuclear@0: file_offset, byte_count); nuclear@0: else nuclear@0: (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, nuclear@0: (void FAR *) ptr->mem_buffer[i], nuclear@0: file_offset, byte_count); nuclear@0: file_offset += byte_count; nuclear@0: } nuclear@0: } nuclear@0: nuclear@0: nuclear@0: LOCAL(void) nuclear@0: do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) nuclear@0: /* Do backing store read or write of a virtual coefficient-block array */ nuclear@0: { nuclear@0: long bytesperrow, file_offset, byte_count, rows, thisrow, i; nuclear@0: nuclear@0: bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK); nuclear@0: file_offset = ptr->cur_start_row * bytesperrow; nuclear@0: /* Loop to read or write each allocation chunk in mem_buffer */ nuclear@0: for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { nuclear@0: /* One chunk, but check for short chunk at end of buffer */ nuclear@0: rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); nuclear@0: /* Transfer no more than is currently defined */ nuclear@0: thisrow = (long) ptr->cur_start_row + i; nuclear@0: rows = MIN(rows, (long) ptr->first_undef_row - thisrow); nuclear@0: /* Transfer no more than fits in file */ nuclear@0: rows = MIN(rows, (long) ptr->rows_in_array - thisrow); nuclear@0: if (rows <= 0) /* this chunk might be past end of file! */ nuclear@0: break; nuclear@0: byte_count = rows * bytesperrow; nuclear@0: if (writing) nuclear@0: (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, nuclear@0: (void FAR *) ptr->mem_buffer[i], nuclear@0: file_offset, byte_count); nuclear@0: else nuclear@0: (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, nuclear@0: (void FAR *) ptr->mem_buffer[i], nuclear@0: file_offset, byte_count); nuclear@0: file_offset += byte_count; nuclear@0: } nuclear@0: } nuclear@0: nuclear@0: nuclear@0: METHODDEF(JSAMPARRAY) nuclear@0: access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr, nuclear@0: JDIMENSION start_row, JDIMENSION num_rows, nuclear@0: boolean writable) nuclear@0: /* Access the part of a virtual sample array starting at start_row */ nuclear@0: /* and extending for num_rows rows. writable is true if */ nuclear@0: /* caller intends to modify the accessed area. */ nuclear@0: { nuclear@0: JDIMENSION end_row = start_row + num_rows; nuclear@0: JDIMENSION undef_row; nuclear@0: nuclear@0: /* debugging check */ nuclear@0: if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || nuclear@0: ptr->mem_buffer == NULL) nuclear@0: ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); nuclear@0: nuclear@0: /* Make the desired part of the virtual array accessible */ nuclear@0: if (start_row < ptr->cur_start_row || nuclear@0: end_row > ptr->cur_start_row+ptr->rows_in_mem) { nuclear@0: if (! ptr->b_s_open) nuclear@0: ERREXIT(cinfo, JERR_VIRTUAL_BUG); nuclear@0: /* Flush old buffer contents if necessary */ nuclear@0: if (ptr->dirty) { nuclear@0: do_sarray_io(cinfo, ptr, TRUE); nuclear@0: ptr->dirty = FALSE; nuclear@0: } nuclear@0: /* Decide what part of virtual array to access. nuclear@0: * Algorithm: if target address > current window, assume forward scan, nuclear@0: * load starting at target address. If target address < current window, nuclear@0: * assume backward scan, load so that target area is top of window. nuclear@0: * Note that when switching from forward write to forward read, will have nuclear@0: * start_row = 0, so the limiting case applies and we load from 0 anyway. nuclear@0: */ nuclear@0: if (start_row > ptr->cur_start_row) { nuclear@0: ptr->cur_start_row = start_row; nuclear@0: } else { nuclear@0: /* use long arithmetic here to avoid overflow & unsigned problems */ nuclear@0: long ltemp; nuclear@0: nuclear@0: ltemp = (long) end_row - (long) ptr->rows_in_mem; nuclear@0: if (ltemp < 0) nuclear@0: ltemp = 0; /* don't fall off front end of file */ nuclear@0: ptr->cur_start_row = (JDIMENSION) ltemp; nuclear@0: } nuclear@0: /* Read in the selected part of the array. nuclear@0: * During the initial write pass, we will do no actual read nuclear@0: * because the selected part is all undefined. nuclear@0: */ nuclear@0: do_sarray_io(cinfo, ptr, FALSE); nuclear@0: } nuclear@0: /* Ensure the accessed part of the array is defined; prezero if needed. nuclear@0: * To improve locality of access, we only prezero the part of the array nuclear@0: * that the caller is about to access, not the entire in-memory array. nuclear@0: */ nuclear@0: if (ptr->first_undef_row < end_row) { nuclear@0: if (ptr->first_undef_row < start_row) { nuclear@0: if (writable) /* writer skipped over a section of array */ nuclear@0: ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); nuclear@0: undef_row = start_row; /* but reader is allowed to read ahead */ nuclear@0: } else { nuclear@0: undef_row = ptr->first_undef_row; nuclear@0: } nuclear@0: if (writable) nuclear@0: ptr->first_undef_row = end_row; nuclear@0: if (ptr->pre_zero) { nuclear@0: size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE); nuclear@0: undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ nuclear@0: end_row -= ptr->cur_start_row; nuclear@0: while (undef_row < end_row) { nuclear@0: jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); nuclear@0: undef_row++; nuclear@0: } nuclear@0: } else { nuclear@0: if (! writable) /* reader looking at undefined data */ nuclear@0: ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); nuclear@0: } nuclear@0: } nuclear@0: /* Flag the buffer dirty if caller will write in it */ nuclear@0: if (writable) nuclear@0: ptr->dirty = TRUE; nuclear@0: /* Return address of proper part of the buffer */ nuclear@0: return ptr->mem_buffer + (start_row - ptr->cur_start_row); nuclear@0: } nuclear@0: nuclear@0: nuclear@0: METHODDEF(JBLOCKARRAY) nuclear@0: access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr, nuclear@0: JDIMENSION start_row, JDIMENSION num_rows, nuclear@0: boolean writable) nuclear@0: /* Access the part of a virtual block array starting at start_row */ nuclear@0: /* and extending for num_rows rows. writable is true if */ nuclear@0: /* caller intends to modify the accessed area. */ nuclear@0: { nuclear@0: JDIMENSION end_row = start_row + num_rows; nuclear@0: JDIMENSION undef_row; nuclear@0: nuclear@0: /* debugging check */ nuclear@0: if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || nuclear@0: ptr->mem_buffer == NULL) nuclear@0: ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); nuclear@0: nuclear@0: /* Make the desired part of the virtual array accessible */ nuclear@0: if (start_row < ptr->cur_start_row || nuclear@0: end_row > ptr->cur_start_row+ptr->rows_in_mem) { nuclear@0: if (! ptr->b_s_open) nuclear@0: ERREXIT(cinfo, JERR_VIRTUAL_BUG); nuclear@0: /* Flush old buffer contents if necessary */ nuclear@0: if (ptr->dirty) { nuclear@0: do_barray_io(cinfo, ptr, TRUE); nuclear@0: ptr->dirty = FALSE; nuclear@0: } nuclear@0: /* Decide what part of virtual array to access. nuclear@0: * Algorithm: if target address > current window, assume forward scan, nuclear@0: * load starting at target address. If target address < current window, nuclear@0: * assume backward scan, load so that target area is top of window. nuclear@0: * Note that when switching from forward write to forward read, will have nuclear@0: * start_row = 0, so the limiting case applies and we load from 0 anyway. nuclear@0: */ nuclear@0: if (start_row > ptr->cur_start_row) { nuclear@0: ptr->cur_start_row = start_row; nuclear@0: } else { nuclear@0: /* use long arithmetic here to avoid overflow & unsigned problems */ nuclear@0: long ltemp; nuclear@0: nuclear@0: ltemp = (long) end_row - (long) ptr->rows_in_mem; nuclear@0: if (ltemp < 0) nuclear@0: ltemp = 0; /* don't fall off front end of file */ nuclear@0: ptr->cur_start_row = (JDIMENSION) ltemp; nuclear@0: } nuclear@0: /* Read in the selected part of the array. nuclear@0: * During the initial write pass, we will do no actual read nuclear@0: * because the selected part is all undefined. nuclear@0: */ nuclear@0: do_barray_io(cinfo, ptr, FALSE); nuclear@0: } nuclear@0: /* Ensure the accessed part of the array is defined; prezero if needed. nuclear@0: * To improve locality of access, we only prezero the part of the array nuclear@0: * that the caller is about to access, not the entire in-memory array. nuclear@0: */ nuclear@0: if (ptr->first_undef_row < end_row) { nuclear@0: if (ptr->first_undef_row < start_row) { nuclear@0: if (writable) /* writer skipped over a section of array */ nuclear@0: ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); nuclear@0: undef_row = start_row; /* but reader is allowed to read ahead */ nuclear@0: } else { nuclear@0: undef_row = ptr->first_undef_row; nuclear@0: } nuclear@0: if (writable) nuclear@0: ptr->first_undef_row = end_row; nuclear@0: if (ptr->pre_zero) { nuclear@0: size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK); nuclear@0: undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ nuclear@0: end_row -= ptr->cur_start_row; nuclear@0: while (undef_row < end_row) { nuclear@0: jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); nuclear@0: undef_row++; nuclear@0: } nuclear@0: } else { nuclear@0: if (! writable) /* reader looking at undefined data */ nuclear@0: ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); nuclear@0: } nuclear@0: } nuclear@0: /* Flag the buffer dirty if caller will write in it */ nuclear@0: if (writable) nuclear@0: ptr->dirty = TRUE; nuclear@0: /* Return address of proper part of the buffer */ nuclear@0: return ptr->mem_buffer + (start_row - ptr->cur_start_row); nuclear@0: } nuclear@0: nuclear@0: nuclear@0: /* nuclear@0: * Release all objects belonging to a specified pool. nuclear@0: */ nuclear@0: nuclear@0: METHODDEF(void) nuclear@0: free_pool (j_common_ptr cinfo, int pool_id) nuclear@0: { nuclear@0: my_mem_ptr mem = (my_mem_ptr) cinfo->mem; nuclear@0: small_pool_ptr shdr_ptr; nuclear@0: large_pool_ptr lhdr_ptr; nuclear@0: size_t space_freed; nuclear@0: nuclear@0: if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) nuclear@0: ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ nuclear@0: nuclear@0: #ifdef MEM_STATS nuclear@0: if (cinfo->err->trace_level > 1) nuclear@0: print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ nuclear@0: #endif nuclear@0: nuclear@0: /* If freeing IMAGE pool, close any virtual arrays first */ nuclear@0: if (pool_id == JPOOL_IMAGE) { nuclear@0: jvirt_sarray_ptr sptr; nuclear@0: jvirt_barray_ptr bptr; nuclear@0: nuclear@0: for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { nuclear@0: if (sptr->b_s_open) { /* there may be no backing store */ nuclear@0: sptr->b_s_open = FALSE; /* prevent recursive close if error */ nuclear@0: (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info); nuclear@0: } nuclear@0: } nuclear@0: mem->virt_sarray_list = NULL; nuclear@0: for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { nuclear@0: if (bptr->b_s_open) { /* there may be no backing store */ nuclear@0: bptr->b_s_open = FALSE; /* prevent recursive close if error */ nuclear@0: (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info); nuclear@0: } nuclear@0: } nuclear@0: mem->virt_barray_list = NULL; nuclear@0: } nuclear@0: nuclear@0: /* Release large objects */ nuclear@0: lhdr_ptr = mem->large_list[pool_id]; nuclear@0: mem->large_list[pool_id] = NULL; nuclear@0: nuclear@0: while (lhdr_ptr != NULL) { nuclear@0: large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next; nuclear@0: space_freed = lhdr_ptr->hdr.bytes_used + nuclear@0: lhdr_ptr->hdr.bytes_left + nuclear@0: SIZEOF(large_pool_hdr); nuclear@0: jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed); nuclear@0: mem->total_space_allocated -= space_freed; nuclear@0: lhdr_ptr = next_lhdr_ptr; nuclear@0: } nuclear@0: nuclear@0: /* Release small objects */ nuclear@0: shdr_ptr = mem->small_list[pool_id]; nuclear@0: mem->small_list[pool_id] = NULL; nuclear@0: nuclear@0: while (shdr_ptr != NULL) { nuclear@0: small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next; nuclear@0: space_freed = shdr_ptr->hdr.bytes_used + nuclear@0: shdr_ptr->hdr.bytes_left + nuclear@0: SIZEOF(small_pool_hdr); nuclear@0: jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed); nuclear@0: mem->total_space_allocated -= space_freed; nuclear@0: shdr_ptr = next_shdr_ptr; nuclear@0: } nuclear@0: } nuclear@0: nuclear@0: nuclear@0: /* nuclear@0: * Close up shop entirely. nuclear@0: * Note that this cannot be called unless cinfo->mem is non-NULL. nuclear@0: */ nuclear@0: nuclear@0: METHODDEF(void) nuclear@0: self_destruct (j_common_ptr cinfo) nuclear@0: { nuclear@0: int pool; nuclear@0: nuclear@0: /* Close all backing store, release all memory. nuclear@0: * Releasing pools in reverse order might help avoid fragmentation nuclear@0: * with some (brain-damaged) malloc libraries. nuclear@0: */ nuclear@0: for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { nuclear@0: free_pool(cinfo, pool); nuclear@0: } nuclear@0: nuclear@0: /* Release the memory manager control block too. */ nuclear@0: jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr)); nuclear@0: cinfo->mem = NULL; /* ensures I will be called only once */ nuclear@0: nuclear@0: jpeg_mem_term(cinfo); /* system-dependent cleanup */ nuclear@0: } nuclear@0: nuclear@0: nuclear@0: /* nuclear@0: * Memory manager initialization. nuclear@0: * When this is called, only the error manager pointer is valid in cinfo! nuclear@0: */ nuclear@0: nuclear@0: GLOBAL(void) nuclear@0: jinit_memory_mgr (j_common_ptr cinfo) nuclear@0: { nuclear@0: my_mem_ptr mem; nuclear@0: long max_to_use; nuclear@0: int pool; nuclear@0: size_t test_mac; nuclear@0: nuclear@0: cinfo->mem = NULL; /* for safety if init fails */ nuclear@0: nuclear@0: /* Check for configuration errors. nuclear@0: * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably nuclear@0: * doesn't reflect any real hardware alignment requirement. nuclear@0: * The test is a little tricky: for X>0, X and X-1 have no one-bits nuclear@0: * in common if and only if X is a power of 2, ie has only one one-bit. nuclear@0: * Some compilers may give an "unreachable code" warning here; ignore it. nuclear@0: */ nuclear@0: if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0) nuclear@0: ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE); nuclear@0: /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be nuclear@0: * a multiple of SIZEOF(ALIGN_TYPE). nuclear@0: * Again, an "unreachable code" warning may be ignored here. nuclear@0: * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. nuclear@0: */ nuclear@0: test_mac = (size_t) MAX_ALLOC_CHUNK; nuclear@0: if ((long) test_mac != MAX_ALLOC_CHUNK || nuclear@0: (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0) nuclear@0: ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); nuclear@0: nuclear@0: max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */ nuclear@0: nuclear@0: /* Attempt to allocate memory manager's control block */ nuclear@0: mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr)); nuclear@0: nuclear@0: if (mem == NULL) { nuclear@0: jpeg_mem_term(cinfo); /* system-dependent cleanup */ nuclear@0: ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0); nuclear@0: } nuclear@0: nuclear@0: /* OK, fill in the method pointers */ nuclear@0: mem->pub.alloc_small = alloc_small; nuclear@0: mem->pub.alloc_large = alloc_large; nuclear@0: mem->pub.alloc_sarray = alloc_sarray; nuclear@0: mem->pub.alloc_barray = alloc_barray; nuclear@0: mem->pub.request_virt_sarray = request_virt_sarray; nuclear@0: mem->pub.request_virt_barray = request_virt_barray; nuclear@0: mem->pub.realize_virt_arrays = realize_virt_arrays; nuclear@0: mem->pub.access_virt_sarray = access_virt_sarray; nuclear@0: mem->pub.access_virt_barray = access_virt_barray; nuclear@0: mem->pub.free_pool = free_pool; nuclear@0: mem->pub.self_destruct = self_destruct; nuclear@0: nuclear@0: /* Make MAX_ALLOC_CHUNK accessible to other modules */ nuclear@0: mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK; nuclear@0: nuclear@0: /* Initialize working state */ nuclear@0: mem->pub.max_memory_to_use = max_to_use; nuclear@0: nuclear@0: for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { nuclear@0: mem->small_list[pool] = NULL; nuclear@0: mem->large_list[pool] = NULL; nuclear@0: } nuclear@0: mem->virt_sarray_list = NULL; nuclear@0: mem->virt_barray_list = NULL; nuclear@0: nuclear@0: mem->total_space_allocated = SIZEOF(my_memory_mgr); nuclear@0: nuclear@0: /* Declare ourselves open for business */ nuclear@0: cinfo->mem = & mem->pub; nuclear@0: nuclear@0: /* Check for an environment variable JPEGMEM; if found, override the nuclear@0: * default max_memory setting from jpeg_mem_init. Note that the nuclear@0: * surrounding application may again override this value. nuclear@0: * If your system doesn't support getenv(), define NO_GETENV to disable nuclear@0: * this feature. nuclear@0: */ nuclear@0: #ifndef NO_GETENV nuclear@0: { char * memenv; nuclear@0: nuclear@0: if ((memenv = getenv("JPEGMEM")) != NULL) { nuclear@0: char ch = 'x'; nuclear@0: nuclear@0: if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) { nuclear@0: if (ch == 'm' || ch == 'M') nuclear@0: max_to_use *= 1000L; nuclear@0: mem->pub.max_memory_to_use = max_to_use * 1000L; nuclear@0: } nuclear@0: } nuclear@0: } nuclear@0: #endif nuclear@0: nuclear@0: }