vrshoot
view libs/vorbis/psy.c @ 3:c179c72369be
rename candy->vr
author | John Tsiombikas <nuclear@member.fsf.org> |
---|---|
date | Mon, 03 Feb 2014 08:52:13 +0200 |
parents | |
children |
line source
1 /********************************************************************
2 * *
3 * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE. *
4 * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS *
5 * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
6 * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. *
7 * *
8 * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2010 *
9 * by the Xiph.Org Foundation http://www.xiph.org/ *
10 * *
11 ********************************************************************
13 function: psychoacoustics not including preecho
14 last mod: $Id: psy.c 18077 2011-09-02 02:49:00Z giles $
16 ********************************************************************/
18 #include <stdlib.h>
19 #include <math.h>
20 #include <string.h>
21 #include "vorbis/codec.h"
22 #include "codec_internal.h"
24 #include "masking.h"
25 #include "psy.h"
26 #include "os.h"
27 #include "lpc.h"
28 #include "smallft.h"
29 #include "scales.h"
30 #include "misc.h"
32 #define NEGINF -9999.f
33 static const double stereo_threshholds[]={0.0, .5, 1.0, 1.5, 2.5, 4.5, 8.5, 16.5, 9e10};
34 static const double stereo_threshholds_limited[]={0.0, .5, 1.0, 1.5, 2.0, 2.5, 4.5, 8.5, 9e10};
36 vorbis_look_psy_global *_vp_global_look(vorbis_info *vi){
37 codec_setup_info *ci=vi->codec_setup;
38 vorbis_info_psy_global *gi=&ci->psy_g_param;
39 vorbis_look_psy_global *look=_ogg_calloc(1,sizeof(*look));
41 look->channels=vi->channels;
43 look->ampmax=-9999.;
44 look->gi=gi;
45 return(look);
46 }
48 void _vp_global_free(vorbis_look_psy_global *look){
49 if(look){
50 memset(look,0,sizeof(*look));
51 _ogg_free(look);
52 }
53 }
55 void _vi_gpsy_free(vorbis_info_psy_global *i){
56 if(i){
57 memset(i,0,sizeof(*i));
58 _ogg_free(i);
59 }
60 }
62 void _vi_psy_free(vorbis_info_psy *i){
63 if(i){
64 memset(i,0,sizeof(*i));
65 _ogg_free(i);
66 }
67 }
69 static void min_curve(float *c,
70 float *c2){
71 int i;
72 for(i=0;i<EHMER_MAX;i++)if(c2[i]<c[i])c[i]=c2[i];
73 }
74 static void max_curve(float *c,
75 float *c2){
76 int i;
77 for(i=0;i<EHMER_MAX;i++)if(c2[i]>c[i])c[i]=c2[i];
78 }
80 static void attenuate_curve(float *c,float att){
81 int i;
82 for(i=0;i<EHMER_MAX;i++)
83 c[i]+=att;
84 }
86 static float ***setup_tone_curves(float curveatt_dB[P_BANDS],float binHz,int n,
87 float center_boost, float center_decay_rate){
88 int i,j,k,m;
89 float ath[EHMER_MAX];
90 float workc[P_BANDS][P_LEVELS][EHMER_MAX];
91 float athc[P_LEVELS][EHMER_MAX];
92 float *brute_buffer=alloca(n*sizeof(*brute_buffer));
94 float ***ret=_ogg_malloc(sizeof(*ret)*P_BANDS);
96 memset(workc,0,sizeof(workc));
98 for(i=0;i<P_BANDS;i++){
99 /* we add back in the ATH to avoid low level curves falling off to
100 -infinity and unnecessarily cutting off high level curves in the
101 curve limiting (last step). */
103 /* A half-band's settings must be valid over the whole band, and
104 it's better to mask too little than too much */
105 int ath_offset=i*4;
106 for(j=0;j<EHMER_MAX;j++){
107 float min=999.;
108 for(k=0;k<4;k++)
109 if(j+k+ath_offset<MAX_ATH){
110 if(min>ATH[j+k+ath_offset])min=ATH[j+k+ath_offset];
111 }else{
112 if(min>ATH[MAX_ATH-1])min=ATH[MAX_ATH-1];
113 }
114 ath[j]=min;
115 }
117 /* copy curves into working space, replicate the 50dB curve to 30
118 and 40, replicate the 100dB curve to 110 */
119 for(j=0;j<6;j++)
120 memcpy(workc[i][j+2],tonemasks[i][j],EHMER_MAX*sizeof(*tonemasks[i][j]));
121 memcpy(workc[i][0],tonemasks[i][0],EHMER_MAX*sizeof(*tonemasks[i][0]));
122 memcpy(workc[i][1],tonemasks[i][0],EHMER_MAX*sizeof(*tonemasks[i][0]));
124 /* apply centered curve boost/decay */
125 for(j=0;j<P_LEVELS;j++){
126 for(k=0;k<EHMER_MAX;k++){
127 float adj=center_boost+abs(EHMER_OFFSET-k)*center_decay_rate;
128 if(adj<0. && center_boost>0)adj=0.;
129 if(adj>0. && center_boost<0)adj=0.;
130 workc[i][j][k]+=adj;
131 }
132 }
134 /* normalize curves so the driving amplitude is 0dB */
135 /* make temp curves with the ATH overlayed */
136 for(j=0;j<P_LEVELS;j++){
137 attenuate_curve(workc[i][j],curveatt_dB[i]+100.-(j<2?2:j)*10.-P_LEVEL_0);
138 memcpy(athc[j],ath,EHMER_MAX*sizeof(**athc));
139 attenuate_curve(athc[j],+100.-j*10.f-P_LEVEL_0);
140 max_curve(athc[j],workc[i][j]);
141 }
143 /* Now limit the louder curves.
