vrshoot
diff libs/vmath/vector.inl @ 0:b2f14e535253
initial commit
author | John Tsiombikas <nuclear@member.fsf.org> |
---|---|
date | Sat, 01 Feb 2014 19:58:19 +0200 |
parents | |
children |
line diff
1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/libs/vmath/vector.inl Sat Feb 01 19:58:19 2014 +0200 1.3 @@ -0,0 +1,812 @@ 1.4 +/* 1.5 +libvmath - a vector math library 1.6 +Copyright (C) 2004-2013 John Tsiombikas <nuclear@member.fsf.org> 1.7 + 1.8 +This program is free software: you can redistribute it and/or modify 1.9 +it under the terms of the GNU Lesser General Public License as published 1.10 +by the Free Software Foundation, either version 3 of the License, or 1.11 +(at your option) any later version. 1.12 + 1.13 +This program is distributed in the hope that it will be useful, 1.14 +but WITHOUT ANY WARRANTY; without even the implied warranty of 1.15 +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 1.16 +GNU Lesser General Public License for more details. 1.17 + 1.18 +You should have received a copy of the GNU Lesser General Public License 1.19 +along with this program. If not, see <http://www.gnu.org/licenses/>. 1.20 +*/ 1.21 + 1.22 +#include <math.h> 1.23 + 1.24 +#ifdef __cplusplus 1.25 +extern "C" { 1.26 +#endif /* __cplusplus */ 1.27 + 1.28 +scalar_t spline(scalar_t, scalar_t, scalar_t, scalar_t, scalar_t); 1.29 +scalar_t bspline(scalar_t, scalar_t, scalar_t, scalar_t, scalar_t); 1.30 + 1.31 +/* C 2D vector functions */ 1.32 +static inline vec2_t v2_cons(scalar_t x, scalar_t y) 1.33 +{ 1.34 + vec2_t v; 1.35 + v.x = x; 1.36 + v.y = y; 1.37 + return v; 1.38 +} 1.39 + 1.40 +static inline void v2_print(FILE *fp, vec2_t v) 1.41 +{ 1.42 + fprintf(fp, "[ %.4f %.4f ]", v.x, v.y); 1.43 +} 1.44 + 1.45 +static inline vec2_t v2_add(vec2_t v1, vec2_t v2) 1.46 +{ 1.47 + vec2_t res; 1.48 + res.x = v1.x + v2.x; 1.49 + res.y = v1.y + v2.y; 1.50 + return res; 1.51 +} 1.52 + 1.53 +static inline vec2_t v2_sub(vec2_t v1, vec2_t v2) 1.54 +{ 1.55 + vec2_t res; 1.56 + res.x = v1.x - v2.x; 1.57 + res.y = v1.y - v2.y; 1.58 + return res; 1.59 +} 1.60 + 1.61 +static inline vec2_t v2_scale(vec2_t v, scalar_t s) 1.62 +{ 1.63 + vec2_t res; 1.64 + res.x = v.x * s; 1.65 + res.y = v.y * s; 1.66 + return res; 1.67 +} 1.68 + 1.69 +static inline scalar_t v2_dot(vec2_t v1, vec2_t v2) 1.70 +{ 1.71 + return v1.x * v2.x + v1.y * v2.y; 1.72 +} 1.73 + 1.74 +static inline scalar_t v2_length(vec2_t v) 1.75 +{ 1.76 + return sqrt(v.x * v.x + v.y * v.y); 1.77 +} 1.78 + 1.79 +static inline scalar_t v2_length_sq(vec2_t v) 1.80 +{ 1.81 + return v.x * v.x + v.y * v.y; 1.82 +} 1.83 + 1.84 +static inline vec2_t v2_normalize(vec2_t v) 1.85 +{ 1.86 + scalar_t len = (scalar_t)sqrt(v.x * v.x + v.y * v.y); 1.87 + v.x /= len; 1.88 + v.y /= len; 1.89 + return v; 1.90 +} 1.91 + 1.92 +static inline vec2_t v2_lerp(vec2_t v1, vec2_t v2, scalar_t t) 1.93 +{ 1.94 + vec2_t res; 1.95 + res.x = v1.x + (v2.x - v1.x) * t; 1.96 + res.y = v1.y + (v2.y - v1.y) * t; 1.97 + return res; 1.98 +} 1.99 + 1.100 + 1.101 +/* C 3D vector functions */ 1.102 +static inline vec3_t v3_cons(scalar_t x, scalar_t