vrshoot

diff libs/assimp/XFileImporter.cpp @ 0:b2f14e535253

initial commit
author John Tsiombikas <nuclear@member.fsf.org>
date Sat, 01 Feb 2014 19:58:19 +0200
parents
children
line diff
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/libs/assimp/XFileImporter.cpp	Sat Feb 01 19:58:19 2014 +0200
     1.3 @@ -0,0 +1,699 @@
     1.4 +/*
     1.5 +---------------------------------------------------------------------------
     1.6 +Open Asset Import Library (assimp)
     1.7 +---------------------------------------------------------------------------
     1.8 +
     1.9 +Copyright (c) 2006-2012, assimp team
    1.10 +
    1.11 +All rights reserved.
    1.12 +
    1.13 +Redistribution and use of this software in source and binary forms, 
    1.14 +with or without modification, are permitted provided that the following 
    1.15 +conditions are met:
    1.16 +
    1.17 +* Redistributions of source code must retain the above
    1.18 +copyright notice, this list of conditions and the
    1.19 +following disclaimer.
    1.20 +
    1.21 +* Redistributions in binary form must reproduce the above
    1.22 +copyright notice, this list of conditions and the
    1.23 +following disclaimer in the documentation and/or other
    1.24 +materials provided with the distribution.
    1.25 +
    1.26 +* Neither the name of the assimp team, nor the names of its
    1.27 +contributors may be used to endorse or promote products
    1.28 +derived from this software without specific prior
    1.29 +written permission of the assimp team.
    1.30 +
    1.31 +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
    1.32 +"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
    1.33 +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    1.34 +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 
    1.35 +OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    1.36 +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 
    1.37 +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    1.38 +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 
    1.39 +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
    1.40 +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
    1.41 +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    1.42 +---------------------------------------------------------------------------
    1.43 +*/
    1.44 +/** @file  XFileImporter.cpp
    1.45 + *  @brief Implementation of the XFile importer class 
    1.46 + */
    1.47 +
    1.48 +#include "AssimpPCH.h"
    1.49 +#ifndef ASSIMP_BUILD_NO_X_IMPORTER
    1.50 +
    1.51 +#include "XFileImporter.h"
    1.52 +#include "XFileParser.h"
    1.53 +#include "ConvertToLHProcess.h"
    1.54 +
    1.55 +using namespace Assimp;
    1.56 +
    1.57 +static const aiImporterDesc desc = {
    1.58 +	"Direct3D XFile Importer",
    1.59 +	"",
    1.60 +	"",
    1.61 +	"",
    1.62 +	aiImporterFlags_SupportTextFlavour | aiImporterFlags_SupportBinaryFlavour | aiImporterFlags_SupportCompressedFlavour,
    1.63 +	1,
    1.64 +	3,
    1.65 +	1,
    1.66 +	5,
    1.67 +	"x" 
    1.68 +};
    1.69 +
    1.70 +// ------------------------------------------------------------------------------------------------
    1.71 +// Constructor to be privately used by Importer
    1.72 +XFileImporter::XFileImporter()
    1.73 +{}
    1.74 +
    1.75 +// ------------------------------------------------------------------------------------------------
    1.76 +// Destructor, private as well 
    1.77 +XFileImporter::~XFileImporter()
    1.78 +{}
    1.79 +
    1.80 +// ------------------------------------------------------------------------------------------------
    1.81 +// Returns whether the class can handle the format of the given file. 
    1.82 +bool XFileImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler, bool checkSig) const
    1.83 +{
    1.84 +	std::string extension = GetExtension(pFile);
    1.85 +	if(extension == "x") {
    1.86 +		return true;
    1.87 +	}
    1.88 +	if (!extension.length() || checkSig) {
    1.89 +		uint32_t token[1];
    1.90 +		token[0] = AI_MAKE_MAGIC("xof ");
    1.91 +		return CheckMagicToken(pIOHandler,pFile,token,1,0);
    1.92 +	}
    1.93 +	return false;
    1.94 +}
    1.95 +
    1.96 +// ------------------------------------------------------------------------------------------------
    1.97 +// Get file extension list
    1.98 +const aiImporterDesc* XFileImporter::GetInfo () const
    1.99 +{
   1.100 +	return &desc;
   1.101 +}
   1.102 +
   1.103 +// ------------------------------------------------------------------------------------------------
   1.104 +// Imports the given file into the given scene structure. 
   1.105 +void XFileImporter::InternReadFile( const std::string& pFile, aiScene* pScene, IOSystem* pIOHandler)
   1.106 +{
   1.107 +	// read file into memory
   1.108 +	boost::scoped_ptr<IOStream> file( pIOHandler->Open( pFile));
   1.109 +	if( file.get() == NULL)
   1.110 +		throw DeadlyImportError( "Failed to open file " + pFile + ".");
   1.111 +
   1.112 +	size_t fileSize = file->FileSize();
   1.113 +	if( fileSize < 16)
   1.114 +		throw DeadlyImportError( "XFile is too small.");
   1.115 +
   1.116 +	// in the hope that binary files will never start with a BOM ...
