rev |
line source |
nuclear@0
|
1 /*
|
nuclear@0
|
2 ---------------------------------------------------------------------------
|
nuclear@0
|
3 Open Asset Import Library (assimp)
|
nuclear@0
|
4 ---------------------------------------------------------------------------
|
nuclear@0
|
5
|
nuclear@0
|
6 Copyright (c) 2006-2012, assimp team
|
nuclear@0
|
7
|
nuclear@0
|
8 All rights reserved.
|
nuclear@0
|
9
|
nuclear@0
|
10 Redistribution and use of this software in source and binary forms,
|
nuclear@0
|
11 with or without modification, are permitted provided that the following
|
nuclear@0
|
12 conditions are met:
|
nuclear@0
|
13
|
nuclear@0
|
14 * Redistributions of source code must retain the above
|
nuclear@0
|
15 copyright notice, this list of conditions and the
|
nuclear@0
|
16 following disclaimer.
|
nuclear@0
|
17
|
nuclear@0
|
18 * Redistributions in binary form must reproduce the above
|
nuclear@0
|
19 copyright notice, this list of conditions and the
|
nuclear@0
|
20 following disclaimer in the documentation and/or other
|
nuclear@0
|
21 materials provided with the distribution.
|
nuclear@0
|
22
|
nuclear@0
|
23 * Neither the name of the assimp team, nor the names of its
|
nuclear@0
|
24 contributors may be used to endorse or promote products
|
nuclear@0
|
25 derived from this software without specific prior
|
nuclear@0
|
26 written permission of the assimp team.
|
nuclear@0
|
27
|
nuclear@0
|
28 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
nuclear@0
|
29 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
nuclear@0
|
30 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
nuclear@0
|
31 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
nuclear@0
|
32 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
nuclear@0
|
33 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
nuclear@0
|
34 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
nuclear@0
|
35 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
nuclear@0
|
36 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
nuclear@0
|
37 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
nuclear@0
|
38 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
nuclear@0
|
39 ---------------------------------------------------------------------------
|
nuclear@0
|
40 */
|
nuclear@0
|
41
|
nuclear@0
|
42 /** @file Implementation of the helper class to quickly find vertices close to a given position */
|
nuclear@0
|
43
|
nuclear@0
|
44 #include "AssimpPCH.h"
|
nuclear@0
|
45 #include "SpatialSort.h"
|
nuclear@0
|
46
|
nuclear@0
|
47 using namespace Assimp;
|
nuclear@0
|
48
|
nuclear@0
|
49 // CHAR_BIT seems to be defined under MVSC, but not under GCC. Pray that the correct value is 8.
|
nuclear@0
|
50 #ifndef CHAR_BIT
|
nuclear@0
|
51 # define CHAR_BIT 8
|
nuclear@0
|
52 #endif
|
nuclear@0
|
53
|
nuclear@0
|
54 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
55 // Constructs a spatially sorted representation from the given position array.
|
nuclear@0
|
56 SpatialSort::SpatialSort( const aiVector3D* pPositions, unsigned int pNumPositions,
|
nuclear@0
|
57 unsigned int pElementOffset)
|
nuclear@0
|
58
|
nuclear@0
|
59 // define the reference plane. We choose some arbitrary vector away from all basic axises
|
nuclear@0
|
60 // in the hope that no model spreads all its vertices along this plane.