145 the idea is this: We don't know what the playback attenuation
146 will be; 0dB SL moves every time the user twiddles the volume
147 knob. So that means we have to use a single 'most pessimal' curve
148 for all masking amplitudes, right? Wrong. The *loudest* sound
149 can be in (we assume) a range of ...+100dB] SL. However, sounds
150 20dB down will be in a range ...+80], 40dB down is from ...+60],
151 etc... */
153 for(j=1;j<P_LEVELS;j++){
154 min_curve(athc[j],athc[j-1]);
155 min_curve(workc[i][j],athc[j]);
156 }
157 }
159 for(i=0;i<P_BANDS;i++){
160 int hi_curve,lo_curve,bin;
161 ret[i]=_ogg_malloc(sizeof(**ret)*P_LEVELS);
163 /* low frequency curves are measured with greater resolution than
164 the MDCT/FFT will actually give us; we want the curve applied
165 to the tone data to be pessimistic and thus apply the minimum
166 masking possible for a given bin. That means that a single bin
167 could span more than one octave and that the curve will be a
168 composite of multiple octaves. It also may mean that a single
169 bin may span > an eighth of an octave and that the eighth
170 octave values may also be composited. */
172 /* which octave curves will we be compositing? */
173 bin=floor(fromOC(i*.5)/binHz);
174 lo_curve= ceil(toOC(bin*binHz+1)*2);
175 hi_curve= floor(toOC((bin+1)*binHz)*2);
176 if(lo_curve>i)lo_curve=i;
177 if(lo_curve<0)lo_curve=0;
178 if(hi_curve>=P_BANDS)hi_curve=P_BANDS-1;
180 for(m=0;m<P_LEVELS;m++){
181 ret[i][m]=_ogg_malloc(sizeof(***ret)*(EHMER_MAX+2));
183 for(j=0;j<n;j++)brute_buffer[j]=999.;
185 /* render the curve into bins, then pull values back into curve.
186 The point is that any inherent subsampling aliasing results in
187 a safe minimum */
188 for(k=lo_curve;k<=hi_curve;k++){
189 int l=0;
191 for(j=0;j<EHMER_MAX;j++){
192 int lo_bin= fromOC(j*.125+k*.5-2.0625)/binHz;
193 int hi_bin= fromOC(j*.125+k*.5-1.9375)/binHz+1;
195 if(lo_bin<0)lo_bin=0;
196 if(lo_bin>n)lo_bin=n;
197 if(lo_bin<l)l=lo_bin;
198 if(hi_bin<0)hi_bin=0;
199 if(hi_bin>n)hi_bin=n;
201 for(;l<hi_bin && l<n;l++)
202 if(brute_buffer[l]>workc[k][m][j])
203 brute_buffer[l]=workc[k][m][j];
204 }
206 for(;l<n;l++)
207 if(brute_buffer[l]>workc[k][m][EHMER_MAX-1])
208 brute_buffer[l]=workc[k][m][EHMER_MAX-1];
210 }
212 /* be equally paranoid about being valid up to next half ocatve */
213 if(i+1<P_BANDS){
214 int l=0;
215 k=i+1;
216 for(j=0;j<EHMER_MAX;j++){
217 int lo_bin= fromOC(j*.125+i*.5-2.0625)/binHz;
218 int hi_bin= fromOC(j*.125+i*.5-1.9375)/binHz+1;
220 if(lo_bin<0)lo_bin=0;
221 if(lo_bin>n)lo_bin=n;
222 if(lo_bin<l)l=lo_bin;
223 if(hi_bin<0)hi_bin=0;
224 if(hi_bin>n)hi_bin=n;
226 for(;l<hi_bin && l<n;l++)
227 if(brute_buffer[l]>workc[k][m][j])
228 brute_buffer[l]=workc[k][m][j];
229 }
231 for(;l<n;l++)
232 if(brute_buffer[l]>workc[k][m][EHMER_MAX-1])
233 brute_buffer[l]=workc[k][m][EHMER_MAX-1];
235 }
238 for(j=0;j<EHMER_MAX;j++){
239 int bin=fromOC(j*.125+i*.5-2.)/binHz;
240 if(bin<0){
241 ret[i][m][j+2]=-999.;
242 }else{
243 if(bin>=n){
244 ret[i][m][j+2]=-999.;
245 }else{
246 ret[i][m][j+2]=brute_buffer[bin];
247 }
248 }
249 }
251 /* add fenceposts */
252 for(j=0;j<EHMER_OFFSET;j++)
253 if(ret[i][m][j+2]>-200.f)break;
254 ret[i][m][0]=j;
256 for(j=EHMER_MAX-1;j>EHMER_OFFSET+1;j--)
257 if(ret[i][m][j+2]>-200.f)
258 break;
259 ret[i][m][1]=j;
261 }
262 }
264 return(ret);
265 }
267 void _vp_psy_init(vorbis_look_psy *p,vorbis_info_psy *vi,
268 vorbis_info_psy_global *gi,int n,long rate){
269 long i,j,lo=-99,hi=1;
270 long maxoc;
271 memset(p,0,sizeof(*p));
273 p->eighth_octave_lines=gi->eighth_octave_lines;
274 p->shiftoc=rint(log(gi->eighth_octave_lines*8.f)/log(2.f))-1;
276 p->firstoc=toOC(.25f*rate*.5/n)*(1<<(p->shiftoc+1))-gi->eighth_octave_lines;
277 maxoc=toOC((n+.25f)*rate*.5/n)*(1<<(p->shiftoc+1))+.5f;
278 p->total_octave_lines=maxoc-p->firstoc+1;