   1.117 +	mBuffer.resize( fileSize + 1);
   1.118 +	file->Read( &mBuffer.front(), 1, fileSize);
   1.119 +	ConvertToUTF8(mBuffer);
   1.120 +
   1.121 +	// parse the file into a temporary representation
   1.122 +	XFileParser parser( mBuffer);
   1.123 +
   1.124 +	// and create the proper return structures out of it
   1.125 +	CreateDataRepresentationFromImport( pScene, parser.GetImportedData());
   1.126 +
   1.127 +	// if nothing came from it, report it as error
   1.128 +	if( !pScene->mRootNode)
   1.129 +		throw DeadlyImportError( "XFile is ill-formatted - no content imported.");
   1.130 +}
   1.131 +
   1.132 +// ------------------------------------------------------------------------------------------------
   1.133 +// Constructs the return data structure out of the imported data.
   1.134 +void XFileImporter::CreateDataRepresentationFromImport( aiScene* pScene, XFile::Scene* pData)
   1.135 +{
   1.136 +	// Read the global materials first so that meshes referring to them can find them later
   1.137 +	ConvertMaterials( pScene, pData->mGlobalMaterials);
   1.138 +
   1.139 +	// copy nodes, extracting meshes and materials on the way
   1.140 +	pScene->mRootNode = CreateNodes( pScene, NULL, pData->mRootNode);
   1.141 +
   1.142 +	// extract animations
   1.143 +	CreateAnimations( pScene, pData);
   1.144 +
   1.145 +	// read the global meshes that were stored outside of any node
   1.146 +	if( pData->mGlobalMeshes.size() > 0)
   1.147 +	{
   1.148 +		// create a root node to hold them if there isn't any, yet
   1.149 +		if( pScene->mRootNode == NULL)
   1.150 +		{
   1.151 +			pScene->mRootNode = new aiNode;
   1.152 +			pScene->mRootNode->mName.Set( "$dummy_node");
   1.153 +		}
   1.154 +
   1.155 +		// convert all global meshes and store them in the root node.
   1.156 +		// If there was one before, the global meshes now suddenly have its transformation matrix...
   1.157 +		// Don't know what to do there, I don't want to insert another node under the present root node
   1.158 +		// just to avoid this.
   1.159 +		CreateMeshes( pScene, pScene->mRootNode, pData->mGlobalMeshes);
   1.160 +	}
   1.161 +
   1.162 +	// Convert everything to OpenGL space... it's the same operation as the conversion back, so we can reuse the step directly
   1.163 +	MakeLeftHandedProcess convertProcess;
   1.164 +	convertProcess.Execute( pScene);
   1.165 +
   1.166 +	FlipWindingOrderProcess flipper;
   1.167 +	flipper.Execute(pScene);
   1.168 +
   1.169 +	// finally: create a dummy material if not material was imported
   1.170 +	if( pScene->mNumMaterials == 0)
   1.171 +	{
   1.172 +		pScene->mNumMaterials = 1;
   1.173 +		// create the Material
   1.174 +		aiMaterial* mat = new aiMaterial;
   1.175 +		int shadeMode = (int) aiShadingMode_Gouraud;
   1.176 +		mat->AddProperty<int>( &shadeMode, 1, AI_MATKEY_SHADING_MODEL);
   1.177 +		// material colours
   1.178 +		int specExp = 1;
   1.179 +
   1.180 +		aiColor3D clr = aiColor3D( 0, 0, 0);
   1.181 +		mat->AddProperty( &clr, 1, AI_MATKEY_COLOR_EMISSIVE);
   1.182 +		mat->AddProperty( &clr, 1, AI_MATKEY_COLOR_SPECULAR);
   1.183 +
   1.184 +		clr = aiColor3D( 0.5f, 0.5f, 0.5f);
   1.185 +		mat->AddProperty( &clr, 1, AI_MATKEY_COLOR_DIFFUSE);
   1.186 +		mat->AddProperty( &specExp, 1, AI_MATKEY_SHININESS);
   1.187 +
   1.188 +		pScene->mMaterials = new aiMaterial*[1];
   1.189 +		pScene->mMaterials[0] = mat;
   1.190 +	}
   1.191 +}
   1.192 +
   1.193 +// ------------------------------------------------------------------------------------------------
   1.194 +// Recursively creates scene nodes from the imported hierarchy. 
