vrshoot

diff libs/assimp/assimp/quaternion.inl @ 0:b2f14e535253

initial commit
author John Tsiombikas <nuclear@member.fsf.org>
date Sat, 01 Feb 2014 19:58:19 +0200
parents
children
line diff
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/libs/assimp/assimp/quaternion.inl	Sat Feb 01 19:58:19 2014 +0200
     1.3 @@ -0,0 +1,274 @@
     1.4 +/*
     1.5 +---------------------------------------------------------------------------
     1.6 +Open Asset Import Library (assimp)
     1.7 +---------------------------------------------------------------------------
     1.8 +
     1.9 +Copyright (c) 2006-2012, assimp team
    1.10 +
    1.11 +All rights reserved.
    1.12 +
    1.13 +Redistribution and use of this software in source and binary forms, 
    1.14 +with or without modification, are permitted provided that the following 
    1.15 +conditions are met:
    1.16 +
    1.17 +* Redistributions of source code must retain the above
    1.18 +  copyright notice, this list of conditions and the
    1.19 +  following disclaimer.
    1.20 +
    1.21 +* Redistributions in binary form must reproduce the above
    1.22 +  copyright notice, this list of conditions and the
    1.23 +  following disclaimer in the documentation and/or other
    1.24 +  materials provided with the distribution.
    1.25 +
    1.26 +* Neither the name of the assimp team, nor the names of its
    1.27 +  contributors may be used to endorse or promote products
    1.28 +  derived from this software without specific prior
    1.29 +  written permission of the assimp team.
    1.30 +
    1.31 +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
    1.32 +"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
    1.33 +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    1.34 +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 
    1.35 +OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    1.36 +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 
    1.37 +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    1.38 +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 
    1.39 +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
    1.40 +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
    1.41 +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    1.42 +---------------------------------------------------------------------------
    1.43 +*/
    1.44 +
    1.45 +/** @file  aiQuaterniont.inl
    1.46 + *  @brief Inline implementation of aiQuaterniont<TReal> operators
    1.47 + */
    1.48 +#ifndef AI_QUATERNION_INL_INC
    1.49 +#define AI_QUATERNION_INL_INC
    1.50 +
    1.51 +#ifdef __cplusplus
    1.52 +#include "quaternion.h"
    1.53 +
    1.54 +// ---------------------------------------------------------------------------
    1.55 +template<typename TReal>
    1.56 +bool aiQuaterniont<TReal>::operator== (const aiQuaterniont& o) const
    1.57 +{
    1.58 +	return x == o.x && y == o.y && z == o.z && w == o.w;
    1.59 +}
    1.60 +