279 p->ath=_ogg_malloc(n*sizeof(*p->ath));
281 p->octave=_ogg_malloc(n*sizeof(*p->octave));
282 p->bark=_ogg_malloc(n*sizeof(*p->bark));
283 p->vi=vi;
284 p->n=n;
285 p->rate=rate;
287 /* AoTuV HF weighting */
288 p->m_val = 1.;
289 if(rate < 26000) p->m_val = 0;
290 else if(rate < 38000) p->m_val = .94; /* 32kHz */
291 else if(rate > 46000) p->m_val = 1.275; /* 48kHz */
293 /* set up the lookups for a given blocksize and sample rate */
295 for(i=0,j=0;i<MAX_ATH-1;i++){
296 int endpos=rint(fromOC((i+1)*.125-2.)*2*n/rate);
297 float base=ATH[i];
298 if(j<endpos){
299 float delta=(ATH[i+1]-base)/(endpos-j);
300 for(;j<endpos && j<n;j++){
301 p->ath[j]=base+100.;
302 base+=delta;
303 }
304 }
305 }
307 for(;j<n;j++){
308 p->ath[j]=p->ath[j-1];
309 }
311 for(i=0;i<n;i++){
312 float bark=toBARK(rate/(2*n)*i);
314 for(;lo+vi->noisewindowlomin<i &&
315 toBARK(rate/(2*n)*lo)<(bark-vi->noisewindowlo);lo++);
317 for(;hi<=n && (hi<i+vi->noisewindowhimin ||
318 toBARK(rate/(2*n)*hi)<(bark+vi->noisewindowhi));hi++);
320 p->bark[i]=((lo-1)<<16)+(hi-1);
322 }
324 for(i=0;i<n;i++)
325 p->octave[i]=toOC((i+.25f)*.5*rate/n)*(1<<(p->shiftoc+1))+.5f;
327 p->tonecurves=setup_tone_curves(vi->toneatt,rate*.5/n,n,
328 vi->tone_centerboost,vi->tone_decay);
330 /* set up rolling noise median */
331 p->noiseoffset=_ogg_malloc(P_NOISECURVES*sizeof(*p->noiseoffset));
332 for(i=0;i<P_NOISECURVES;i++)
333 p->noiseoffset[i]=_ogg_malloc(n*sizeof(**p->noiseoffset));
335 for(i=0;i<n;i++){
336 float halfoc=toOC((i+.5)*rate/(2.*n))*2.;
337 int inthalfoc;
338 float del;
340 if(halfoc<0)halfoc=0;
341 if(halfoc>=P_BANDS-1)halfoc=P_BANDS-1;
342 inthalfoc=(int)halfoc;
343 del=halfoc-inthalfoc;
345 for(j=0;j<P_NOISECURVES;j++)
346 p->noiseoffset[j][i]=
347 p->vi->noiseoff[j][inthalfoc]*(1.-del) +
348 p->vi->noiseoff[j][inthalfoc+1]*del;
350 }
351 #if 0
352 {
353 static int ls=0;
354 _analysis_output_always("noiseoff0",ls,p->noiseoffset[0],n,1,0,0);
355 _analysis_output_always("noiseoff1",ls,p->noiseoffset[1],n,1,0,0);
356 _analysis_output_always("noiseoff2",ls++,p->noiseoffset[2],n,1,0,0);
357 }
358 #endif
359 }
361 void _vp_psy_clear(vorbis_look_psy *p){
362 int i,j;
363 if(p){
364 if(p->ath)_ogg_free(p->ath);
365 if(p->octave)_ogg_free(p->octave);
366 if(p->bark)_ogg_free(p->bark);
367 if(p->tonecurves){
368 for(i=0;i<P_BANDS;i++){
369 for(j=0;j<P_LEVELS;j++){
370 _ogg_free(p->tonecurves[i][j]);
371 }
372 _ogg_free(p->tonecurves[i]);
373 }
374 _ogg_free(p->tonecurves);
375 }
376 if(p->noiseoffset){
377 for(i=0;i<P_NOISECURVES;i++){
378 _ogg_free(p->noiseoffset[i]);
379 }
380 _ogg_free(p->noiseoffset);
381 }
382 memset(p,0,sizeof(*p));
383 }
384 }
386 /* octave/(8*eighth_octave_lines) x scale and dB y scale */
387 static void seed_curve(float *seed,
388 const float **curves,
389 float amp,
390 int oc, int n,
391 int linesper,float dBoffset){
392 int i,post1;
393 int seedptr;
394 const float *posts,*curve;
396 int choice=(int)((amp+dBoffset-P_LEVEL_0)*.1f);
397 choice=max(choice,0);
398 choice=min(choice,P_LEVELS-1);
399 posts=curves[choice];
400 curve=posts+2;
401 post1=(int)posts[1];
402 seedptr=oc+(posts[0]-EHMER_OFFSET)*linesper-(linesper>>1);
404 for(i=posts[0];i<post1;i++){
405 if(seedptr>0){
406 float lin=amp+curve[i];
407 if(seed[seedptr]<lin)seed[seedptr]=lin;
408 }
409 seedptr+=linesper;
410 if(seedptr>=n)break;
411 }
412 }
414 static void seed_loop(vorbis_look_psy *p,
415 const float ***curves,
416 const float *f,
417 const float *flr,
418 float *seed,
419 float specmax){
420 vorbis_info_psy *vi=p->vi;
421 long n=p->n,i;
422 float dBoffset=vi->max_curve_dB-specmax;
424 /* prime the working vector with peak values */
426 for(i=0;i<n;i++){
427 float max=f[i];
428 long oc=p->octave[i];
429 while(i+1<n && p->octave[i+1]==oc){
430 i++;
431 if(f[i]>max)max=f[i];
432 }
434 if(max+6.f>flr[i]){