   1.195 +aiNode* XFileImporter::CreateNodes( aiScene* pScene, aiNode* pParent, const XFile::Node* pNode)
   1.196 +{
   1.197 +	if( !pNode)
   1.198 +		return NULL;
   1.199 +
   1.200 +	// create node
   1.201 +	aiNode* node = new aiNode;
   1.202 +	node->mName.length = pNode->mName.length();
   1.203 +	node->mParent = pParent;
   1.204 +	memcpy( node->mName.data, pNode->mName.c_str(), pNode->mName.length());
   1.205 +	node->mName.data[node->mName.length] = 0;
   1.206 +	node->mTransformation = pNode->mTrafoMatrix;
   1.207 +
   1.208 +	// convert meshes from the source node 
   1.209 +	CreateMeshes( pScene, node, pNode->mMeshes);
   1.210 +
   1.211 +	// handle childs
   1.212 +	if( pNode->mChildren.size() > 0)
   1.213 +	{
   1.214 +		node->mNumChildren = (unsigned int)pNode->mChildren.size();
   1.215 +		node->mChildren = new aiNode* [node->mNumChildren];
   1.216 +
   1.217 +		for( unsigned int a = 0; a < pNode->mChildren.size(); a++)
   1.218 +			node->mChildren[a] = CreateNodes( pScene, node, pNode->mChildren[a]);
   1.219 +	}
   1.220 +
   1.221 +	return node;
   1.222 +}
   1.223 +
   1.224 +// ------------------------------------------------------------------------------------------------
   1.225 +// Creates the meshes for the given node. 
   1.226 +void XFileImporter::CreateMeshes( aiScene* pScene, aiNode* pNode, const std::vector<XFile::Mesh*>& pMeshes)
   1.227 +{
   1.228 +	if( pMeshes.size() == 0)
   1.229 +		return;
   1.230 +
   1.231 +	// create a mesh for each mesh-material combination in the source node
   1.232 +	std::vector<aiMesh*> meshes;
   1.233 +	for( unsigned int a = 0; a < pMeshes.size(); a++)
   1.234 +	{
   1.235 +		XFile::Mesh* sourceMesh = pMeshes[a];
   1.236 +		// first convert its materials so that we can find them with their index afterwards
   1.237 +		ConvertMaterials( pScene, sourceMesh->mMaterials);
   1.238 +
   1.239 +		unsigned int numMaterials = std::max( (unsigned int)sourceMesh->mMaterials.size(), 1u);
   1.240 +		for( unsigned int b = 0; b < numMaterials; b++)
   1.241 +		{
   1.242 +			// collect the faces belonging to this material
   1.243 +			std::vector<unsigned int> faces;
   1.244 +			unsigned int numVertices = 0;
   1.245 +			if( sourceMesh->mFaceMaterials.size() > 0)
   1.246 +			{
   1.247 +				// if there is a per-face material defined, select the faces with the corresponding material
   1.248 +				for( unsigned int c = 0; c < sourceMesh->mFaceMaterials.size(); c++)
   1.249 +				{
   1.250 +					if( sourceMesh->mFaceMaterials[c] == b)
   1.251 +					{
   1.252 +						faces.push_back( c);
   1.253 +						numVertices += (unsigned int)sourceMesh->mPosFaces[c].mIndices.size();
   1.254 +					}
   1.255 +				}
   1.256 +			} else
   1.257 +			{
   1.258 +				// if there is no per-face material, place everything into one mesh
   1.259 +				for( unsigned int c = 0; c < sourceMesh->mPosFaces.size(); c++)
   1.260 +				{
   1.261 +					faces.push_back( c);
   1.262 +					numVertices += (unsigned int)sourceMesh->mPosFaces[c].mIndices.size();
   1.263 +				}
   1.264 +			}
   1.265 +
   1.266 +			// no faces/vertices using this material? strange...
   1.267 +			if( numVertices == 0)
   1.268 +				continue;
   1.269 +
   1.270 +			// create a submesh using this material
   1.271 +			aiMesh* mesh = new aiMesh;
   1.272 +			meshes.push_back( mesh);
   1.273 +
   1.274 +			// find the material in the scene's material list. Either own material
   1.275 +			// or referenced material, it should already have a valid index
   1.276 +			if( sourceMesh->mFaceMaterials.size() > 0)
   1.277 +			{
   1.278 +        mesh->mMaterialIndex = sourceMesh->mMaterials[b].sceneIndex;
   1.279 +			} else
   1.280 +			{
   1.281 +				mesh->mMaterialIndex = 0;
   1.282 +			}
   1.283 +
   1.284 +			// Create properly sized data arrays in the mesh. We store unique vertices per face,
   1.285 +			// as specified 
   1.286 +			mesh->mNumVertices = numVertices;
   1.287 +			mesh->mVertices = new aiVector3D[numVertices];
   1.288 +			mesh->mNumFaces = (unsigned int)faces.size();
   1.289 +			mesh->mFaces = new aiFace[mesh->mNumFaces];
   1.290 +
   1.291 +			// normals?