|
nuclear@0
|
61 : mPlaneNormal(0.8523f, 0.34321f, 0.5736f)
|
nuclear@0
|
62 {
|
nuclear@0
|
63 mPlaneNormal.Normalize();
|
nuclear@0
|
64 Fill(pPositions,pNumPositions,pElementOffset);
|
nuclear@0
|
65 }
|
nuclear@0
|
66
|
nuclear@0
|
67 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
68 SpatialSort :: SpatialSort()
|
nuclear@0
|
69 : mPlaneNormal(0.8523f, 0.34321f, 0.5736f)
|
nuclear@0
|
70 {
|
nuclear@0
|
71 mPlaneNormal.Normalize();
|
nuclear@0
|
72 }
|
nuclear@0
|
73
|
nuclear@0
|
74 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
75 // Destructor
|
nuclear@0
|
76 SpatialSort::~SpatialSort()
|
nuclear@0
|
77 {
|
nuclear@0
|
78 // nothing to do here, everything destructs automatically
|
nuclear@0
|
79 }
|
nuclear@0
|
80
|
nuclear@0
|
81 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
82 void SpatialSort::Fill( const aiVector3D* pPositions, unsigned int pNumPositions,
|
nuclear@0
|
83 unsigned int pElementOffset,
|
nuclear@0
|
84 bool pFinalize /*= true */)
|
nuclear@0
|
85 {
|
nuclear@0
|
86 mPositions.clear();
|
nuclear@0
|
87 Append(pPositions,pNumPositions,pElementOffset,pFinalize);
|
nuclear@0
|
88 }
|
nuclear@0
|
89
|
nuclear@0
|
90 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
91 void SpatialSort :: Finalize()
|
nuclear@0
|
92 {
|
nuclear@0
|
93 std::sort( mPositions.begin(), mPositions.end());
|
nuclear@0
|
94 }
|
nuclear@0
|
95
|
nuclear@0
|
96 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
97 void SpatialSort::Append( const aiVector3D* pPositions, unsigned int pNumPositions,
|
nuclear@0
|
98 unsigned int pElementOffset,
|
nuclear@0
|
99 bool pFinalize /*= true */)
|
nuclear@0
|
100 {
|
nuclear@0
|
101 // store references to all given positions along with their distance to the reference plane
|
nuclear@0
|
102 const size_t initial = mPositions.size();
|
nuclear@0
|
103 mPositions.reserve(initial + (pFinalize?pNumPositions:pNumPositions*2));
|
nuclear@0
|
104 for( unsigned int a = 0; a < pNumPositions; a++)
|
nuclear@0
|
105 {
|
nuclear@0
|
106 const char* tempPointer = reinterpret_cast<const char*> (pPositions);
|
nuclear@0
|
107 const aiVector3D* vec = reinterpret_cast<const aiVector3D*> (tempPointer + a * pElementOffset);
|
nuclear@0
|
108
|
nuclear@0
|
109 // store position by index and distance
|
nuclear@0
|
110 float distance = *vec * mPlaneNormal;
|
nuclear@0
|
111 mPositions.push_back( Entry( a+initial, *vec, distance));
|
nuclear@0
|
112 }
|
nuclear@0
|
113
|
nuclear@0
|
114 if (pFinalize) {
|
nuclear@0
|
115 // now sort the array ascending by distance.
|
nuclear@0
|
116 Finalize();
|
nuclear@0
|
117 }
|
nuclear@0
|
118 }
|
nuclear@0
|
119
|
nuclear@0
|
120 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
121 // Returns an iterator for all positions close to the given position.
|
nuclear@0
|
122 void SpatialSort::FindPositions( const aiVector3D& pPosition,
|
nuclear@0
|
123 float pRadius, std::vector<unsigned int>& poResults) const
|
nuclear@0
|
124 {
|
nuclear@0
|
125 const float dist = pPosition * mPlaneNormal;
|
nuclear@0
|
126 const float minDist = dist - pRadius, maxDist = dist + pRadius;
|
nuclear@0
|
127
|
nuclear@0
|
128 // clear the array in this strange fashion because a simple clear() would also deallocate
|
nuclear@0
|
129 // the array which we want to avoid
|
nuclear@0
|
130 poResults.erase( poResults.begin(), poResults.end());
|
nuclear@0
|
131
|
nuclear@0
|
132 // quick check for positions outside the range
|
nuclear@0
|
133 if( mPositions.size() == 0)
|
nuclear@0
|
134 return;
|
nuclear@0
|
135 if( maxDist < mPositions.front().mDistance)
|
nuclear@0
|
136 return;
|
nuclear@0
|
137 if( minDist > mPositions.back().mDistance)
|
nuclear@0
|
138 return;
|
nuclear@0
|
139
|
nuclear@0
|
140 // do a binary search for the minimal distance to start the iteration there
|
nuclear@0
|
141 unsigned int index = (unsigned int)mPositions.size() / 2;
|
nuclear@0
|
142 unsigned int binaryStepSize = (unsigned int)mPositions.size() / 4;
|
nuclear@0
|
143 while( binaryStepSize > 1)
|
nuclear@0
|
144 {
|
nuclear@0
|
145 if( mPositions[index].mDistance < minDist)
|
nuclear@0
|
146 index += binaryStepSize;
|
nuclear@0
|
147 else
|
nuclear@0
|
148 index -= binaryStepSize;
|
nuclear@0
|
149
|
nuclear@0
|
150 binaryStepSize /= 2;
|
nuclear@0
|
151 }
|
nuclear@0
|
152
|
nuclear@0
|
153 // depending on the direction of the last step we need to single step a bit back or forth
|
nuclear@0
|
154 // to find the actual beginning element of the range
|
nuclear@0
|
155 while( index > 0 && mPositions[index].mDistance > minDist)
|
nuclear@0
|
156 index--;
|
nuclear@0
|
157 while( index < (mPositions.size() - 1) && mPositions[index].mDistance < minDist)
|
nuclear@0
|
158 index++;
|
nuclear@0
|
159
|
nuclear@0
|
160 // Mow start iterating from there until the first position lays outside of the distance range.