435 oc=oc>>p->shiftoc;
437 if(oc>=P_BANDS)oc=P_BANDS-1;
438 if(oc<0)oc=0;
440 seed_curve(seed,
441 curves[oc],
442 max,
443 p->octave[i]-p->firstoc,
444 p->total_octave_lines,
445 p->eighth_octave_lines,
446 dBoffset);
447 }
448 }
449 }
451 static void seed_chase(float *seeds, int linesper, long n){
452 long *posstack=alloca(n*sizeof(*posstack));
453 float *ampstack=alloca(n*sizeof(*ampstack));
454 long stack=0;
455 long pos=0;
456 long i;
458 for(i=0;i<n;i++){
459 if(stack<2){
460 posstack[stack]=i;
461 ampstack[stack++]=seeds[i];
462 }else{
463 while(1){
464 if(seeds[i]<ampstack[stack-1]){
465 posstack[stack]=i;
466 ampstack[stack++]=seeds[i];
467 break;
468 }else{
469 if(i<posstack[stack-1]+linesper){
470 if(stack>1 && ampstack[stack-1]<=ampstack[stack-2] &&
471 i<posstack[stack-2]+linesper){
472 /* we completely overlap, making stack-1 irrelevant. pop it */
473 stack--;
474 continue;
475 }
476 }
477 posstack[stack]=i;
478 ampstack[stack++]=seeds[i];
479 break;
481 }
482 }
483 }
484 }
486 /* the stack now contains only the positions that are relevant. Scan
487 'em straight through */
489 for(i=0;i<stack;i++){
490 long endpos;
491 if(i<stack-1 && ampstack[i+1]>ampstack[i]){
492 endpos=posstack[i+1];
493 }else{
494 endpos=posstack[i]+linesper+1; /* +1 is important, else bin 0 is
495 discarded in short frames */
496 }
497 if(endpos>n)endpos=n;
498 for(;pos<endpos;pos++)
499 seeds[pos]=ampstack[i];
500 }
502 /* there. Linear time. I now remember this was on a problem set I
503 had in Grad Skool... I didn't solve it at the time ;-) */
505 }
507 /* bleaugh, this is more complicated than it needs to be */
508 #include<stdio.h>
509 static void max_seeds(vorbis_look_psy *p,
510 float *seed,
511 float *flr){
512 long n=p->total_octave_lines;
513 int linesper=p->eighth_octave_lines;
514 long linpos=0;
515 long pos;
517 seed_chase(seed,linesper,n); /* for masking */
519 pos=p->octave[0]-p->firstoc-(linesper>>1);
521 while(linpos+1<p->n){
522 float minV=seed[pos];
523 long end=((p->octave[linpos]+p->octave[linpos+1])>>1)-p->firstoc;
524 if(minV>p->vi->tone_abs_limit)minV=p->vi->tone_abs_limit;
525 while(pos+1<=end){
526 pos++;
527 if((seed[pos]>NEGINF && seed[pos]<minV) || minV==NEGINF)
528 minV=seed[pos];
529 }
531 end=pos+p->firstoc;
532 for(;linpos<p->n && p->octave[linpos]<=end;linpos++)
533 if(flr[linpos]<minV)flr[linpos]=minV;
534 }
536 {
537 float minV=seed[p->total_octave_lines-1];
538 for(;linpos<p->n;linpos++)
539 if(flr[linpos]<minV)flr[linpos]=minV;
540 }
542 }
544 static void bark_noise_hybridmp(int n,const long *b,
545 const float *f,
546 float *noise,
547 const float offset,
548 const int fixed){
550 float *N=alloca(n*sizeof(*N));
551 float *X=alloca(n*sizeof(*N));
552 float *XX=alloca(n*sizeof(*N));
553 float *Y=alloca(n*sizeof(*N));
554 float *XY=alloca(n*sizeof(*N));
556 float tN, tX, tXX, tY, tXY;
557 int i;
559 int lo, hi;
560 float R=0.f;
561 float A=0.f;
562 float B=0.f;
563 float D=1.f;
564 float w, x, y;
566 tN = tX = tXX = tY = tXY = 0.f;
568 y = f[0] + offset;
569 if (y < 1.f) y = 1.f;
571 w = y * y * .5;
573 tN += w;
574 tX += w;
575 tY += w * y;
577 N[0] = tN;
578 X[0] = tX;
579 XX[0] = tXX;
580 Y[0] = tY;
581 XY[0] = tXY;
583 for (i = 1, x = 1.f; i < n; i++, x += 1.f) {
585 y = f[i] + offset;
586 if (y < 1.f) y = 1.f;
588 w = y * y;
590 tN += w;
591 tX += w * x;
592 tXX += w * x * x;
593 tY += w * y;
594 tXY += w * x * y;
596 N[i] = tN;
597 X[i] = tX;
598 XX[i] = tXX;
599 Y[i] = tY;
600 XY[i] = tXY;
601 }
603 for (i = 0, x = 0.f;; i++, x += 1.f) {
605 lo = b[i] >> 16;
606 if( lo>=0 ) break;
607 hi = b[i] & 0xffff;
609 tN = N[hi] + N[-lo];
610 tX = X[hi] - X[-lo];
611 tXX = XX[hi] + XX[-lo];
612 tY = Y[hi] + Y[-lo];
613 tXY = XY[hi] - XY[-lo];
615 A = tY * tXX - tX * tXY;
616 B = tN * tXY - tX * tY;
617 D = tN * tXX - tX * tX;
618 R = (A + x * B) / D;