   1.292 +			if( sourceMesh->mNormals.size() > 0)
   1.293 +				mesh->mNormals = new aiVector3D[numVertices];
   1.294 +			// texture coords
   1.295 +			for( unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS; c++)
   1.296 +			{
   1.297 +				if( sourceMesh->mTexCoords[c].size() > 0)
   1.298 +					mesh->mTextureCoords[c] = new aiVector3D[numVertices];
   1.299 +			}
   1.300 +			// vertex colors
   1.301 +			for( unsigned int c = 0; c < AI_MAX_NUMBER_OF_COLOR_SETS; c++)
   1.302 +			{
   1.303 +				if( sourceMesh->mColors[c].size() > 0)
   1.304 +					mesh->mColors[c] = new aiColor4D[numVertices];
   1.305 +			}
   1.306 +
   1.307 +			// now collect the vertex data of all data streams present in the imported mesh
   1.308 +			unsigned int newIndex = 0;
   1.309 +			std::vector<unsigned int> orgPoints; // from which original point each new vertex stems
   1.310 +			orgPoints.resize( numVertices, 0);
   1.311 +
   1.312 +			for( unsigned int c = 0; c < faces.size(); c++)
   1.313 +			{
   1.314 +				unsigned int f = faces[c]; // index of the source face
   1.315 +				const XFile::Face& pf = sourceMesh->mPosFaces[f]; // position source face
   1.316 +
   1.317 +				// create face. either triangle or triangle fan depending on the index count
   1.318 +				aiFace& df = mesh->mFaces[c]; // destination face
   1.319 +				df.mNumIndices = (unsigned int)pf.mIndices.size();
   1.320 +				df.mIndices = new unsigned int[ df.mNumIndices];
   1.321 +
   1.322 +				// collect vertex data for indices of this face
   1.323 +				for( unsigned int d = 0; d < df.mNumIndices; d++)
   1.324 +				{
   1.325 +					df.mIndices[d] = newIndex; 
   1.326 +					orgPoints[newIndex] = pf.mIndices[d];
   1.327 +
   1.328 +					// Position
   1.329 +					mesh->mVertices[newIndex] = sourceMesh->mPositions[pf.mIndices[d]];
   1.330 +					// Normal, if present
   1.331 +					if( mesh->HasNormals())
   1.332 +						mesh->mNormals[newIndex] = sourceMesh->mNormals[sourceMesh->mNormFaces[f].mIndices[d]];
   1.333 +
   1.334 +					// texture coord sets
   1.335 +					for( unsigned int e = 0; e < AI_MAX_NUMBER_OF_TEXTURECOORDS; e++)
   1.336 +					{
   1.337 +						if( mesh->HasTextureCoords( e))
   1.338 +						{
   1.339 +							aiVector2D tex = sourceMesh->mTexCoords[e][pf.mIndices[d]];
   1.340 +							mesh->mTextureCoords[e][newIndex] = aiVector3D( tex.x, 1.0f - tex.y, 0.0f);
   1.341 +						}
   1.342 +					}
   1.343 +					// vertex color sets
   1.344 +					for( unsigned int e = 0; e < AI_MAX_NUMBER_OF_COLOR_SETS; e++)
   1.345 +						if( mesh->HasVertexColors( e))
   1.346 +							mesh->mColors[e][newIndex] = sourceMesh->mColors[e][pf.mIndices[d]];
   1.347 +
   1.348 +					newIndex++;
   1.349 +				}
   1.350 +			}
   1.351 +
   1.352 +			// there should be as much new vertices as we calculated before
   1.353 +			ai_assert( newIndex == numVertices);
   1.354 +
   1.355 +			// convert all bones of the source mesh which influence vertices in this newly created mesh
   1.356 +			const std::vector<XFile::Bone>& bones = sourceMesh->mBones;
   1.357 +			std::vector<aiBone*> newBones;
   1.358 +			for( unsigned int c = 0; c < bones.size(); c++)
   1.359 +			{
   1.360 +				const XFile::Bone& obone = bones[c];
   1.361 +				// set up a vertex-linear array of the weights for quick searching if a bone influences a vertex
   1.362 +				std::vector<float> oldWeights( sourceMesh->mPositions.size(), 0.0f);
   1.363 +				for( unsigned int d = 0; d < obone.mWeights.size(); d++)
   1.364 +					oldWeights[obone.mWeights[d].mVertex] = obone.mWeights[d].mWeight;
   1.365 +
   1.366 +				// collect all vertex weights that influence a vertex in the new mesh
   1.367 +				std::vector<aiVertexWeight> newWeights;
   1.368 +				newWeights.reserve( numVertices);
   1.369 +				for( unsigned int d = 0; d < orgPoints.size(); d++)
   1.370 +				{
   1.371 +					// does the new vertex stem from an old vertex which was influenced by this bone?