|
nuclear@0
|
161 // Add all positions inside the distance range within the given radius to the result aray
|
nuclear@0
|
162 std::vector<Entry>::const_iterator it = mPositions.begin() + index;
|
nuclear@0
|
163 const float pSquared = pRadius*pRadius;
|
nuclear@0
|
164 while( it->mDistance < maxDist)
|
nuclear@0
|
165 {
|
nuclear@0
|
166 if( (it->mPosition - pPosition).SquareLength() < pSquared)
|
nuclear@0
|
167 poResults.push_back( it->mIndex);
|
nuclear@0
|
168 ++it;
|
nuclear@0
|
169 if( it == mPositions.end())
|
nuclear@0
|
170 break;
|
nuclear@0
|
171 }
|
nuclear@0
|
172
|
nuclear@0
|
173 // that's it
|
nuclear@0
|
174 }
|
nuclear@0
|
175
|
nuclear@0
|
176 namespace {
|
nuclear@0
|
177
|
nuclear@0
|
178 // Binary, signed-integer representation of a single-precision floating-point value.
|
nuclear@0
|
179 // IEEE 754 says: "If two floating-point numbers in the same format are ordered then they are
|
nuclear@0
|
180 // ordered the same way when their bits are reinterpreted as sign-magnitude integers."
|
nuclear@0
|
181 // This allows us to convert all floating-point numbers to signed integers of arbitrary size
|
nuclear@0
|
182 // and then use them to work with ULPs (Units in the Last Place, for high-precision
|
nuclear@0
|
183 // computations) or to compare them (integer comparisons are faster than floating-point
|
nuclear@0
|
184 // comparisons on many platforms).
|
nuclear@0
|
185 typedef signed int BinFloat;
|
nuclear@0
|
186
|
nuclear@0
|
187 // --------------------------------------------------------------------------------------------
|
nuclear@0
|
188 // Converts the bit pattern of a floating-point number to its signed integer representation.
|
nuclear@0
|
189 BinFloat ToBinary( const float & pValue) {
|
nuclear@0
|
190
|
nuclear@0
|
191 // If this assertion fails, signed int is not big enough to store a float on your platform.
|
nuclear@0
|
192 // Please correct the declaration of BinFloat a few lines above - but do it in a portable,
|
nuclear@0
|
193 // #ifdef'd manner!
|
nuclear@0
|
194 BOOST_STATIC_ASSERT( sizeof(BinFloat) >= sizeof(float));
|
nuclear@0
|
195
|
nuclear@0
|
196 #if defined( _MSC_VER)
|
nuclear@0
|
197 // If this assertion fails, Visual C++ has finally moved to ILP64. This means that this
|
nuclear@0
|
198 // code has just become legacy code! Find out the current value of _MSC_VER and modify
|
nuclear@0
|
199 // the #if above so it evaluates false on the current and all upcoming VC versions (or
|
nuclear@0
|
200 // on the current platform, if LP64 or LLP64 are still used on other platforms).
|
nuclear@0
|
201 BOOST_STATIC_ASSERT( sizeof(BinFloat) == sizeof(float));
|
nuclear@0
|
202
|
nuclear@0
|
203 // This works best on Visual C++, but other compilers have their problems with it.
|
nuclear@0
|
204 const BinFloat binValue = reinterpret_cast<BinFloat const &>(pValue);
|
nuclear@0
|
205 #else
|
nuclear@0
|
206 // On many compilers, reinterpreting a float address as an integer causes aliasing
|
nuclear@0
|
207 // problems. This is an ugly but more or less safe way of doing it.
|
nuclear@0
|
208 union {
|
nuclear@0
|
209 float asFloat;
|
nuclear@0
|
210 BinFloat asBin;
|
nuclear@0
|
211 } conversion;
|
nuclear@0
|
212 conversion.asBin = 0; // zero empty space in case sizeof(BinFloat) > sizeof(float)
|
nuclear@0
|
213 conversion.asFloat = pValue;
|
nuclear@0
|
214 const BinFloat binValue = conversion.asBin;
|
nuclear@0
|
215 #endif
|
nuclear@0
|
216
|
nuclear@0
|
217 // floating-point numbers are of sign-magnitude format, so find out what signed number
|
nuclear@0
|
218 // representation we must convert negative values to.