619 if (R < 0.f)
620 R = 0.f;
622 noise[i] = R - offset;
623 }
625 for ( ;; i++, x += 1.f) {
627 lo = b[i] >> 16;
628 hi = b[i] & 0xffff;
629 if(hi>=n)break;
631 tN = N[hi] - N[lo];
632 tX = X[hi] - X[lo];
633 tXX = XX[hi] - XX[lo];
634 tY = Y[hi] - Y[lo];
635 tXY = XY[hi] - XY[lo];
637 A = tY * tXX - tX * tXY;
638 B = tN * tXY - tX * tY;
639 D = tN * tXX - tX * tX;
640 R = (A + x * B) / D;
641 if (R < 0.f) R = 0.f;
643 noise[i] = R - offset;
644 }
645 for ( ; i < n; i++, x += 1.f) {
647 R = (A + x * B) / D;
648 if (R < 0.f) R = 0.f;
650 noise[i] = R - offset;
651 }
653 if (fixed <= 0) return;
655 for (i = 0, x = 0.f;; i++, x += 1.f) {
656 hi = i + fixed / 2;
657 lo = hi - fixed;
658 if(lo>=0)break;
660 tN = N[hi] + N[-lo];
661 tX = X[hi] - X[-lo];
662 tXX = XX[hi] + XX[-lo];
663 tY = Y[hi] + Y[-lo];
664 tXY = XY[hi] - XY[-lo];
667 A = tY * tXX - tX * tXY;
668 B = tN * tXY - tX * tY;
669 D = tN * tXX - tX * tX;
670 R = (A + x * B) / D;
672 if (R - offset < noise[i]) noise[i] = R - offset;
673 }
674 for ( ;; i++, x += 1.f) {
676 hi = i + fixed / 2;
677 lo = hi - fixed;
678 if(hi>=n)break;
680 tN = N[hi] - N[lo];
681 tX = X[hi] - X[lo];
682 tXX = XX[hi] - XX[lo];
683 tY = Y[hi] - Y[lo];
684 tXY = XY[hi] - XY[lo];
686 A = tY * tXX - tX * tXY;
687 B = tN * tXY - tX * tY;
688 D = tN * tXX - tX * tX;
689 R = (A + x * B) / D;
691 if (R - offset < noise[i]) noise[i] = R - offset;
692 }
693 for ( ; i < n; i++, x += 1.f) {
694 R = (A + x * B) / D;
695 if (R - offset < noise[i]) noise[i] = R - offset;
696 }
697 }
699 void _vp_noisemask(vorbis_look_psy *p,
700 float *logmdct,
701 float *logmask){
703 int i,n=p->n;
704 float *work=alloca(n*sizeof(*work));
706 bark_noise_hybridmp(n,p->bark,logmdct,logmask,
707 140.,-1);
709 for(i=0;i<n;i++)work[i]=logmdct[i]-logmask[i];
711 bark_noise_hybridmp(n,p->bark,work,logmask,0.,
712 p->vi->noisewindowfixed);
714 for(i=0;i<n;i++)work[i]=logmdct[i]-work[i];
716 #if 0
717 {
718 static int seq=0;
720 float work2[n];
721 for(i=0;i<n;i++){
722 work2[i]=logmask[i]+work[i];
723 }
725 if(seq&1)
726 _analysis_output("median2R",seq/2,work,n,1,0,0);
727 else
728 _analysis_output("median2L",seq/2,work,n,1,0,0);
730 if(seq&1)
731 _analysis_output("envelope2R",seq/2,work2,n,1,0,0);
732 else
733 _analysis_output("envelope2L",seq/2,work2,n,1,0,0);
734 seq++;
735 }
736 #endif
738 for(i=0;i<n;i++){
739 int dB=logmask[i]+.5;
740 if(dB>=NOISE_COMPAND_LEVELS)dB=NOISE_COMPAND_LEVELS-1;
741 if(dB<0)dB=0;
742 logmask[i]= work[i]+p->vi->noisecompand[dB];
743 }
745 }
747 void _vp_tonemask(vorbis_look_psy *p,
748 float *logfft,
749 float *logmask,
750 float global_specmax,
751 float local_specmax){
753 int i,n=p->n;
755 float *seed=alloca(sizeof(*seed)*p->total_octave_lines);
756 float att=local_specmax+p->vi->ath_adjatt;
757 for(i=0;i<p->total_octave_lines;i++)seed[i]=NEGINF;
759 /* set the ATH (floating below localmax, not global max by a
760 specified att) */
761 if(att<p->vi->ath_maxatt)att=p->vi->ath_maxatt;
763 for(i=0;i<n;i++)
764 logmask[i]=p->ath[i]+att;
766 /* tone masking */
767 seed_loop(p,(const float ***)p->tonecurves,logfft,logmask,seed,global_specmax);
768 max_seeds(p,seed,logmask);
770 }
772 void _vp_offset_and_mix(vorbis_look_psy *p,
773 float *noise,
774 float *tone,
775 int offset_select,
776 float *logmask,
777 float *mdct,
778 float *logmdct){
779 int i,n=p->n;
780 float de, coeffi, cx;/* AoTuV */
781 float toneatt=p->vi->tone_masteratt[offset_select];
783 cx = p->m_val;
785 for(i=0;i<n;i++){
786 float val= noise[i]+p->noiseoffset[offset_select][i];
787 if(val>p->vi->noisemaxsupp)val=p->vi->noisemaxsupp;
788 logmask[i]=max(val,tone[i]+toneatt);
791 /* AoTuV */
792 /** @ M1 **
793 The following codes improve a noise problem.
794 A fundamental idea uses the value of masking and carries out
795 the relative compensation of the MDCT.
