vrshoot
diff libs/libjpeg/jfdctint.c @ 0:b2f14e535253
initial commit
author | John Tsiombikas <nuclear@member.fsf.org> |
---|---|
date | Sat, 01 Feb 2014 19:58:19 +0200 |
parents | |
children |
line diff
1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/libs/libjpeg/jfdctint.c Sat Feb 01 19:58:19 2014 +0200 1.3 @@ -0,0 +1,283 @@ 1.4 +/* 1.5 + * jfdctint.c 1.6 + * 1.7 + * Copyright (C) 1991-1996, Thomas G. Lane. 1.8 + * This file is part of the Independent JPEG Group's software. 1.9 + * For conditions of distribution and use, see the accompanying README file. 1.10 + * 1.11 + * This file contains a slow-but-accurate integer implementation of the 1.12 + * forward DCT (Discrete Cosine Transform). 1.13 + * 1.14 + * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT 1.15 + * on each column. Direct algorithms are also available, but they are 1.16 + * much more complex and seem not to be any faster when reduced to code. 1.17 + * 1.18 + * This implementation is based on an algorithm described in 1.19 + * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT 1.20 + * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, 1.21 + * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. 1.22 + * The primary algorithm described there uses 11 multiplies and 29 adds. 1.23 + * We use their alternate method with 12 multiplies and 32 adds. 1.24 + * The advantage of this method is that no data path contains more than one 1.25 + * multiplication; this allows a very simple and accurate implementation in 1.26 + * scaled fixed-point arithmetic, with a minimal number of shifts. 1.27 + */ 1.28 + 1.29 +#define JPEG_INTERNALS 1.30 +#include "jinclude.h" 1.31 +#include "jpeglib.h" 1.32 +#include "jdct.h" /* Private declarations for DCT subsystem */ 1.33 + 1.34 +#ifdef DCT_ISLOW_SUPPORTED 1.35 + 1.36 + 1.37 +/* 1.38 + * This module is specialized to the case DCTSIZE = 8. 1.39 + */ 1.40 + 1.41 +#if DCTSIZE != 8 1.42 + Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ 1.43 +#endif 1.44 + 1.45 + 1.46 +/* 1.47 + * The poop on this scaling stuff is as follows: 1.48 + * 1.49 + * Each 1-D DCT step produces outputs which are a factor of sqrt(N) 1.50 + * larger than the true DCT outputs. The final outputs are therefore 1.51 + * a factor of N larger than desired; since N=8 this can be cured by 1.52 + * a simple right shift at the end of the algorithm. The advantage of 1.53 + * this arrangement is that we save two multiplications per 1-D DCT, 1.54 + * because the y0 and y4 outputs need not be divided by sqrt(N). 1.55 + * In the IJG code, this factor of 8 is removed by the quantization step 1.56 + * (in jcdctmgr.c), NOT in this module. 1.57 + * 1.58 + * We have to do addition and subtraction of the integer inputs, which 1.59 + * is no problem, and multiplication by fractional constants, which is 1.60 + * a problem to do in integer arithmetic. We multiply all the constants 1.61 + * by CONST_SCALE and convert them to integer constants (thus retaining 1.62 + * CONST_BITS bits of precision in the constants). After doing a 1.63 + * multiplication we have to divide the product by CONST_SCALE, with proper 1.64 + * rounding, to produce the correct output. This division can be done 1.65 + * cheaply as a right shift of CONST_BITS bits. We postpone shifting 1.66 + * as long as possible so that partial sums can be added together with 1.67 + * full fractional precision. 1.68 + * 1.69 + * The outputs of the first pass are scaled up by PASS1_BITS bits so that 1.70 + * they are represented to better-than-integral precision. These outputs 1.71 + * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word 1.72 + * with the recommended scaling. (For 12-bit sample data, the intermediate 1.73 + * array is INT32 anyway.) 1.74 + * 1.75 + * To avoid overflow of the 32-bit intermediate results in pass 2, we must 1.76 + * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis 1.77 + * shows that the values given below are the most effective. 