|
nuclear@0
|
219 // See http://en.wikipedia.org/wiki/Signed_number_representations.
|
nuclear@0
|
220
|
nuclear@0
|
221 // Two's complement?
|
nuclear@0
|
222 if( (-42 == (~42 + 1)) && (binValue & 0x80000000))
|
nuclear@0
|
223 return BinFloat(1 << (CHAR_BIT * sizeof(BinFloat) - 1)) - binValue;
|
nuclear@0
|
224 // One's complement?
|
nuclear@0
|
225 else if( (-42 == ~42) && (binValue & 0x80000000))
|
nuclear@0
|
226 return BinFloat(-0) - binValue;
|
nuclear@0
|
227 // Sign-magnitude?
|
nuclear@0
|
228 else if( (-42 == (42 | (-0))) && (binValue & 0x80000000)) // -0 = 1000... binary
|
nuclear@0
|
229 return binValue;
|
nuclear@0
|
230 else
|
nuclear@0
|
231 return binValue;
|
nuclear@0
|
232 }
|
nuclear@0
|
233
|
nuclear@0
|
234 } // namespace
|
nuclear@0
|
235
|
nuclear@0
|
236 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
237 // Fills an array with indices of all positions indentical to the given position. In opposite to
|
nuclear@0
|
238 // FindPositions(), not an epsilon is used but a (very low) tolerance of four floating-point units.
|
nuclear@0
|
239 void SpatialSort::FindIdenticalPositions( const aiVector3D& pPosition,
|
nuclear@0
|
240 std::vector<unsigned int>& poResults) const
|
nuclear@0
|
241 {
|
nuclear@0
|
242 // Epsilons have a huge disadvantage: they are of constant precision, while floating-point
|
nuclear@0
|
243 // values are of log2 precision. If you apply e=0.01 to 100, the epsilon is rather small, but
|
nuclear@0
|
244 // if you apply it to 0.001, it is enormous.
|
nuclear@0
|
245
|
nuclear@0
|
246 // The best way to overcome this is the unit in the last place (ULP). A precision of 2 ULPs
|
nuclear@0
|
247 // tells us that a float does not differ more than 2 bits from the "real" value. ULPs are of
|
nuclear@0
|
248 // logarithmic precision - around 1, they are 1÷(2^24) and around 10000, they are 0.00125.
|
nuclear@0
|
249
|
nuclear@0
|
250 // For standard C math, we can assume a precision of 0.5 ULPs according to IEEE 754. The
|
nuclear@0
|
251 // incoming vertex positions might have already been transformed, probably using rather
|
nuclear@0
|
252 // inaccurate SSE instructions, so we assume a tolerance of 4 ULPs to safely identify
|
nuclear@0
|
253 // identical vertex positions.
|
nuclear@0
|
254 static const int toleranceInULPs = 4;
|
nuclear@0
|
255 // An interesting point is that the inaccuracy grows linear with the number of operations:
|
nuclear@0
|
256 // multiplying to numbers, each inaccurate to four ULPs, results in an inaccuracy of four ULPs
|
nuclear@0
|
257 // plus 0.5 ULPs for the multiplication.
|
nuclear@0
|
258 // To compute the distance to the plane, a dot product is needed - that is a multiplication and
|
nuclear@0
|
259 // an addition on each number.
|
nuclear@0
|
260 static const int distanceToleranceInULPs = toleranceInULPs + 1;
|
nuclear@0
|
261 // The squared distance between two 3D vectors is computed the same way, but with an additional
|
nuclear@0
|
262 // subtraction.
|
nuclear@0
|
263 static const int distance3DToleranceInULPs = distanceToleranceInULPs + 1;
|
nuclear@0
|
264
|
nuclear@0
|
265 // Convert the plane distance to its signed integer representation so the ULPs tolerance can be
|
nuclear@0
|
266 // applied. For some reason, VC won't optimize two calls of the bit pattern conversion.