796 However, this code is not perfect and all noise problems cannot be solved.
797 by Aoyumi @ 2004/04/18
798 */
800 if(offset_select == 1) {
801 coeffi = -17.2; /* coeffi is a -17.2dB threshold */
802 val = val - logmdct[i]; /* val == mdct line value relative to floor in dB */
804 if(val > coeffi){
805 /* mdct value is > -17.2 dB below floor */
807 de = 1.0-((val-coeffi)*0.005*cx);
808 /* pro-rated attenuation:
809 -0.00 dB boost if mdct value is -17.2dB (relative to floor)
810 -0.77 dB boost if mdct value is 0dB (relative to floor)
811 -1.64 dB boost if mdct value is +17.2dB (relative to floor)
812 etc... */
814 if(de < 0) de = 0.0001;
815 }else
816 /* mdct value is <= -17.2 dB below floor */
818 de = 1.0-((val-coeffi)*0.0003*cx);
819 /* pro-rated attenuation:
820 +0.00 dB atten if mdct value is -17.2dB (relative to floor)
821 +0.45 dB atten if mdct value is -34.4dB (relative to floor)
822 etc... */
824 mdct[i] *= de;
826 }
827 }
828 }
830 float _vp_ampmax_decay(float amp,vorbis_dsp_state *vd){
831 vorbis_info *vi=vd->vi;
832 codec_setup_info *ci=vi->codec_setup;
833 vorbis_info_psy_global *gi=&ci->psy_g_param;
835 int n=ci->blocksizes[vd->W]/2;
836 float secs=(float)n/vi->rate;
838 amp+=secs*gi->ampmax_att_per_sec;
839 if(amp<-9999)amp=-9999;
840 return(amp);
841 }
843 static float FLOOR1_fromdB_LOOKUP[256]={
844 1.0649863e-07F, 1.1341951e-07F, 1.2079015e-07F, 1.2863978e-07F,
845 1.3699951e-07F, 1.4590251e-07F, 1.5538408e-07F, 1.6548181e-07F,
846 1.7623575e-07F, 1.8768855e-07F, 1.9988561e-07F, 2.128753e-07F,
847 2.2670913e-07F, 2.4144197e-07F, 2.5713223e-07F, 2.7384213e-07F,
848 2.9163793e-07F, 3.1059021e-07F, 3.3077411e-07F, 3.5226968e-07F,
849 3.7516214e-07F, 3.9954229e-07F, 4.2550680e-07F, 4.5315863e-07F,
850 4.8260743e-07F, 5.1396998e-07F, 5.4737065e-07F, 5.8294187e-07F,
851 6.2082472e-07F, 6.6116941e-07F, 7.0413592e-07F, 7.4989464e-07F,
852 7.9862701e-07F, 8.5052630e-07F, 9.0579828e-07F, 9.6466216e-07F,
853 1.0273513e-06F, 1.0941144e-06F, 1.1652161e-06F, 1.2409384e-06F,
854 1.3215816e-06F, 1.4074654e-06F, 1.4989305e-06F, 1.5963394e-06F,
855 1.7000785e-06F, 1.8105592e-06F, 1.9282195e-06F, 2.0535261e-06F,
856 2.1869758e-06F, 2.3290978e-06F, 2.4804557e-06F, 2.6416497e-06F,
857 2.8133190e-06F, 2.9961443e-06F, 3.1908506e-06F, 3.3982101e-06F,
858 3.6190449e-06F, 3.8542308e-06F, 4.1047004e-06F, 4.3714470e-06F,
859 4.6555282e-06F, 4.9580707e-06F, 5.2802740e-06F, 5.6234160e-06F,
860 5.9888572e-06F, 6.3780469e-06F, 6.7925283e-06F, 7.2339451e-06F,
861 7.7040476e-06F, 8.2047000e-06F, 8.7378876e-06F, 9.3057248e-06F,
862 9.9104632e-06F, 1.0554501e-05F, 1.1240392e-05F, 1.1970856e-05F,
863 1.2748789e-05F, 1.3577278e-05F, 1.4459606e-05F, 1.5399272e-05F,
864 1.6400004e-05F, 1.7465768e-05F, 1.8600792e-05F, 1.9809576e-05F,
865 2.1096914e-05F, 2.2467911e-05F, 2.3928002e-05F, 2.5482978e-05F,
866 2.7139006e-05F, 2.8902651e-05F, 3.0780908e-05F, 3.2781225e-05F,
867 3.4911534e-05F, 3.7180282e-05F, 3.9596466e-05F, 4.2169667e-05F,
868 4.4910090e-05F, 4.7828601e-05F, 5.0936773e-05F, 5.4246931e-05F,
869 5.7772202e-05F, 6.1526565e-05F, 6.5524908e-05F, 6.9783085e-05F,
870 7.4317983e-05F, 7.9147585e-05F, 8.4291040e-05F, 8.9768747e-05F,
871 9.5602426e-05F, 0.00010181521F, 0.00010843174F, 0.00011547824F,
872 0.00012298267F, 0.00013097477F, 0.00013948625F, 0.00014855085F,
873 0.00015820453F, 0.00016848555F, 0.00017943469F, 0.00019109536F,
874 0.00020351382F, 0.00021673929F, 0.00023082423F, 0.00024582449F,
875 0.00026179955F, 0.00027881276F, 0.00029693158F, 0.00031622787F,
876 0.00033677814F, 0.00035866388F, 0.00038197188F, 0.00040679456F,
877 0.00043323036F, 0.00046138411F, 0.00049136745F, 0.00052329927F,
878 0.00055730621F, 0.00059352311F, 0.00063209358F, 0.00067317058F,
879 0.00071691700F, 0.00076350630F, 0.00081312324F, 0.00086596457F,
880 0.00092223983F, 0.00098217216F, 0.0010459992F, 0.0011139742F,
881 0.0011863665F, 0.0012634633F, 0.0013455702F, 0.0014330129F,
882 0.0015261382F, 0.0016253153F, 0.0017309374F, 0.0018434235F,
883 0.0019632195F, 0.0020908006F, 0.0022266726F, 0.0023713743F,
884 0.0025254795F, 0.0026895994F, 0.0028643847F, 0.0030505286F,
885 0.0032487691F, 0.0034598925F, 0.0036847358F, 0.0039241906F,
886 0.0041792066F, 0.0044507950F, 0.0047400328F, 0.0050480668F,
887 0.0053761186F, 0.0057254891F, 0.0060975636F, 0.0064938176F,
888 0.0069158225F, 0.0073652516F, 0.0078438871F, 0.0083536271F,
889 0.0088964928F, 0.009474637F, 0.010090352F, 0.010746080F,
890 0.011444421F, 0.012188144F, 0.012980198F, 0.013823725F,
891 0.014722068F, 0.015678791F, 0.016697687F, 0.017782797F,
892 0.018938423F, 0.020169149F, 0.021479854F, 0.022875735F,
893 0.024362330F, 0.025945531F, 0.027631618F, 0.029427276F,