y, scalar_t z) 1.103 +{ 1.104 + vec3_t v; 1.105 + v.x = x; 1.106 + v.y = y; 1.107 + v.z = z; 1.108 + return v; 1.109 +} 1.110 + 1.111 +static inline void v3_print(FILE *fp, vec3_t v) 1.112 +{ 1.113 + fprintf(fp, "[ %.4f %.4f %.4f ]", v.x, v.y, v.z); 1.114 +} 1.115 + 1.116 +static inline vec3_t v3_add(vec3_t v1, vec3_t v2) 1.117 +{ 1.118 + v1.x += v2.x; 1.119 + v1.y += v2.y; 1.120 + v1.z += v2.z; 1.121 + return v1; 1.122 +} 1.123 + 1.124 +static inline vec3_t v3_sub(vec3_t v1, vec3_t v2) 1.125 +{ 1.126 + v1.x -= v2.x; 1.127 + v1.y -= v2.y; 1.128 + v1.z -= v2.z; 1.129 + return v1; 1.130 +} 1.131 + 1.132 +static inline vec3_t v3_neg(vec3_t v) 1.133 +{ 1.134 + v.x = -v.x; 1.135 + v.y = -v.y; 1.136 + v.z = -v.z; 1.137 + return v; 1.138 +} 1.139 + 1.140 +static inline vec3_t v3_mul(vec3_t v1, vec3_t v2) 1.141 +{ 1.142 + v1.x *= v2.x; 1.143 + v1.y *= v2.y; 1.144 + v1.z *= v2.z; 1.145 + return v1; 1.146 +} 1.147 + 1.148 +static inline vec3_t v3_scale(vec3_t v1, scalar_t s) 1.149 +{ 1.150 + v1.x *= s; 1.151 + v1.y *= s; 1.152 + v1.z *= s; 1.153 + return v1; 1.154 +} 1.155 + 1.156 +static inline scalar_t v3_dot(vec3_t v1, vec3_t v2) 1.157 +{ 1.158 + return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z; 1.159 +} 1.160 + 1.161 +static inline vec3_t v3_cross(vec3_t v1, vec3_t v2) 1.162 +{ 1.163 + vec3_t v; 1.164 + v.x = v1.y * v2.z - v1.z * v2.y; 1.165 + v.y = v1.z * v2.x - v1.x * v2.z; 1.166 + v.z = v1.x * v2.y - v1.y * v2.x; 1.167 + return v; 1.168 +} 1.169 + 1.170 +static inline scalar_t v3_length(vec3_t v) 1.171 +{ 1.172 + return sqrt(v.x * v.x + v.y * v.y + v.z * v.z); 1.173 +} 1.174 + 1.175 +static inline scalar_t v3_length_sq(vec3_t v) 1.176 +{ 1.177 + return v.x * v.x + v.y * v.y + v.z * v.z; 1.178 +} 1.179 + 1.180 +static inline vec3_t v3_normalize(vec3_t v) 1.181 +{ 1.182 + scalar_t len = sqrt(v.x * v.x + v.y * v.y + v.z * v.z); 1.183 + v.x /= len; 1.184 + v.y /= len; 1.185 + v.z /= len; 1.186 + return v; 1.187 +} 1.188 + 1.189 +static inline vec3_t v3_transform(vec3_t v, mat4_t m) 1.190 +{ 1.191 + vec3_t res; 1.192 + res.x = m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3]; 1.193 + res.y = m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3]; 1.194 + res.z = m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3]; 1.195 + return res; 1.196 +} 1.197 + 1.198 +static inline vec3_t v3_rotate(vec3_t v, scalar_t x, scalar_t y, scalar_t z) 1.199 +{ 1.200 + void m4_rotate(mat4_t, scalar_t, scalar_t, scalar_t); 1.201 + 1.202 + mat4_t m = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}; 1.203 + m4_rotate(m, x, y, z); 1.204 + return v3_transform(v, m); 1.205 +} 1.206 + 1.207 +static inline vec3_t v3_rotate_axis(vec3_t v, scalar_t angle, scalar_t x, scalar_t y, scalar_t z) 1.208 +{ 1.209 + void m4_rotate_axis(mat4_t, scalar_t, scalar_t, scalar_t, scalar_t); 1.210 + 1.211 + mat4_t m = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}; 1.212 + m4_rotate_axis(m, angle, x, y, z); 1.213 + return v3_transform(v, m); 1.214 +} 1.215 + 1.216 +static inline vec3_t v3_rotate_quat(vec3_t v, quat_t q) 1.217 +{ 1.218 + quat_t