|
nuclear@0
|
267 const BinFloat minDistBinary = ToBinary( pPosition * mPlaneNormal) - distanceToleranceInULPs;
|
nuclear@0
|
268 const BinFloat maxDistBinary = minDistBinary + 2 * distanceToleranceInULPs;
|
nuclear@0
|
269
|
nuclear@0
|
270 // clear the array in this strange fashion because a simple clear() would also deallocate
|
nuclear@0
|
271 // the array which we want to avoid
|
nuclear@0
|
272 poResults.erase( poResults.begin(), poResults.end());
|
nuclear@0
|
273
|
nuclear@0
|
274 // do a binary search for the minimal distance to start the iteration there
|
nuclear@0
|
275 unsigned int index = (unsigned int)mPositions.size() / 2;
|
nuclear@0
|
276 unsigned int binaryStepSize = (unsigned int)mPositions.size() / 4;
|
nuclear@0
|
277 while( binaryStepSize > 1)
|
nuclear@0
|
278 {
|
nuclear@0
|
279 // Ugly, but conditional jumps are faster with integers than with floats
|
nuclear@0
|
280 if( minDistBinary > ToBinary(mPositions[index].mDistance))
|
nuclear@0
|
281 index += binaryStepSize;
|
nuclear@0
|
282 else
|
nuclear@0
|
283 index -= binaryStepSize;
|
nuclear@0
|
284
|
nuclear@0
|
285 binaryStepSize /= 2;
|
nuclear@0
|
286 }
|
nuclear@0
|
287
|
nuclear@0
|
288 // depending on the direction of the last step we need to single step a bit back or forth
|
nuclear@0
|
289 // to find the actual beginning element of the range
|
nuclear@0
|
290 while( index > 0 && minDistBinary < ToBinary(mPositions[index].mDistance) )
|
nuclear@0
|
291 index--;
|
nuclear@0
|
292 while( index < (mPositions.size() - 1) && minDistBinary > ToBinary(mPositions[index].mDistance))
|
nuclear@0
|
293 index++;
|
nuclear@0
|
294
|
nuclear@0
|
295 // Now start iterating from there until the first position lays outside of the distance range.
|
nuclear@0
|
296 // Add all positions inside the distance range within the tolerance to the result aray
|
nuclear@0
|
297 std::vector<Entry>::const_iterator it = mPositions.begin() + index;
|
nuclear@0
|
298 while( ToBinary(it->mDistance) < maxDistBinary)
|
nuclear@0
|
299 {
|
nuclear@0
|
300 if( distance3DToleranceInULPs >= ToBinary((it->mPosition - pPosition).SquareLength()))
|
nuclear@0
|
301 poResults.push_back(it->mIndex);
|
nuclear@0
|
302 ++it;
|
nuclear@0
|
303 if( it == mPositions.end())
|
nuclear@0
|
304 break;
|
nuclear@0
|
305 }
|
nuclear@0
|
306
|
nuclear@0
|
307 // that's it
|
nuclear@0
|
308 }
|
nuclear@0
|
309
|
nuclear@0
|
310 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
311 unsigned int SpatialSort::GenerateMappingTable(std::vector<unsigned int>& fill,float pRadius) const
|
nuclear@0
|
312 {
|
nuclear@0
|
313 fill.resize(mPositions.size(),UINT_MAX);
|
nuclear@0
|
314 float dist, maxDist;
|
nuclear@0
|
315
|
nuclear@0
|
316 unsigned int t=0;
|
nuclear@0
|
317 const float pSquared = pRadius*pRadius;
|
nuclear@0
|
318 for (size_t i = 0; i < mPositions.size();) {
|
nuclear@0
|
319 dist = mPositions[i].mPosition * mPlaneNormal;
|
nuclear@0
|
320 maxDist = dist + pRadius;
|
nuclear@0
|
321
|
nuclear@0
|
322 fill[mPositions[i].mIndex] = t;
|
nuclear@0
|
323 const aiVector3D& oldpos = mPositions[i].mPosition;
|
nuclear@0
|
324 for (++i; i < fill.size() && mPositions[i].mDistance < maxDist
|
nuclear@0
|
325 && (mPositions[i].mPosition - oldpos).SquareLength() < pSquared; ++i)
|
nuclear@0
|
326 {
|
nuclear@0
|
327 fill[mPositions[i].mIndex] = t;
|
nuclear@0
|
328 }
|
nuclear@0
|
329 ++t;
|
nuclear@0
|
330 }
|
nuclear@0
|
331
|
nuclear@0
|
332 #ifdef _DEBUG
|
nuclear@0
|
333
|
nuclear@0
|
334 // debug invariant: mPositions[i].mIndex values must range from 0 to mPositions.size()-1
|
nuclear@0
|
335 for (size_t i = 0; i < fill.size(); ++i) {
|
nuclear@0
|
336 ai_assert(fill[i]<mPositions.size());
|
nuclear@0
|
337 }
|
nuclear@0
|
338
|
nuclear@0
|
339 #endif
|
nuclear@0
|
340 return t;
|
nuclear@0
|
341 }
|
nuclear@0
|
342
|