894 0.031339626F, 0.033376252F, 0.035545228F, 0.037855157F,
895 0.040315199F, 0.042935108F, 0.045725273F, 0.048696758F,
896 0.051861348F, 0.055231591F, 0.058820850F, 0.062643361F,
897 0.066714279F, 0.071049749F, 0.075666962F, 0.080584227F,
898 0.085821044F, 0.091398179F, 0.097337747F, 0.10366330F,
899 0.11039993F, 0.11757434F, 0.12521498F, 0.13335215F,
900 0.14201813F, 0.15124727F, 0.16107617F, 0.17154380F,
901 0.18269168F, 0.19456402F, 0.20720788F, 0.22067342F,
902 0.23501402F, 0.25028656F, 0.26655159F, 0.28387361F,
903 0.30232132F, 0.32196786F, 0.34289114F, 0.36517414F,
904 0.38890521F, 0.41417847F, 0.44109412F, 0.46975890F,
905 0.50028648F, 0.53279791F, 0.56742212F, 0.60429640F,
906 0.64356699F, 0.68538959F, 0.72993007F, 0.77736504F,
907 0.82788260F, 0.88168307F, 0.9389798F, 1.F,
908 };
910 /* this is for per-channel noise normalization */
911 static int apsort(const void *a, const void *b){
912 float f1=**(float**)a;
913 float f2=**(float**)b;
914 return (f1<f2)-(f1>f2);
915 }
917 static void flag_lossless(int limit, float prepoint, float postpoint, float *mdct,
918 float *floor, int *flag, int i, int jn){
919 int j;
920 for(j=0;j<jn;j++){
921 float point = j>=limit-i ? postpoint : prepoint;
922 float r = fabs(mdct[j])/floor[j];
923 if(r<point)
924 flag[j]=0;
925 else
926 flag[j]=1;
927 }
928 }
930 /* Overload/Side effect: On input, the *q vector holds either the
931 quantized energy (for elements with the flag set) or the absolute
932 values of the *r vector (for elements with flag unset). On output,
933 *q holds the quantized energy for all elements */
934 static float noise_normalize(vorbis_look_psy *p, int limit, float *r, float *q, float *f, int *flags, float acc, int i, int n, int *out){
936 vorbis_info_psy *vi=p->vi;
937 float **sort = alloca(n*sizeof(*sort));
938 int j,count=0;
939 int start = (vi->normal_p ? vi->normal_start-i : n);
940 if(start>n)start=n;
942 /* force classic behavior where only energy in the current band is considered */
943 acc=0.f;
945 /* still responsible for populating *out where noise norm not in
946 effect. There's no need to [re]populate *q in these areas */
947 for(j=0;j<start;j++){
948 if(!flags || !flags[j]){ /* lossless coupling already quantized.
949 Don't touch; requantizing based on
950 energy would be incorrect. */
951 float ve = q[j]/f[j];
952 if(r[j]<0)
953 out[j] = -rint(sqrt(ve));
954 else
955 out[j] = rint(sqrt(ve));
956 }
957 }
959 /* sort magnitudes for noise norm portion of partition */
960 for(;j<n;j++){
961 if(!flags || !flags[j]){ /* can't noise norm elements that have
962 already been loslessly coupled; we can
963 only account for their energy error */
964 float ve = q[j]/f[j];
965 /* Despite all the new, more capable coupling code, for now we
966 implement noise norm as it has been up to this point. Only
967 consider promotions to unit magnitude from 0. In addition
968 the only energy error counted is quantizations to zero. */
969 /* also-- the original point code only applied noise norm at > pointlimit */
970 if(ve<.25f && (!flags || j>=limit-i)){
971 acc += ve;
972 sort[count++]=q+j; /* q is fabs(r) for unflagged element */
973 }else{
974 /* For now: no acc adjustment for nonzero quantization. populate *out and q as this value is final. */
975 if(r[j]<0)
976 out[j] = -rint(sqrt(ve));
977 else
978 out[j] = rint(sqrt(ve));
979 q[j] = out[j]*out[j]*f[j];
980 }
981 }/* else{
982 again, no energy adjustment for error in nonzero quant-- for now
983 }*/
984 }
986 if(count){
987 /* noise norm to do */
988 qsort(sort,count,sizeof(*sort),apsort);
989 for(j=0;j<count;j++){
990 int k=sort[j]-q;
991 if(acc>=vi->normal_thresh){
992 out[k]=unitnorm(r[k]);
993 acc-=1.f;
994 q[k]=f[k];
995 }else{
996 out[k]=0;
997 q[k]=0.f;
998 }
999 }
1000 }
1002 return acc;
1003 }
1005 /* Noise normalization, quantization and coupling are not wholly
1006 seperable processes in depth>1 coupling. */
1007 void _vp_couple_quantize_normalize(int blobno,
1008 vorbis_info_psy_global *g,
1009 vorbis_look_psy *p,
1010 vorbis_info_mapping0 *vi,
1011 float **mdct,
1012 int **iwork,
1013 int *nonzero,
1014 int sliding_lowpass,
1015 int ch){
1017 int i;
1018 int n = p->n;
1019 int partition=(p->vi->normal_p ? p->vi->normal_partition : 16);
1020 int limit = g->coupling_pointlimit[p->vi->blockflag][blobno];
1021 float prepoint=stereo_threshholds[g->coupling_prepointamp[blobno]];
1022 float postpoint=stereo_threshholds[g->coupling_postpointamp[blobno]];
1023 #if 0
1024 float de=0.1*p->m_val; /* a blend of the AoTuV M2 and M3 code here and below */
1025 #endif
1027 /* mdct is our raw mdct output, floor not removed. */