   1.372 +					float w = oldWeights[orgPoints[d]];
   1.373 +					if( w > 0.0f)
   1.374 +						newWeights.push_back( aiVertexWeight( d, w));
   1.375 +				}
   1.376 +
   1.377 +				// if the bone has no weights in the newly created mesh, ignore it
   1.378 +				if( newWeights.size() == 0)
   1.379 +					continue;
   1.380 +
   1.381 +				// create
   1.382 +				aiBone* nbone = new aiBone;
   1.383 +				newBones.push_back( nbone);
   1.384 +				// copy name and matrix
   1.385 +				nbone->mName.Set( obone.mName);
   1.386 +				nbone->mOffsetMatrix = obone.mOffsetMatrix;
   1.387 +				nbone->mNumWeights = (unsigned int)newWeights.size();
   1.388 +				nbone->mWeights = new aiVertexWeight[nbone->mNumWeights];
   1.389 +				for( unsigned int d = 0; d < newWeights.size(); d++)
   1.390 +					nbone->mWeights[d] = newWeights[d];
   1.391 +			}
   1.392 +
   1.393 +			// store the bones in the mesh
   1.394 +			mesh->mNumBones = (unsigned int)newBones.size();
   1.395 +			if( newBones.size() > 0)
   1.396 +			{
   1.397 +				mesh->mBones = new aiBone*[mesh->mNumBones];
   1.398 +				std::copy( newBones.begin(), newBones.end(), mesh->mBones);
   1.399 +			}
   1.400 +		}
   1.401 +	}
   1.402 +
   1.403 +	// reallocate scene mesh array to be large enough
   1.404 +	aiMesh** prevArray = pScene->mMeshes;
   1.405 +	pScene->mMeshes = new aiMesh*[pScene->mNumMeshes + meshes.size()];
   1.406 +	if( prevArray)
   1.407 +	{
   1.408 +		memcpy( pScene->mMeshes, prevArray, pScene->mNumMeshes * sizeof( aiMesh*));
   1.409 +		delete [] prevArray;
   1.410 +	}
   1.411 +
   1.412 +	// allocate mesh index array in the node
   1.413 +	pNode->mNumMeshes = (unsigned int)meshes.size();
   1.414 +	pNode->mMeshes = new unsigned int[pNode->mNumMeshes];
   1.415 +
   1.416 +	// store all meshes in the mesh library of the scene and store their indices in the node
   1.417 +	for( unsigned int a = 0; a < meshes.size(); a++)
   1.418 +	{
   1.419 +		pScene->mMeshes[pScene->mNumMeshes] = meshes[a];		
   1.420 +		pNode->mMeshes[a] = pScene->mNumMeshes;
   1.421 +		pScene->mNumMeshes++;
   1.422 +	}
   1.423 +}
   1.424 +
   1.425 +// ------------------------------------------------------------------------------------------------
   1.426 +// Converts the animations from the given imported data and creates them in the scene.
   1.427 +void XFileImporter::CreateAnimations( aiScene* pScene, const XFile::Scene* pData)
   1.428 +{
   1.429 +	std::vector<aiAnimation*> newAnims;
   1.430 +
   1.431 +	for( unsigned int a = 0; a < pData->mAnims.size(); a++)
   1.432 +	{
   1.433 +		const XFile::Animation* anim = pData->mAnims[a];
   1.434 +		// some exporters mock me with empty animation tags.
   1.435 +		if( anim->mAnims.size() == 0)
   1.436 +			continue;
   1.437 +
   1.438 +		// create a new animation to hold the data
   1.439 +		aiAnimation* nanim = new aiAnimation;
   1.440 +		newAnims.push_back( nanim);
   1.441 +		nanim->mName.Set( anim->mName);
   1.442 +		// duration will be determined by the maximum length
   1.443 +		nanim->mDuration = 0;
   1.444 +		nanim->mTicksPerSecond = pData->mAnimTicksPerSecond;
   1.445 +		nanim->mNumChannels = (unsigned int)anim->mAnims.size();
   1.446 +		nanim->mChannels = new aiNodeAnim*[nanim->mNumChannels];
   1.447 +
   1.448 +		for( unsigned int b = 0; b < anim->mAnims.size(); b++)
   1.449 +		{
   1.450 +			const XFile::AnimBone* bone = anim->mAnims[b];
   1.451 +			aiNodeAnim* nbone = new aiNodeAnim;
   1.452 +			nbone->mNodeName.Set( bone->mBoneName);
   1.453 +			nanim->mChannels[b] = nbone;
   1.454 +
   1.455 +			// keyframes are given as combined transformation matrix keys
   1.456 +			if( bone->mTrafoKeys.size() > 0)
   1.457 +			{
   1.458 +				nbone->mNumPositionKeys = (unsigned int)bone->mTrafoKeys.size();
   1.459 +				nbone->mPositionKeys = new aiVectorKey[nbone->mNumPositionKeys];
   1.460 +				nbone->mNumRotationKeys = (unsigned int)bone->mTrafoKeys.size();
   1.461 +				nbone->mRotationKeys = new aiQuatKey[nbone->mNumRotationKeys];
   1.462 +				nbone->mNumScalingKeys = (unsigned int)bone->mTrafoKeys.size();
   1.463 +				nbone->mScalingKeys = new aiVectorKey[nbone->mNumScalingKeys];
   1.464 +
   1.465 +				for( unsigned int c = 0; c < bone->mTrafoKeys.size(); c++)