    1.61 +// ---------------------------------------------------------------------------
    1.62 +template<typename TReal>
    1.63 +bool aiQuaterniont<TReal>::operator!= (const aiQuaterniont& o) const
    1.64 +{
    1.65 +	return !(*this == o);
    1.66 +}
    1.67 +
    1.68 +
    1.69 +
    1.70 +// ---------------------------------------------------------------------------
    1.71 +// Constructs a quaternion from a rotation matrix
    1.72 +template<typename TReal>
    1.73 +inline aiQuaterniont<TReal>::aiQuaterniont( const aiMatrix3x3t<TReal> &pRotMatrix)
    1.74 +{
    1.75 +	TReal t = pRotMatrix.a1 + pRotMatrix.b2 + pRotMatrix.c3;
    1.76 +
    1.77 +	// large enough
    1.78 +	if( t > static_cast<TReal>(0))
    1.79 +	{
    1.80 +		TReal s = sqrt(1 + t) * static_cast<TReal>(2.0);
    1.81 +		x = (pRotMatrix.c2 - pRotMatrix.b3) / s;
    1.82 +		y = (pRotMatrix.a3 - pRotMatrix.c1) / s;
    1.83 +		z = (pRotMatrix.b1 - pRotMatrix.a2) / s;
    1.84 +		w = static_cast<TReal>(0.25) * s;
    1.85 +	} // else we have to check several cases
    1.86 +	else if( pRotMatrix.a1 > pRotMatrix.b2 && pRotMatrix.a1 > pRotMatrix.c3 )  
    1.87 +	{	
    1.88 +		// Column 0: 
    1.89 +		TReal s = sqrt( static_cast<TReal>(1.0) + pRotMatrix.a1 - pRotMatrix.b2 - pRotMatrix.c3) * static_cast<TReal>(2.0);
    1.90 +		x = static_cast<TReal>(0.25) * s;
    1.91 +		y = (pRotMatrix.b1 + pRotMatrix.a2) / s;
    1.92 +		z = (pRotMatrix.a3 + pRotMatrix.c1) / s;
    1.93 +		w = (pRotMatrix.c2 - pRotMatrix.b3) / s;
    1.94 +	} 
    1.95 +	else if( pRotMatrix.b2 > pRotMatrix.c3) 
    1.96 +	{ 
    1.97 +		// Column 1: 
    1.98 +		TReal s = sqrt( static_cast<TReal>(1.0) + pRotMatrix.b2 - pRotMatrix.a1 - pRotMatrix.c3) * static_cast<TReal>(2.0);
    1.99 +		x = (pRotMatrix.b1 + pRotMatrix.a2) / s;
   1.100 +		y = static_cast<TReal>(0.25) * s;
   1.101 +		z = (pRotMatrix.c2 + pRotMatrix.b3) / s;
   1.102 +		w = (pRotMatrix.a3 - pRotMatrix.c1) / s;
   1.103 +	} else 
   1.104 +	{ 
   1.105 +		// Column 2:
   1.106 +		TReal s = sqrt( static_cast<TReal>(1.0) + pRotMatrix.c3 - pRotMatrix.a1 - pRotMatrix.b2) * static_cast<TReal>(2.0);
   1.107 +		x = (pRotMatrix.a3 + pRotMatrix.c1) / s;
   1.108 +		y = (pRotMatrix.c2 + pRotMatrix.b3) / s;
   1.109 +		z = static_cast<TReal>(0.25) * s;
   1.110 +		w = (pRotMatrix.b1 - pRotMatrix.a2) / s;
   1.111 +	}
   1.112 +}
   1.113 +
   1.114 +// ---------------------------------------------------------------------------
   1.115 +// Construction from euler angles
   1.116 +template<typename TReal>
   1.117 +inline aiQuaterniont<TReal>::aiQuaterniont( TReal fPitch, TReal fYaw, TReal fRoll )
   1.118 +{
   1.119 +	const TReal fSinPitch(sin(fPitch*static_cast<TReal>(0.5)));
   1.120 +	const TReal fCosPitch(cos(fPitch*static_cast<TReal>(0.5)));
   1.121 +	const TReal fSinYaw(sin(fYaw*static_cast<TReal>(0.5)));
   1.122 +	const TReal fCosYaw(cos(fYaw*static_cast<TReal>(0.5)));
   1.123 +	const TReal fSinRoll(sin(fRoll*static_cast<TReal>(0.5)));
   1.124 +	const TReal fCosRoll(cos(fRoll*static_cast<TReal>(0.5)));