1028 /* inout passes in the ifloor, passes back quantized result */
1030 /* unquantized energy (negative indicates amplitude has negative sign) */
1031 float **raw = alloca(ch*sizeof(*raw));
1033 /* dual pupose; quantized energy (if flag set), othersize fabs(raw) */
1034 float **quant = alloca(ch*sizeof(*quant));
1036 /* floor energy */
1037 float **floor = alloca(ch*sizeof(*floor));
1039 /* flags indicating raw/quantized status of elements in raw vector */
1040 int **flag = alloca(ch*sizeof(*flag));
1042 /* non-zero flag working vector */
1043 int *nz = alloca(ch*sizeof(*nz));
1045 /* energy surplus/defecit tracking */
1046 float *acc = alloca((ch+vi->coupling_steps)*sizeof(*acc));
1048 /* The threshold of a stereo is changed with the size of n */
1049 if(n > 1000)
1050 postpoint=stereo_threshholds_limited[g->coupling_postpointamp[blobno]];
1052 raw[0] = alloca(ch*partition*sizeof(**raw));
1053 quant[0] = alloca(ch*partition*sizeof(**quant));
1054 floor[0] = alloca(ch*partition*sizeof(**floor));
1055 flag[0] = alloca(ch*partition*sizeof(**flag));
1057 for(i=1;i<ch;i++){
1058 raw[i] = &raw[0][partition*i];
1059 quant[i] = &quant[0][partition*i];
1060 floor[i] = &floor[0][partition*i];
1061 flag[i] = &flag[0][partition*i];
1062 }
1063 for(i=0;i<ch+vi->coupling_steps;i++)
1064 acc[i]=0.f;
1066 for(i=0;i<n;i+=partition){
1067 int k,j,jn = partition > n-i ? n-i : partition;
1068 int step,track = 0;
1070 memcpy(nz,nonzero,sizeof(*nz)*ch);
1072 /* prefill */
1073 memset(flag[0],0,ch*partition*sizeof(**flag));
1074 for(k=0;k<ch;k++){
1075 int *iout = &iwork[k][i];
1076 if(nz[k]){
1078 for(j=0;j<jn;j++)
1079 floor[k][j] = FLOOR1_fromdB_LOOKUP[iout[j]];
1081 flag_lossless(limit,prepoint,postpoint,&mdct[k][i],floor[k],flag[k],i,jn);
1083 for(j=0;j<jn;j++){
1084 quant[k][j] = raw[k][j] = mdct[k][i+j]*mdct[k][i+j];
1085 if(mdct[k][i+j]<0.f) raw[k][j]*=-1.f;
1086 floor[k][j]*=floor[k][j];
1087 }
1089 acc[track]=noise_normalize(p,limit,raw[k],quant[k],floor[k],NULL,acc[track],i,jn,iout);
1091 }else{
1092 for(j=0;j<jn;j++){
1093 floor[k][j] = 1e-10f;
1094 raw[k][j] = 0.f;
1095 quant[k][j] = 0.f;
1096 flag[k][j] = 0;
1097 iout[j]=0;
1098 }
1099 acc[track]=0.f;
1100 }
1101 track++;
1102 }
1104 /* coupling */
1105 for(step=0;step<vi->coupling_steps;step++){
1106 int Mi = vi->coupling_mag[step];
1107 int Ai = vi->coupling_ang[step];
1108 int *iM = &iwork[Mi][i];
1109 int *iA = &iwork[Ai][i];
1110 float *reM = raw[Mi];
1111 float *reA = raw[Ai];
1112 float *qeM = quant[Mi];
1113 float *qeA = quant[Ai];
1114 float *floorM = floor[Mi];
1115 float *floorA = floor[Ai];
1116 int *fM = flag[Mi];
1117 int *fA = flag[Ai];
1119 if(nz[Mi] || nz[Ai]){
1120 nz[Mi] = nz[Ai] = 1;
1122 for(j=0;j<jn;j++){
1124 if(j<sliding_lowpass-i){
1125 if(fM[j] || fA[j]){
1126 /* lossless coupling */
1128 reM[j] = fabs(reM[j])+fabs(reA[j]);
1129 qeM[j] = qeM[j]+qeA[j];
1130 fM[j]=fA[j]=1;
1132 /* couple iM/iA */
1133 {
1134 int A = iM[j];
1135 int B = iA[j];
1137 if(abs(A)>abs(B)){
1138 iA[j]=(A>0?A-B:B-A);
1139 }else{
1140 iA[j]=(B>0?A-B:B-A);
1141 iM[j]=B;
1142 }
1144 /* collapse two equivalent tuples to one */
1145 if(iA[j]>=abs(iM[j])*2){
1146 iA[j]= -iA[j];
1147 iM[j]= -iM[j];
1148 }
1150 }
1152 }else{
1153 /* lossy (point) coupling */
1154 if(j<limit-i){
1155 /* dipole */
1156 reM[j] += reA[j];
1157 qeM[j] = fabs(reM[j]);
1158 }else{
1159 #if 0
1160 /* AoTuV */
1161 /** @ M2 **
1162 The boost problem by the combination of noise normalization and point stereo is eased.
1163 However, this is a temporary patch.
1164 by Aoyumi @ 2004/04/18
1165 */
1166 float derate = (1.0 - de*((float)(j-limit+i) / (float)(n-limit)));
1167 /* elliptical */
1168 if(reM[j]+reA[j]<0){
1169 reM[j] = - (qeM[j] = (fabs(reM[j])+fabs(reA[j]))*derate*derate);
1170 }else{
1171 reM[j] = (qeM[j] = (fabs(reM[j])+fabs(reA[j]))*derate*derate);
1172 }
1173 #else
1174 /* elliptical */
1175 if(reM[j]+reA[j]<0){
1176 reM[j] = - (qeM[j] = fabs(reM[j])+fabs(reA[j]));
1177 }else{
1178 reM[j] = (qeM[j] = fabs(reM[j])+fabs(reA[j]));
1179 }
1180 #endif
1182 }
1183 reA[j]=qeA[j]=0.f;
1184 fA[j]=1;
1185 iA[j]=0;
1186 }
1187 }
1188 floorM[j]=floorA[j]=floorM[j]+floorA[j];
1189 }
1190 /* normalize the resulting mag vector */
1191 acc[track]=noise_normalize(p,limit,raw[Mi],quant[Mi],floor[Mi],flag[Mi],acc[track],i,jn,iM);
1192 track++;
1193 }
1194 }
1195 }
1197 for(i=0;i<vi->coupling_steps;i++){
1198 /* make sure coupling a zero and a nonzero channel results in two
1199 nonzero channels. */
1200 if(nonzero[vi->coupling_mag[i]] ||
1201 nonzero[vi->coupling_ang[i]]){
1202 nonzero[vi->coupling_mag[i]]=1;
1203 nonzero[vi->coupling_ang[i]]=1;
1204 }
1205 }
1206 }