   1.466 +				{
   1.467 +					// deconstruct each matrix into separate position, rotation and scaling
   1.468 +					double time = bone->mTrafoKeys[c].mTime;
   1.469 +					aiMatrix4x4 trafo = bone->mTrafoKeys[c].mMatrix;
   1.470 +
   1.471 +					// extract position
   1.472 +					aiVector3D pos( trafo.a4, trafo.b4, trafo.c4);
   1.473 +
   1.474 +					nbone->mPositionKeys[c].mTime = time;
   1.475 +					nbone->mPositionKeys[c].mValue = pos;
   1.476 +
   1.477 +					// extract scaling
   1.478 +					aiVector3D scale;
   1.479 +					scale.x = aiVector3D( trafo.a1, trafo.b1, trafo.c1).Length();
   1.480 +					scale.y = aiVector3D( trafo.a2, trafo.b2, trafo.c2).Length();
   1.481 +					scale.z = aiVector3D( trafo.a3, trafo.b3, trafo.c3).Length();
   1.482 +					nbone->mScalingKeys[c].mTime = time;
   1.483 +					nbone->mScalingKeys[c].mValue = scale;
   1.484 +
   1.485 +					// reconstruct rotation matrix without scaling
   1.486 +					aiMatrix3x3 rotmat( 
   1.487 +						trafo.a1 / scale.x, trafo.a2 / scale.y, trafo.a3 / scale.z,
   1.488 +						trafo.b1 / scale.x, trafo.b2 / scale.y, trafo.b3 / scale.z,
   1.489 +						trafo.c1 / scale.x, trafo.c2 / scale.y, trafo.c3 / scale.z);
   1.490 +
   1.491 +					// and convert it into a quaternion
   1.492 +					nbone->mRotationKeys[c].mTime = time;
   1.493 +					nbone->mRotationKeys[c].mValue = aiQuaternion( rotmat);
   1.494 +				}
   1.495 +
   1.496 +				// longest lasting key sequence determines duration
   1.497 +				nanim->mDuration = std::max( nanim->mDuration, bone->mTrafoKeys.back().mTime);
   1.498 +			} else
   1.499 +			{
   1.500 +				// separate key sequences for position, rotation, scaling
   1.501 +				nbone->mNumPositionKeys = (unsigned int)bone->mPosKeys.size(); 
   1.502 +				nbone->mPositionKeys = new aiVectorKey[nbone->mNumPositionKeys];
   1.503 +				for( unsigned int c = 0; c < nbone->mNumPositionKeys; c++)
   1.504 +				{
   1.505 +					aiVector3D pos = bone->mPosKeys[c].mValue;
   1.506 +
   1.507 +					nbone->mPositionKeys[c].mTime = bone->mPosKeys[c].mTime;
   1.508 +					nbone->mPositionKeys[c].mValue = pos;
   1.509 +				}
   1.510 +
   1.511 +				// rotation
   1.512 +				nbone->mNumRotationKeys = (unsigned int)bone->mRotKeys.size(); 
   1.513 +				nbone->mRotationKeys = new aiQuatKey[nbone->mNumRotationKeys];
   1.514 +				for( unsigned int c = 0; c < nbone->mNumRotationKeys; c++)
   1.515 +				{
   1.516 +					aiMatrix3x3 rotmat = bone->mRotKeys[c].mValue.GetMatrix();
   1.517 +
   1.518 +					nbone->mRotationKeys[c].mTime = bone->mRotKeys[c].mTime;
   1.519 +					nbone->mRotationKeys[c].mValue = aiQuaternion( rotmat);
   1.520 +					nbone->mRotationKeys[c].mValue.w *= -1.0f; // needs quat inversion
   1.521 +				}
   1.522 +
   1.523 +				// scaling
   1.524 +				nbone->mNumScalingKeys = (unsigned int)bone->mScaleKeys.size(); 
   1.525 +				nbone->mScalingKeys = new aiVectorKey[nbone->mNumScalingKeys];
   1.526 +				for( unsigned int c = 0; c < nbone->mNumScalingKeys; c++)
   1.527 +					nbone->mScalingKeys[c] = bone->mScaleKeys[c];
   1.528 +
   1.529 +				// longest lasting key sequence determines duration
   1.530 +				if( bone->mPosKeys.size() > 0)
   1.531 +					nanim->mDuration = std::max( nanim->mDuration, bone->mPosKeys.back().mTime);
   1.532 +				if( bone->mRotKeys.size() > 0)
   1.533 +					nanim->mDuration = std::max( nanim->mDuration, bone->mRotKeys.back().mTime);
   1.534 +				if( bone->mScaleKeys.size() > 0)
   1.535 +					nanim->mDuration = std::max( nanim->mDuration, bone->mScaleKeys.back().mTime);
   1.536 +			}
   1.537 +		}
   1.538 +	}
   1.539 +
   1.540 +	// store all converted animations in the scene
   1.541 +	if( newAnims.size() > 0)
   1.542 +	{
   1.543 +		pScene->mNumAnimations = (unsigned int)newAnims.size();
   1.544 +		pScene->mAnimations = new aiAnimation* [pScene->mNumAnimations];
   1.545 +		for( unsigned int a = 0; a < newAnims.size(); a++)
   1.546 +			pScene->mAnimations[a] = newAnims[a];
   1.547 +	}
   1.548 +}
   1.549 +
   1.550 +// ------------------------------------------------------------------------------------------------
   1.551 +// Converts all materials in the given array and stores them in the scene's material list.