   1.125 +	const TReal fCosPitchCosYaw(fCosPitch*fCosYaw);
   1.126 +	const TReal fSinPitchSinYaw(fSinPitch*fSinYaw);
   1.127 +	x = fSinRoll * fCosPitchCosYaw     - fCosRoll * fSinPitchSinYaw;
   1.128 +	y = fCosRoll * fSinPitch * fCosYaw + fSinRoll * fCosPitch * fSinYaw;
   1.129 +	z = fCosRoll * fCosPitch * fSinYaw - fSinRoll * fSinPitch * fCosYaw;
   1.130 +	w = fCosRoll * fCosPitchCosYaw     + fSinRoll * fSinPitchSinYaw;
   1.131 +}
   1.132 +
   1.133 +// ---------------------------------------------------------------------------
   1.134 +// Returns a matrix representation of the quaternion
   1.135 +template<typename TReal>
   1.136 +inline aiMatrix3x3t<TReal> aiQuaterniont<TReal>::GetMatrix() const
   1.137 +{
   1.138 +	aiMatrix3x3t<TReal> resMatrix;
   1.139 +	resMatrix.a1 = static_cast<TReal>(1.0) - static_cast<TReal>(2.0) * (y * y + z * z);
   1.140 +	resMatrix.a2 = static_cast<TReal>(2.0) * (x * y - z * w);
   1.141 +	resMatrix.a3 = static_cast<TReal>(2.0) * (x * z + y * w);
   1.142 +	resMatrix.b1 = static_cast<TReal>(2.0) * (x * y + z * w);
   1.143 +	resMatrix.b2 = static_cast<TReal>(1.0) - static_cast<TReal>(2.0) * (x * x + z * z);
   1.144 +	resMatrix.b3 = static_cast<TReal>(2.0) * (y * z - x * w);
   1.145 +	resMatrix.c1 = static_cast<TReal>(2.0) * (x * z - y * w);
   1.146 +	resMatrix.c2 = static_cast<TReal>(2.0) * (y * z + x * w);
   1.147 +	resMatrix.c3 = static_cast<TReal>(1.0) - static_cast<TReal>(2.0) * (x * x + y * y);
   1.148 +
   1.149 +	return resMatrix;
   1.150 +}
   1.151 +
   1.152 +// ---------------------------------------------------------------------------
   1.153 +// Construction from an axis-angle pair
   1.154 +template<typename TReal>
   1.155 +inline aiQuaterniont<TReal>::aiQuaterniont( aiVector3t<TReal> axis, TReal angle)
   1.156 +{
   1.157 +	axis.Normalize();
   1.158 +
   1.159 +	const TReal sin_a = sin( angle / 2 );
   1.160 +	const TReal cos_a = cos( angle / 2 );
   1.161 +	x    = axis.x * sin_a;
   1.162 +	y    = axis.y * sin_a;
   1.163 +	z    = axis.z * sin_a;
   1.164 +	w    = cos_a;
   1.165 +}
   1.166 +// ---------------------------------------------------------------------------
   1.167 +// Construction from am existing, normalized quaternion
   1.168 +template<typename TReal>
   1.169 +inline aiQuaterniont<TReal>::aiQuaterniont( aiVector3t<TReal> normalized)
   1.170 +{
   1.171 +	x = normalized.x;
   1.172 +	y = normalized.y;
   1.173 +	z = normalized.z;
   1.174 +
   1.175 +	const TReal t = static_cast<TReal>(1.0) - (x*x) - (y*y) - (z*z);
   1.176 +
   1.177 +	if (t < static_cast<TReal>(0.0)) {
   1.178 +		w = static_cast<TReal>(0.0);
   1.179 +	}
   1.180 +	else w = sqrt (t);
   1.181 +}
   1.182 +
   1.183 +// ---------------------------------------------------------------------------
   1.184 +// Performs a spherical interpolation between two quaternions 
   1.185 +// Implementation adopted from the gmtl project. All others I found on the net fail in some cases.
   1.186 +// Congrats, gmtl!