quat_rotate_quat(quat_t, quat_t); 1.219 + 1.220 + quat_t vq = v4_cons(v.x, v.y, v.z, 0.0); 1.221 + quat_t res = quat_rotate_quat(vq, q); 1.222 + return v3_cons(res.x, res.y, res.z); 1.223 +} 1.224 + 1.225 +static inline vec3_t v3_reflect(vec3_t v, vec3_t n) 1.226 +{ 1.227 + scalar_t dot = v3_dot(v, n); 1.228 + return v3_sub(v3_scale(n, dot * 2.0), v); 1.229 +} 1.230 + 1.231 +static inline vec3_t v3_lerp(vec3_t v1, vec3_t v2, scalar_t t) 1.232 +{ 1.233 + v1.x += (v2.x - v1.x) * t; 1.234 + v1.y += (v2.y - v1.y) * t; 1.235 + v1.z += (v2.z - v1.z) * t; 1.236 + return v1; 1.237 +} 1.238 + 1.239 +/* C 4D vector functions */ 1.240 +static inline vec4_t v4_cons(scalar_t x, scalar_t y, scalar_t z, scalar_t w) 1.241 +{ 1.242 + vec4_t v; 1.243 + v.x = x; 1.244 + v.y = y; 1.245 + v.z = z; 1.246 + v.w = w; 1.247 + return v; 1.248 +} 1.249 + 1.250 +static inline void v4_print(FILE *fp, vec4_t v) 1.251 +{ 1.252 + fprintf(fp, "[ %.4f %.4f %.4f %.4f ]", v.x, v.y, v.z, v.w); 1.253 +} 1.254 + 1.255 +static inline vec4_t v4_add(vec4_t v1, vec4_t v2) 1.256 +{ 1.257 + v1.x += v2.x; 1.258 + v1.y += v2.y; 1.259 + v1.z += v2.z; 1.260 + v1.w += v2.w; 1.261 + return v1; 1.262 +} 1.263 + 1.264 +static inline vec4_t v4_sub(vec4_t v1, vec4_t v2) 1.265 +{ 1.266 + v1.x -= v2.x; 1.267 + v1.y -= v2.y; 1.268 + v1.z -= v2.z; 1.269 + v1.w -= v2.w; 1.270 + return v1; 1.271 +} 1.272 + 1.273 +static inline vec4_t v4_neg(vec4_t v) 1.274 +{ 1.275 + v.x = -v.x; 1.276 + v.y = -v.y; 1.277 + v.z = -v.z; 1.278 + v.w = -v.w; 1.279 + return v; 1.280 +} 1.281 + 1.282 +static inline vec4_t v4_mul(vec4_t v1, vec4_t v2) 1.283 +{ 1.284 + v1.x *= v2.x; 1.285 + v1.y *= v2.y; 1.286 + v1.z *= v2.z; 1.287 + v1.w *= v2.w; 1.288 + return v1; 1.289 +} 1.290 + 1.291 +static inline vec4_t v4_scale(vec4_t v, scalar_t s) 1.292 +{ 1.293 + v.x *= s; 1.294 + v.y *= s; 1.295 + v.z *= s; 1.296 + v.w *= s; 1.297 + return v; 1.298 +} 1.299 + 1.300 +static inline scalar_t v4_dot(vec4_t v1, vec4_t v2) 1.301 +{ 1.302 + return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z + v1.w * v2.w; 1.303 +} 1.304 + 1.305 +static inline scalar_t v4_length(vec4_t v) 1.306 +{ 1.307 + return sqrt(v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w); 1.308 +} 1.309 + 1.310 +static inline scalar_t v4_length_sq(vec4_t v) 1.311 +{ 1.312 + return v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w; 1.313 +} 1.314 + 1.315 +static inline vec4_t v4_normalize(vec4_t v) 1.316 +{ 1.317 + scalar_t len = sqrt(v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w); 1.318 + v.x /= len; 1.319 + v.y /= len; 1.320 + v.z /= len; 1.321 + v.w /= len; 1.322 + return v; 1.323 +} 1.324 + 1.325 +static inline vec4_t v4_transform(vec4_t v, mat4_t m) 1.326 +{ 1.327 + vec4_t res; 1.328 + res.x = m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] * v.w; 1.329 + res.y = m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] * v.w; 1.330 + res.z = m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] * v.w; 1.331 + res.w = m[3][0] * v.x + m[3][1] * v.y + m[3][2] * v.z + m[3][3] * v.w; 1.332 + return res; 1.333 +} 1.334 + 1.335 +#ifdef __cplusplus 