1.78 + */ 1.79 + 1.80 +#if BITS_IN_JSAMPLE == 8 1.81 +#define CONST_BITS 13 1.82 +#define PASS1_BITS 2 1.83 +#else 1.84 +#define CONST_BITS 13 1.85 +#define PASS1_BITS 1 /* lose a little precision to avoid overflow */ 1.86 +#endif 1.87 + 1.88 +/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus 1.89 + * causing a lot of useless floating-point operations at run time. 1.90 + * To get around this we use the following pre-calculated constants. 1.91 + * If you change CONST_BITS you may want to add appropriate values. 1.92 + * (With a reasonable C compiler, you can just rely on the FIX() macro...) 1.93 + */ 1.94 + 1.95 +#if CONST_BITS == 13 1.96 +#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */ 1.97 +#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */ 1.98 +#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */ 1.99 +#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ 1.100 +#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ 1.101 +#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */ 1.102 +#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */ 1.103 +#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ 1.104 +#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */ 1.105 +#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */ 1.106 +#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ 1.107 +#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */ 1.108 +#else 1.109 +#define FIX_0_298631336 FIX(0.298631336) 1.110 +#define FIX_0_390180644 FIX(0.390180644) 1.111 +#define FIX_0_541196100 FIX(0.541196100) 1.112 +#define FIX_0_765366865 FIX(0.765366865) 1.113 +#define FIX_0_899976223 FIX(0.899976223) 1.114 +#define FIX_1_175875602 FIX(1.175875602) 1.115 +#define FIX_1_501321110 FIX(1.501321110) 1.116 +#define FIX_1_847759065 FIX(1.847759065) 1.117 +#define FIX_1_961570560 FIX(1.961570560) 1.118 +#define FIX_2_053119869 FIX(2.053119869) 1.119 +#define FIX_2_562915447 FIX(2.562915447) 1.120 +#define FIX_3_072711026 FIX(3.072711026) 1.121 +#endif 1.122 + 1.123 + 1.124 +/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. 1.125 + * For 8-bit samples with the recommended scaling, all the variable 1.126 + * and constant values involved are no more than 16 bits wide, so a 1.127 + * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. 1.128 + * For 12-bit samples, a full 32-bit multiplication will be needed. 1.129 + */ 1.130 + 1.131 +#if BITS_IN_JSAMPLE == 8 1.132 +#define MULTIPLY(var,const) MULTIPLY16C16(var,const) 1.133 +#else 1.134 +#define MULTIPLY(var,const) ((var) * (const)) 1.135 +#endif 1.136 + 1.137 + 1.138 +/* 1.139 + * Perform the forward DCT on one block of samples. 1.140 + */ 1.141 + 1.142 +GLOBAL(void) 1.143 +jpeg_fdct_islow (DCTELEM * data) 1.144 +{ 1.145 + INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; 1.146 + INT32 tmp10, tmp11, tmp12, tmp13; 1.147 + INT32 z1, z2, z3, z4, z5; 1.148 + DCTELEM *dataptr; 1.149 + int ctr; 1.150 + SHIFT_TEMPS 1.151 + 1.152 + /* Pass 1: process rows. */ 1.153 + /* Note results are scaled up by sqrt(8) compared to a true DCT; */ 1.154 + /* furthermore, we scale the results by 2**PASS1_BITS. */ 1.155 + 1.156 + dataptr = data; 1.157 + for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { 1.158 + tmp0 = dataptr[0] + dataptr[7]; 1.159 + tmp7 = dataptr[0] - dataptr[7]; 1.160 + tmp1 = dataptr[1] + dataptr[6]; 1.161 + tmp6 = dataptr[1] - dataptr[6]; 1.162 + tmp2 = dataptr[2] + dataptr[5]; 1.163 + tmp5 = dataptr[2] - dataptr[5]; 1.164 + tmp3 = dataptr[3] + dataptr[4]; 1.165 + tmp4 = dataptr[3] - dataptr[4]; 1.166 + 1.167 + /* Even part per LL&M figure 1 --- note that published figure is faulty; 1.168 + * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". 1.169 + */ 1.170 + 1.171 + tmp10 = tmp0 + tmp3; 1.172 + tmp13 = tmp0 - tmp3; 1.173 + tmp11 = tmp1 + tmp2; 1.174 + tmp12 = tmp1 - tmp2; 1.175 + 1.176 + dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS); 1.177 + dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS); 1.178 + 1.179 + z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); 1.180 + dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), 1.181 + CONST_BITS-PASS1_BITS); 1.182 + dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), 1.183 + CONST_BITS-PASS1_BITS); 1.184 + 1.185 + /* Odd part per figure 8 --- note paper omits factor of sqrt(2). 