   1.187 +template<typename TReal>
   1.188 +inline void aiQuaterniont<TReal>::Interpolate( aiQuaterniont& pOut, const aiQuaterniont& pStart, const aiQuaterniont& pEnd, TReal pFactor)
   1.189 +{
   1.190 +	// calc cosine theta
   1.191 +	TReal cosom = pStart.x * pEnd.x + pStart.y * pEnd.y + pStart.z * pEnd.z + pStart.w * pEnd.w;
   1.192 +
   1.193 +	// adjust signs (if necessary)
   1.194 +	aiQuaterniont end = pEnd;
   1.195 +	if( cosom < static_cast<TReal>(0.0))
   1.196 +	{
   1.197 +		cosom = -cosom;
   1.198 +		end.x = -end.x;   // Reverse all signs
   1.199 +		end.y = -end.y;
   1.200 +		end.z = -end.z;
   1.201 +		end.w = -end.w;
   1.202 +	} 
   1.203 +
   1.204 +	// Calculate coefficients
   1.205 +	TReal sclp, sclq;
   1.206 +	if( (static_cast<TReal>(1.0) - cosom) > static_cast<TReal>(0.0001)) // 0.0001 -> some epsillon
   1.207 +	{
   1.208 +		// Standard case (slerp)
   1.209 +		TReal omega, sinom;
   1.210 +		omega = acos( cosom); // extract theta from dot product's cos theta
   1.211 +		sinom = sin( omega);
   1.212 +		sclp  = sin( (static_cast<TReal>(1.0) - pFactor) * omega) / sinom;
   1.213 +		sclq  = sin( pFactor * omega) / sinom;
   1.214 +	} else
   1.215 +	{
   1.216 +		// Very close, do linear interp (because it's faster)
   1.217 +		sclp = static_cast<TReal>(1.0) - pFactor;
   1.218 +		sclq = pFactor;
   1.219 +	}
   1.220 +
   1.221 +	pOut.x = sclp * pStart.x + sclq * end.x;
   1.222 +	pOut.y = sclp * pStart.y + sclq * end.y;
   1.223 +	pOut.z = sclp * pStart.z + sclq * end.z;
   1.224 +	pOut.w = sclp * pStart.w + sclq * end.w;
   1.225 +}
   1.226 +
   1.227 +// ---------------------------------------------------------------------------
   1.228 +template<typename TReal>
   1.229 +inline aiQuaterniont<TReal>& aiQuaterniont<TReal>::Normalize()
   1.230 +{
   1.231 +	// compute the magnitude and divide through it
   1.232 +	const TReal mag = sqrt(x*x + y*y + z*z + w*w);
   1.233 +	if (mag)
   1.234 +	{
   1.235 +		const TReal invMag = static_cast<TReal>(1.0)/mag;
   1.236 +		x *= invMag;
   1.237 +		y *= invMag;
   1.238 +		z *= invMag;
   1.239 +		w *= invMag;
   1.240 +	}
   1.241 +	return *this;
   1.242 +}
   1.243 +
   1.244 +// ---------------------------------------------------------------------------
   1.245 +template<typename TReal>
   1.246 +inline aiQuaterniont<TReal> aiQuaterniont<TReal>::operator* (const aiQuaterniont& t) const
   1.247 +{
   1.248 +	return aiQuaterniont(w*t.w - x*t.x - y*t.y - z*t.z,
   1.249 +		w*t.x + x*t.w + y*t.z - z*t.y,
   1.250 +		w*t.y + y*t.w + z*t.x - x*t.z,
   1.251 +		w*t.z + z*t.w + x*t.y - y*t.x);
   1.252 +}
   1.253 +
   1.254 +// ---------------------------------------------------------------------------
   1.255 +template<typename TReal>
   1.256 +inline aiQuaterniont<TReal>& aiQuaterniont<TReal>::Conjugate ()
   1.257 +{
   1.258 +	x = -x;
   1.259 +	y = -y;
   1.260 +	z = -z;
   1.261 +	return *this;
   1.262 +}
   1.263 +
   1.264 +// ---------------------------------------------------------------------------
   1.265 +template<typename TReal>
   1.266 +inline aiVector3t<TReal> aiQuaterniont<TReal>::Rotate (const aiVector3t<TReal>& v)
   1.267 +{
   1.268 +	aiQuaterniont q2(0.f,v.x,v.y,v.z), q = *this, qinv = q;
   1.269 +	q.Conjugate();
   1.270 +
   1.271 +	q = q*q2*qinv;
   1.272 +	return aiVector3t<TReal>(q.x,q.y,q.z);
   1.273 +
   1.274 +}
   1.275 +
   1.276 +#endif
   1.277 +#endif