1.336 +} /* extern "C" */ 1.337 + 1.338 + 1.339 +/* --------------- C++ part -------------- */ 1.340 + 1.341 +inline scalar_t &Vector2::operator [](int elem) 1.342 +{ 1.343 + return elem ? y : x; 1.344 +} 1.345 + 1.346 +inline const scalar_t &Vector2::operator [](int elem) const 1.347 +{ 1.348 + return elem ? y : x; 1.349 +} 1.350 + 1.351 +inline Vector2 operator -(const Vector2 &vec) 1.352 +{ 1.353 + return Vector2(-vec.x, -vec.y); 1.354 +} 1.355 + 1.356 +inline scalar_t dot_product(const Vector2 &v1, const Vector2 &v2) 1.357 +{ 1.358 + return v1.x * v2.x + v1.y * v2.y; 1.359 +} 1.360 + 1.361 +inline Vector2 operator +(const Vector2 &v1, const Vector2 &v2) 1.362 +{ 1.363 + return Vector2(v1.x + v2.x, v1.y + v2.y); 1.364 +} 1.365 + 1.366 +inline Vector2 operator -(const Vector2 &v1, const Vector2 &v2) 1.367 +{ 1.368 + return Vector2(v1.x - v2.x, v1.y - v2.y); 1.369 +} 1.370 + 1.371 +inline Vector2 operator *(const Vector2 &v1, const Vector2 &v2) 1.372 +{ 1.373 + return Vector2(v1.x * v2.x, v1.y * v2.y); 1.374 +} 1.375 + 1.376 +inline Vector2 operator /(const Vector2 &v1, const Vector2 &v2) 1.377 +{ 1.378 + return Vector2(v1.x / v2.x, v1.y / v2.y); 1.379 +} 1.380 + 1.381 +inline bool operator ==(const Vector2 &v1, const Vector2 &v2) 1.382 +{ 1.383 + return (fabs(v1.x - v2.x) < XSMALL_NUMBER) && (fabs(v1.y - v2.x) < XSMALL_NUMBER); 1.384 +} 1.385 + 1.386 +inline void operator +=(Vector2 &v1, const Vector2 &v2) 1.387 +{ 1.388 + v1.x += v2.x; 1.389 + v1.y += v2.y; 1.390 +} 1.391 + 1.392 +inline void operator -=(Vector2 &v1, const Vector2 &v2) 1.393 +{ 1.394 + v1.x -= v2.x; 1.395 + v1.y -= v2.y; 1.396 +} 1.397 + 1.398 +inline void operator *=(Vector2 &v1, const Vector2 &v2) 1.399 +{ 1.400 + v1.x *= v2.x; 1.401 + v1.y *= v2.y; 1.402 +} 1.403 + 1.404 +inline void operator /=(Vector2 &v1, const Vector2 &v2) 1.405 +{ 1.406 + v1.x /= v2.x; 1.407 + v1.y /= v2.y; 1.408 +} 1.409 + 1.410 +inline Vector2 operator +(const Vector2 &vec, scalar_t scalar) 1.411 +{ 1.412 + return Vector2(vec.x + scalar, vec.y + scalar); 1.413 +} 1.414 + 1.415 +inline Vector2 operator +(scalar_t scalar, const Vector2 &vec) 1.416 +{ 1.417 + return Vector2(vec.x + scalar, vec.y + scalar); 1.418 +} 1.419 + 1.420 +inline Vector2 operator -(const Vector2 &vec, scalar_t scalar) 1.421 +{ 1.422 + return Vector2(vec.x - scalar, vec.y - scalar); 1.423 +} 1.424 + 1.425 +inline Vector2 operator *(const Vector2 &vec, scalar_t scalar) 1.426 +{ 1.427 + return Vector2(vec.x * scalar, vec.y * scalar); 1.428 +} 1.429 + 1.430 +inline Vector2 operator *(scalar_t scalar, const Vector2 &vec) 1.431 +{ 1.432 + return Vector2(vec.x * scalar, vec.y * scalar); 1.433 +} 1.434 + 1.435 +inline Vector2 operator /(const Vector2 &vec, scalar_t scalar) 1.436 +{ 1.437 + return Vector2(vec.x / scalar, vec.y / scalar); 1.438 +} 1.439 + 1.440 +inline void operator +=(Vector2 &vec, scalar_t scalar) 1.441 +{ 1.442 + vec.x += scalar; 1.443 + vec.y += scalar; 1.444 +} 1.445 + 1.446 +inline void operator -=(Vector2 &vec, scalar_t scalar) 1.447 +{ 1.448 + vec.x -= scalar; 1.449 + vec.y -= scalar; 1.450 +} 1.451 + 1.452 +inline void operator *=(Vector2 &vec, scalar_t scalar) 1.453 +{ 1.454 + vec.x *= scalar; 1.455 + vec.y *= scalar; 1.456 +} 1.457 + 1.458 +inline void operator /=(Vector2 &vec, scalar_t scalar) 1.459 +{ 1.460 + vec.x /= scalar; 1.461 + vec.y /= scalar; 1.462 +} 1.463 + 1.464 +inline scalar_t Vector2::length() const 1.465 +{ 1.466 + return sqrt(x*x + y*y); 1.467 +} 1.468 + 1.469 +inline scalar_t Vector2::length_sq() const 1.470 +{ 1.471 + return x*x + y*y; 1.472 +} 1.473 + 1.474 +inline Vector2 lerp(const Vector2 &a, const Vector2 &b, scalar_t t) 1.475 +{ 1.476 + return a + (b - a) * t; 1.477 +} 1.478 + 1.479 +inline Vector2 catmull_rom_spline(const Vector2 &v0, const Vector2 &v1, 1.480 + const Vector2 &v2, const Vector2 &v3, scalar_t t) 1.481 +{ 1.482 + scalar_t x = spline(v0.x, v1.x, v2.x, v3.x, t); 1.483 + scalar_t y = spline(v0.y, v1.y, v2.y, v3.y, t); 1.484 + return Vector2(x, y); 1.485 +} 1.486 + 1.487 +inline Vector2 bspline(const Vector2 &v0, const Vector2 &v1, 1.488 + const Vector2 &v2, const Vector2 &v3, scalar_t t) 1.489 +{ 1.490 + scalar_t x = bspline(v0.x, v1.x, v2.x, v3.x, t); 1.491 + scalar_t y = bspline(v0.y, v1.y, v2.y, v3.y, t); 1.492 + return Vector2(x, y); 1.493 +} 1.494 + 1.495 + 1.496 +/* ------------- Vector3 -------------- */ 1.497 + 1.498 +inline scalar_t &Vector3::operator [](int elem) { 1.499 + return elem ? (elem == 1 ? y : z) : x; 1.500 +} 1.501 + 1.502 +inline const scalar_t &Vector3::operator [](int elem) const { 1.503 + return elem ? (elem == 1 ? y : z) : x; 1.504 +} 1.505 + 1.506 +/* unary operations */ 1.507 +inline Vector3 operator -(const Vector3 &vec) { 1.508 + return Vector3(-vec.x, -vec.y, -vec.z); 1.509 +} 1.510 + 1.511 +/* binary vector (op) vector operations */ 1.512 +inline scalar_t dot_product(const Vector3 &v1, const Vector3 &v2) { 1.513 + return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z; 1.514 +} 1.515 + 1.516 +inline Vector3 cross_product(const Vector3 &v1, const Vector3 &v2) { 1.517 + return Vector3(v1.y * v2.z - v1.z * v2.y, v1.z * v2.x - v1.x * v2.z, v1.x * v2.y - v1.y * v2.x); 1.518 +} 1.519 + 1.520 + 1.521 +inline Vector3 operator +(const Vector3 &v1, const Vector3 &v2) { 1.522 + return Vector3(v1.x + v2.x, v1.y + v2.y, v1.z + v2.z); 1.523 +} 1.524 + 1.525 +inline Vector3 operator -(const Vector3 &v1, const Vector3 &v2) { 1.526 + return Vector3(v1.x - v2.x, v1.y - v2.y, v1.z - v2.z); 1.527 +} 1.528 + 1.529 +inline Vector3 operator *(const Vector3 &v1, const Vector3 &v2) { 1.530 + return Vector3(v1.x * v2.x, v1.y * v2.y, v1.z * v2.z); 1.531 +} 1.532 + 1.533 +inline Vector3 operator /(const Vector3 &v1, const Vector3 &v2) { 1.534 + return Vector3(v1.x / v2.x, v1.y / v2.y, v1.z / v2.z); 1.535 +} 1.536 + 1.537 +inline bool operator ==(const Vector3 &v1, const Vector3 &v2) { 1.538 + return (fabs(v1.x - v2.x) < XSMALL_NUMBER) && (fabs(v1.y - v2.y) < XSMALL_NUMBER) && (fabs(v1.z - v2.z) < XSMALL_NUMBER); 1.539 +} 1.540 + 1.541 +inline void operator +=(Vector3 &v1, const Vector3 &v2) { 1.542 + v1.x += v2.x; 1.543 + v1.y += v2.y; 1.544 + v1.z += v2.z; 1.545 +} 1.546 + 1.547 +inline void