   1.552 +void XFileImporter::ConvertMaterials( aiScene* pScene, std::vector<XFile::Material>& pMaterials)
   1.553 +{
   1.554 +	// count the non-referrer materials in the array
   1.555 +	unsigned int numNewMaterials = 0;
   1.556 +	for( unsigned int a = 0; a < pMaterials.size(); a++)
   1.557 +		if( !pMaterials[a].mIsReference)
   1.558 +			numNewMaterials++;
   1.559 +
   1.560 +	// resize the scene's material list to offer enough space for the new materials
   1.561 +  if( numNewMaterials > 0 )
   1.562 +  {
   1.563 +	  aiMaterial** prevMats = pScene->mMaterials;
   1.564 +	  pScene->mMaterials = new aiMaterial*[pScene->mNumMaterials + numNewMaterials];
   1.565 +	  if( prevMats)
   1.566 +	  {
   1.567 +		  memcpy( pScene->mMaterials, prevMats, pScene->mNumMaterials * sizeof( aiMaterial*));
   1.568 +		  delete [] prevMats;
   1.569 +	  }
   1.570 +  }
   1.571 +
   1.572 +	// convert all the materials given in the array
   1.573 +	for( unsigned int a = 0; a < pMaterials.size(); a++)
   1.574 +	{
   1.575 +		XFile::Material& oldMat = pMaterials[a];
   1.576 +		if( oldMat.mIsReference)
   1.577 +    {
   1.578 +      // find the material it refers to by name, and store its index
   1.579 +      for( size_t a = 0; a < pScene->mNumMaterials; ++a )
   1.580 +      {
   1.581 +        aiString name;
   1.582 +        pScene->mMaterials[a]->Get( AI_MATKEY_NAME, name);
   1.583 +        if( strcmp( name.C_Str(), oldMat.mName.data()) == 0 )
   1.584 +        {
   1.585 +          oldMat.sceneIndex = a;
   1.586 +          break;
   1.587 +        }
   1.588 +      }
   1.589 +
   1.590 +      if( oldMat.sceneIndex == SIZE_MAX )
   1.591 +      {
   1.592 +        DefaultLogger::get()->warn( boost::str( boost::format( "Could not resolve global material reference \"%s\"") % oldMat.mName));
   1.593 +        oldMat.sceneIndex = 0;
   1.594 +      }
   1.595 +
   1.596 +      continue;
   1.597 +    }
   1.598 +
   1.599 +		aiMaterial* mat = new aiMaterial;
   1.600 +		aiString name;
   1.601 +		name.Set( oldMat.mName);
   1.602 +		mat->AddProperty( &name, AI_MATKEY_NAME);
   1.603 +
   1.604 +		// Shading model: hardcoded to PHONG, there is no such information in an XFile
   1.605 +		// FIX (aramis): If the specular exponent is 0, use gouraud shading. This is a bugfix
   1.606 +		// for some models in the SDK (e.g. good old tiny.x)
   1.607 +		int shadeMode = (int)oldMat.mSpecularExponent == 0.0f 
   1.608 +			? aiShadingMode_Gouraud : aiShadingMode_Phong;
   1.609 +
   1.610 +		mat->AddProperty<int>( &shadeMode, 1, AI_MATKEY_SHADING_MODEL);
   1.611 +		// material colours
   1.612 +    // Unclear: there's no ambient colour, but emissive. What to put for ambient?
   1.613 +    // Probably nothing at all, let the user select a suitable default.