1.186 + * cK represents cos(K*pi/16). 1.187 + * i0..i3 in the paper are tmp4..tmp7 here. 1.188 + */ 1.189 + 1.190 + z1 = tmp4 + tmp7; 1.191 + z2 = tmp5 + tmp6; 1.192 + z3 = tmp4 + tmp6; 1.193 + z4 = tmp5 + tmp7; 1.194 + z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ 1.195 + 1.196 + tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ 1.197 + tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ 1.198 + tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ 1.199 + tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ 1.200 + z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ 1.201 + z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ 1.202 + z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ 1.203 + z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ 1.204 + 1.205 + z3 += z5; 1.206 + z4 += z5; 1.207 + 1.208 + dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS); 1.209 + dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS); 1.210 + dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS); 1.211 + dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS); 1.212 + 1.213 + dataptr += DCTSIZE; /* advance pointer to next row */ 1.214 + } 1.215 + 1.216 + /* Pass 2: process columns. 1.217 + * We remove the PASS1_BITS scaling, but leave the results scaled up 1.218 + * by an overall factor of 8. 1.219 + */ 1.220 + 1.221 + dataptr = data; 1.222 + for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { 1.223 + tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; 1.224 + tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; 1.225 + tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; 1.226 + tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; 1.227 + tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; 1.228 + tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; 1.229 + tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; 1.230 + tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; 1.231 + 1.232 + /* Even part per LL&M figure 1 --- note that published figure is faulty; 1.233 + * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". 1.234 + */ 1.235 + 1.236 + tmp10 = tmp0 + tmp3; 1.237 + tmp13 = tmp0 - tmp3; 1.238 + tmp11 = tmp1 + tmp2; 1.239 + tmp12 = tmp1 - tmp2; 1.240 + 1.241 + dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS); 1.242 + dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS); 1.243 + 1.244 + z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); 1.245 + dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), 1.246 + CONST_BITS+PASS1_BITS); 1.247 + dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), 1.248 + CONST_BITS+PASS1_BITS); 1.249 + 1.250 + /* Odd part per figure 8 --- note paper omits factor of sqrt(2). 1.251 + * cK represents cos(K*pi/16). 1.252 + * i0..i3 in the paper are tmp4..tmp7 here. 1.253 + */ 1.254 + 1.255 + z1 = tmp4 + tmp7; 1.256 + z2 = tmp5 + tmp6; 1.257 + z3 = tmp4 + tmp6; 1.258 + z4 = tmp5 + tmp7; 1.259 + z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ 1.260 + 1.261 + tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ 1.262 + tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ 1.263 + tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ 1.264 + tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ 1.265 + z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ 1.266 + z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ 1.267 + z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ 1.268 + z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ 1.269 + 1.270 + z3 += z5; 1.271 + z4 += z5; 1.272 + 1.273 + dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, 1.274 + CONST_BITS+PASS1_BITS); 1.275 + dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, 1.276 + CONST_BITS+PASS1_BITS); 1.277 + dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, 1.278 + CONST_BITS+PASS1_BITS); 1.279 + dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, 1.280 + CONST_BITS+PASS1_BITS); 1.281 + 1.282 + dataptr++; /* advance pointer to next column */ 1.283 + } 1.284 +} 1.285 + 1.286 +#endif /* DCT_ISLOW_SUPPORTED */