operator -=(Vector3 &v1, const Vector3 &v2) { 1.548 + v1.x -= v2.x; 1.549 + v1.y -= v2.y; 1.550 + v1.z -= v2.z; 1.551 +} 1.552 + 1.553 +inline void operator *=(Vector3 &v1, const Vector3 &v2) { 1.554 + v1.x *= v2.x; 1.555 + v1.y *= v2.y; 1.556 + v1.z *= v2.z; 1.557 +} 1.558 + 1.559 +inline void operator /=(Vector3 &v1, const Vector3 &v2) { 1.560 + v1.x /= v2.x; 1.561 + v1.y /= v2.y; 1.562 + v1.z /= v2.z; 1.563 +} 1.564 +/* binary vector (op) scalar and scalar (op) vector operations */ 1.565 +inline Vector3 operator +(const Vector3 &vec, scalar_t scalar) { 1.566 + return Vector3(vec.x + scalar, vec.y + scalar, vec.z + scalar); 1.567 +} 1.568 + 1.569 +inline Vector3 operator +(scalar_t scalar, const Vector3 &vec) { 1.570 + return Vector3(vec.x + scalar, vec.y + scalar, vec.z + scalar); 1.571 +} 1.572 + 1.573 +inline Vector3 operator -(const Vector3 &vec, scalar_t scalar) { 1.574 + return Vector3(vec.x - scalar, vec.y - scalar, vec.z - scalar); 1.575 +} 1.576 + 1.577 +inline Vector3 operator *(const Vector3 &vec, scalar_t scalar) { 1.578 + return Vector3(vec.x * scalar, vec.y * scalar, vec.z * scalar); 1.579 +} 1.580 + 1.581 +inline Vector3 operator *(scalar_t scalar, const Vector3 &vec) { 1.582 + return Vector3(vec.x * scalar, vec.y * scalar, vec.z * scalar); 1.583 +} 1.584 + 1.585 +inline Vector3 operator /(const Vector3 &vec, scalar_t scalar) { 1.586 + return Vector3(vec.x / scalar, vec.y / scalar, vec.z / scalar); 1.587 +} 1.588 + 1.589 +inline void operator +=(Vector3 &vec, scalar_t scalar) { 1.590 + vec.x += scalar; 1.591 + vec.y += scalar; 1.592 + vec.z += scalar; 1.593 +} 1.594 + 1.595 +inline void operator -=(Vector3 &vec, scalar_t scalar) { 1.596 + vec.x -= scalar; 1.597 + vec.y -= scalar; 1.598 + vec.z -= scalar; 1.599 +} 1.600 + 1.601 +inline void operator *=(Vector3 &vec, scalar_t scalar) { 1.602 + vec.x *= scalar; 1.603 + vec.y *= scalar; 1.604 + vec.z *= scalar; 1.605 +} 1.606 + 1.607 +inline void operator /=(Vector3 &vec, scalar_t scalar) { 1.608 + vec.x /= scalar; 1.609 + vec.y /= scalar; 1.610 + vec.z /= scalar; 1.611 +} 1.612 + 1.613 +inline scalar_t Vector3::length() const { 1.614 + return sqrt(x*x + y*y + z*z); 1.615 +} 1.616 +inline scalar_t Vector3::length_sq() const { 1.617 + return x*x + y*y + z*z; 1.618 +} 1.619 + 1.620 +inline Vector3 lerp(const Vector3 &a, const Vector3 &b, scalar_t t) { 1.621 + return a + (b - a) * t; 1.622 +} 1.623 + 1.624 +inline Vector3 catmull_rom_spline(const Vector3 &v0, const Vector3 &v1, 1.625 + const Vector3 &v2, const Vector3 &v3, scalar_t t) 1.626 +{ 1.627 + scalar_t x = spline(v0.x, v1.x, v2.x, v3.x, t); 1.628 + scalar_t y = spline(v0.y, v1.y, v2.y, v3.y, t); 1.629 + scalar_t z = spline(v0.z, v1.z, v2.z, v3.z, t); 1.630 + return Vector3(x, y, z); 1.631 +} 1.632 + 1.633 +inline Vector3 bspline(const Vector3 &v0, const Vector3 &v1, 1.634 + const Vector3 &v2, const Vector3 &v3, scalar_t t) 1.635 +{ 1.636 + scalar_t x = bspline(v0.x, v1.x, v2.x, v3.x, t); 1.637 + scalar_t y = bspline(v0.y, v1.y, v2.y, v3.y, t); 1.638 + scalar_t z = bspline(v0.z, v1.z, v2.z, v3.z, t); 1.639 + return Vector3(x, y, z); 