   1.614 +		mat->AddProperty( &oldMat.mEmissive, 1, AI_MATKEY_COLOR_EMISSIVE);
   1.615 +		mat->AddProperty( &oldMat.mDiffuse, 1, AI_MATKEY_COLOR_DIFFUSE);
   1.616 +		mat->AddProperty( &oldMat.mSpecular, 1, AI_MATKEY_COLOR_SPECULAR);
   1.617 +		mat->AddProperty( &oldMat.mSpecularExponent, 1, AI_MATKEY_SHININESS);
   1.618 +
   1.619 +
   1.620 +		// texture, if there is one
   1.621 +		if (1 == oldMat.mTextures.size())
   1.622 +		{
   1.623 +			const XFile::TexEntry& otex = oldMat.mTextures.back();
   1.624 +			if (otex.mName.length())
   1.625 +			{
   1.626 +				// if there is only one texture assume it contains the diffuse color
   1.627 +				aiString tex( otex.mName);
   1.628 +				if( otex.mIsNormalMap)
   1.629 +					mat->AddProperty( &tex, AI_MATKEY_TEXTURE_NORMALS(0));
   1.630 +				else
   1.631 +					mat->AddProperty( &tex, AI_MATKEY_TEXTURE_DIFFUSE(0));
   1.632 +			}
   1.633 +		}
   1.634 +		else
   1.635 +		{
   1.636 +			// Otherwise ... try to search for typical strings in the
   1.637 +			// texture's file name like 'bump' or 'diffuse'
   1.638 +			unsigned int iHM = 0,iNM = 0,iDM = 0,iSM = 0,iAM = 0,iEM = 0;
   1.639 +			for( unsigned int b = 0; b < oldMat.mTextures.size(); b++)
   1.640 +			{
   1.641 +				const XFile::TexEntry& otex = oldMat.mTextures[b];
   1.642 +				std::string sz = otex.mName;
   1.643 +				if (!sz.length())continue;
   1.644 +
   1.645 +
   1.646 +				// find the file name
   1.647 +				//const size_t iLen = sz.length();
   1.648 +				std::string::size_type s = sz.find_last_of("\\/");
   1.649 +				if (std::string::npos == s)
   1.650 +					s = 0;
   1.651 +
   1.652 +				// cut off the file extension
   1.653 +				std::string::size_type sExt = sz.find_last_of('.');
   1.654 +				if (std::string::npos != sExt){
   1.655 +					sz[sExt] = '\0';
   1.656 +				}
   1.657 +
   1.658 +				// convert to lower case for easier comparision
   1.659 +				for( unsigned int c = 0; c < sz.length(); c++)
   1.660 +					if( isalpha( sz[c]))
   1.661 +						sz[c] = tolower( sz[c]);
   1.662 +
   1.663 +
   1.664 +				// Place texture filename property under the corresponding name
   1.665 +				aiString tex( oldMat.mTextures[b].mName);
   1.666 +
   1.667 +				// bump map
   1.668 +				if (std::string::npos != sz.find("bump", s) || std::string::npos != sz.find("height", s))
   1.669 +				{
   1.670 +					mat->AddProperty( &tex, AI_MATKEY_TEXTURE_HEIGHT(iHM++));
   1.671 +				} else
   1.672 +				if (otex.mIsNormalMap || std::string::npos != sz.find( "normal", s) || std::string::npos != sz.find("nm", s))
   1.673 +				{
   1.674 +					mat->AddProperty( &tex, AI_MATKEY_TEXTURE_NORMALS(iNM++));
   1.675 +				} else
   1.676 +				if (std::string::npos != sz.find( "spec", s) || std::string::npos != sz.find( "glanz", s))
   1.677 +				{
   1.678 +					mat->AddProperty( &tex, AI_MATKEY_TEXTURE_SPECULAR(iSM++));
   1.679 +				} else
   1.680 +				if (std::string::npos != sz.find( "ambi", s) || std::string::npos != sz.find( "env", s))
   1.681 +				{
   1.682 +					mat->AddProperty( &tex, AI_MATKEY_TEXTURE_AMBIENT(iAM++));
   1.683 +				} else
   1.684 +				if (std::string::npos != sz.find( "emissive", s) || std::string::npos != sz.find( "self", s))
   1.685 +				{
   1.686 +					mat->AddProperty( &tex, AI_MATKEY_TEXTURE_EMISSIVE(iEM++));
   1.687 +				} else
   1.688 +				{
   1.689 +					// Assume it is a diffuse texture
   1.690 +					mat->AddProperty( &tex, AI_MATKEY_TEXTURE_DIFFUSE(iDM++));
   1.691 +				}
   1.692 +			}
   1.693 +		}
   1.694 +
   1.695 +		pScene->mMaterials[pScene->mNumMaterials] = mat;
   1.696 +		oldMat.sceneIndex = pScene->mNumMaterials;
   1.697 +		pScene->mNumMaterials++;
   1.698 +	}
   1.699 +}
   1.700 +
   1.701 +#endif // !! ASSIMP_BUILD_NO_X_IMPORTER
   1.702 +