1.640 +} 1.641 + 1.642 +/* ----------- Vector4 ----------------- */ 1.643 + 1.644 +inline scalar_t &Vector4::operator [](int elem) { 1.645 + return elem ? (elem == 1 ? y : (elem == 2 ? z : w)) : x; 1.646 +} 1.647 + 1.648 +inline const scalar_t &Vector4::operator [](int elem) const { 1.649 + return elem ? (elem == 1 ? y : (elem == 2 ? z : w)) : x; 1.650 +} 1.651 + 1.652 +inline Vector4 operator -(const Vector4 &vec) { 1.653 + return Vector4(-vec.x, -vec.y, -vec.z, -vec.w); 1.654 +} 1.655 + 1.656 +inline scalar_t dot_product(const Vector4 &v1, const Vector4 &v2) { 1.657 + return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z + v1.w * v2.w; 1.658 +} 1.659 + 1.660 +inline Vector4 cross_product(const Vector4 &v1, const Vector4 &v2, const Vector4 &v3) { 1.661 + scalar_t a, b, c, d, e, f; /* Intermediate Values */ 1.662 + Vector4 result; 1.663 + 1.664 + /* Calculate intermediate values. */ 1.665 + a = (v2.x * v3.y) - (v2.y * v3.x); 1.666 + b = (v2.x * v3.z) - (v2.z * v3.x); 1.667 + c = (v2.x * v3.w) - (v2.w * v3.x); 1.668 + d = (v2.y * v3.z) - (v2.z * v3.y); 1.669 + e = (v2.y * v3.w) - (v2.w * v3.y); 1.670 + f = (v2.z * v3.w) - (v2.w * v3.z); 1.671 + 1.672 + /* Calculate the result-vector components. */ 1.673 + result.x = (v1.y * f) - (v1.z * e) + (v1.w * d); 1.674 + result.y = - (v1.x * f) + (v1.z * c) - (v1.w * b); 1.675 + result.z = (v1.x * e) - (v1.y * c) + (v1.w * a); 1.676 + result.w = - (v1.x * d) + (v1.y * b) - (v1.z * a); 1.677 + return result; 1.678 +} 1.679 + 1.680 +inline Vector4 operator +(const Vector4 &v1, const Vector4 &v2) { 1.681 + return Vector4(v1.x + v2.x, v1.y + v2.y, v1.z + v2.z, v1.w + v2.w); 1.682 +} 1.683 + 1.684 +inline Vector4 operator -(const Vector4 &v1, const Vector4 &v2) { 1.685 + return Vector4(v1.x - v2.x, v1.y - v2.y, v1.z - v2.z, v1.w - v2.w); 1.686 +} 1.687 + 1.688 +inline Vector4 operator *(const Vector4 &v1, const Vector4 &v2) { 1.689 + return Vector4(v1.x * v2.x, v1.y * v2.y, v1.z * v2.z, v1.w * v2.w); 1.690 +} 1.691 + 1.692 +inline Vector4 operator /(const Vector4 &v1, const Vector4 &v2) { 1.693 + return Vector4(v1.x / v2.x, v1.y / v2.y, v1.z / v2.z, v1.w / v2.w); 1.694 +} 1.695 + 1.696 +inline bool operator ==(const Vector4 &v1, const Vector4 &v2) { 1.697 + return (fabs(v1.x - v2.x) < XSMALL_NUMBER) && 1.698 + (fabs(v1.y - v2.y) < XSMALL_NUMBER) && 1.699 + (fabs(v1.z - v2.z) < XSMALL_NUMBER) && 1.700 + (fabs(v1.w - v2.w) < XSMALL_NUMBER); 1.701 +} 1.702 + 1.703 +inline void operator +=(Vector4 &v1, const Vector4 &v2) { 1.704 + v1.x += v2.x; 1.705 + v1.y += v2.y; 1.706 + v1.z += v2.z; 1.707 + v1.w += v2.w; 1.708 +} 1.709 + 1.710 +inline void operator -=(Vector4 &v1, const Vector4 &v2) { 1.711 + v1.x -= v2.x; 1.712 + v1.y -= v2.y; 1.713 + v1.z -= v2.z; 1.714 + v1.w -= v2.w; 1.715 +} 1.716 + 1.717 +inline void operator *=(Vector4 &v1, const Vector4 &v2) { 1.718 + v1.x *= v2.x; 1.719 + v1.y *= v2.y; 1.720 + v1.z *= v2.z; 1.721 + v1.w *= v2.w; 1.722 +} 1.723 + 1.724 +inline void operator /=(Vector4 &v1, const Vector4 &v2) { 1.725 + v1.x /= v2.x; 1.726 + v1.y /= v2.y; 1.727 + v1.z /= v2.z; 1.728 + v1.w /= v2.w; 1.729 +} 1.730 + 1.731 +/* binary vector (op) scalar and scalar (op) vector operations */ 1.732 +inline Vector4 operator +(const Vector4 &vec, scalar_t scalar) { 1.733 + return Vector4(vec.x + scalar, vec.y + scalar, vec.z + scalar, vec.w + scalar); 1.734 +} 1.735 + 1.736 +inline Vector4 operator +(scalar_t scalar, const Vector4 &vec) { 1.737 + return Vector4(vec.x + scalar, vec.y + scalar, vec.z + scalar, vec.w + scalar); 1.738 +} 1.739 + 1.740 +inline Vector4 operator -(const Vector4 &vec, scalar_t scalar) { 1.741 + return Vector4(vec.x - scalar, vec.y - scalar, vec.z - scalar, vec.w - scalar); 1.742 +} 1.743 + 1.744 +inline Vector4 operator *(const Vector4 &vec, scalar_t scalar) { 1.745 + return Vector4(vec.x * scalar, vec.y * scalar, vec.z * scalar, vec.w * scalar); 1.746 +} 1.747 + 1.748 +inline Vector4 operator *(scalar_t scalar, const Vector4 &vec) { 1.749 + return Vector4(vec.x * scalar, vec.y * scalar, vec.z * scalar, vec.w * scalar); 1.750 +} 1.751 + 1.752 +inline Vector4 operator /(const Vector4 &vec, scalar_t scalar) { 1.753 + return Vector4(vec.x / scalar, vec.y / scalar, vec.z / scalar, vec.w / scalar); 1.754 +} 1.755 + 1.756 +inline void operator +=(Vector4 &vec, scalar_t scalar) { 1.757 + vec.x += scalar; 1.758 + vec.y += scalar; 1.759 + vec.z += scalar; 1.760 + vec.w += scalar; 1.761 +} 1.762 + 1.763 +inline void operator -=(Vector4 &vec, scalar_t scalar) { 1.764 + vec.x -= scalar; 1.765 + vec.y -= scalar; 1.766 + vec.z -= scalar; 1.767 + vec.w -= scalar; 1.768 +} 1.769 + 1.770 +inline void operator *=(Vector4 &vec, scalar_t scalar) { 1.771 + vec.x *= scalar; 1.772 + vec.y *= scalar; 1.773 + vec.z *= scalar; 1.774 + vec.w *= scalar; 1.775 +} 1.776 + 1.777 +inline void operator /=(Vector4 &vec, scalar_t scalar) { 1.778 + vec.x /= scalar; 1.779 + vec.y /= scalar; 1.780 + vec.z /= scalar; 1.781 + vec.w /= scalar; 1.782 +} 1.783 + 1.784 +inline scalar_t Vector4::length() const { 1.785 + return sqrt(x*x + y*y + z*z + w*w); 1.786 +} 1.787 +inline scalar_t Vector4::length_sq() const { 1.788 + return x*x + y*y + z*z + w*w; 1.789 +} 1.790 + 1.791 +inline Vector4 lerp(const Vector4 &v0, const Vector4 &v1, scalar_t t) 1.792 +{ 1.793 + return v0 + (v1 - v0) * t; 1.794 +} 1.795 + 1.796 +inline Vector4 catmull_rom_spline(const Vector4 &v0, const Vector4 &v1, 1.797 + const Vector4 &v2, const Vector4 &v3, scalar_t t) 1.798 +{ 1.799 + scalar_t x = spline(v0.x, v1.x, v2.x, v3.x, t); 1.800 + scalar_t y = spline(v0.y, v1.y, v2.y, v3.y, t); 1.801 + scalar_t z = spline(v0.z, v1.z, v2.z, v3.z, t); 1.802 + scalar_t w = spline(v0.w, v1.w, v2.w, v3.w, t); 1.803 + return Vector4(x, y, z, w); 1.804 +} 1.805 + 1.806 +inline Vector4 bspline(const Vector4 &v0, const Vector4 &v1, 1.807 + const Vector4 &v2, const Vector4 &v3, scalar_t t) 1.808 +{ 1.809 + scalar_t x = bspline(v0.x, v1.x, v2.x, v3.x, t); 1.810 + scalar_t y = bspline(v0.y, v1.y, v2.y, v3.y, t); 1.811 + scalar_t z = bspline(v0.z, v1.z, v2.z, v3.z, t); 1.812 + scalar_t w = bspline(v0.w, v1.w, v2.w, v3.w, t); 1.813 + return Vector4(x, y, z, w); 1.814 +} 1.815 +#endif /* __cplusplus */