rev |
line source |
nuclear@0
|
1 /*
|
nuclear@0
|
2 Open Asset Import Library (assimp)
|
nuclear@0
|
3 ----------------------------------------------------------------------
|
nuclear@0
|
4
|
nuclear@0
|
5 Copyright (c) 2006-2010, assimp team
|
nuclear@0
|
6 All rights reserved.
|
nuclear@0
|
7
|
nuclear@0
|
8 Redistribution and use of this software in source and binary forms,
|
nuclear@0
|
9 with or without modification, are permitted provided that the
|
nuclear@0
|
10 following conditions are met:
|
nuclear@0
|
11
|
nuclear@0
|
12 * Redistributions of source code must retain the above
|
nuclear@0
|
13 copyright notice, this list of conditions and the
|
nuclear@0
|
14 following disclaimer.
|
nuclear@0
|
15
|
nuclear@0
|
16 * Redistributions in binary form must reproduce the above
|
nuclear@0
|
17 copyright notice, this list of conditions and the
|
nuclear@0
|
18 following disclaimer in the documentation and/or other
|
nuclear@0
|
19 materials provided with the distribution.
|
nuclear@0
|
20
|
nuclear@0
|
21 * Neither the name of the assimp team, nor the names of its
|
nuclear@0
|
22 contributors may be used to endorse or promote products
|
nuclear@0
|
23 derived from this software without specific prior
|
nuclear@0
|
24 written permission of the assimp team.
|
nuclear@0
|
25
|
nuclear@0
|
26 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
nuclear@0
|
27 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
nuclear@0
|
28 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
nuclear@0
|
29 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
nuclear@0
|
30 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
nuclear@0
|
31 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
nuclear@0
|
32 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
nuclear@0
|
33 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
nuclear@0
|
34 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
nuclear@0
|
35 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
nuclear@0
|
36 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
nuclear@0
|
37
|
nuclear@0
|
38 ----------------------------------------------------------------------
|
nuclear@0
|
39 */
|
nuclear@0
|
40
|
nuclear@0
|
41 /** @file IFCOpenings.cpp
|
nuclear@0
|
42 * @brief Implements a subset of Ifc CSG operations for pouring
|
nuclear@0
|
43 * holes for windows and doors into walls.
|
nuclear@0
|
44 */
|
nuclear@0
|
45
|
nuclear@0
|
46 #include "AssimpPCH.h"
|
nuclear@0
|
47
|
nuclear@0
|
48 #ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
|
nuclear@0
|
49 #include "IFCUtil.h"
|
nuclear@0
|
50 #include "PolyTools.h"
|
nuclear@0
|
51 #include "ProcessHelper.h"
|
nuclear@0
|
52
|
nuclear@0
|
53 #include "../contrib/poly2tri/poly2tri/poly2tri.h"
|
nuclear@0
|
54 #include "../contrib/clipper/clipper.hpp"
|
nuclear@0
|
55
|
nuclear@0
|
56 #include <iterator>
|
nuclear@0
|
57
|
nuclear@0
|
58 namespace Assimp {
|
nuclear@0
|
59 namespace IFC {
|
nuclear@0
|
60
|
nuclear@0
|
61 using ClipperLib::ulong64;
|
nuclear@0
|
62 // XXX use full -+ range ...
|
nuclear@0
|
63 const ClipperLib::long64 max_ulong64 = 1518500249; // clipper.cpp / hiRange var
|
nuclear@0
|
64
|
nuclear@0
|
65 //#define to_int64(p) (static_cast<ulong64>( std::max( 0., std::min( static_cast<IfcFloat>((p)), 1.) ) * max_ulong64 ))
|
nuclear@0
|
66 #define to_int64(p) (static_cast<ulong64>(static_cast<IfcFloat>((p) ) * max_ulong64 ))
|
nuclear@0
|
67 #define from_int64(p) (static_cast<IfcFloat>((p)) / max_ulong64)
|
nuclear@0
|
68 #define one_vec (IfcVector2(static_cast<IfcFloat>(1.0),static_cast<IfcFloat>(1.0)))
|
nuclear@0
|
69
|
nuclear@0
|
70
|
nuclear@0
|
71 // fallback method to generate wall openings
|
nuclear@0
|
72 bool TryAddOpenings_Poly2Tri(const std::vector<TempOpening>& openings,const std::vector<IfcVector3>& nors,
|
nuclear@0
|
73 TempMesh& curmesh);
|
nuclear@0
|
74
|
nuclear@0
|
75
|
nuclear@0
|
76 typedef std::pair< IfcVector2, IfcVector2 > BoundingBox;
|
nuclear@0
|
77 typedef std::map<IfcVector2,size_t,XYSorter> XYSortedField;
|
nuclear@0
|
78
|
nuclear@0
|
79
|
nuclear@0
|
80 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
81 void QuadrifyPart(const IfcVector2& pmin, const IfcVector2& pmax, XYSortedField& field,
|
nuclear@0
|
82 const std::vector< BoundingBox >& bbs,
|
nuclear@0
|
83 std::vector<IfcVector2>& out)
|
nuclear@0
|
84 {
|
nuclear@0
|
85 if (!(pmin.x-pmax.x) || !(pmin.y-pmax.y)) {
|
nuclear@0
|
86 return;
|
nuclear@0
|
87 }
|
nuclear@0
|
88
|
nuclear@0
|
89 IfcFloat xs = 1e10, xe = 1e10;
|
nuclear@0
|
90 bool found = false;
|
nuclear@0
|
91
|
nuclear@0
|
92 // Search along the x-axis until we find an opening
|
nuclear@0
|
93 XYSortedField::iterator start = field.begin();
|
nuclear@0
|
94 for(; start != field.end(); ++start) {
|
nuclear@0
|
95 const BoundingBox& bb = bbs[(*start).second];
|
nuclear@0
|
96 if(bb.first.x >= pmax.x) {
|
nuclear@0
|
97 break;
|
nuclear@0
|
98 }
|
nuclear@0
|
99
|
nuclear@0
|
100 if (bb.second.x > pmin.x && bb.second.y > pmin.y && bb.first.y < pmax.y) {
|
nuclear@0
|
101 xs = bb.first.x;
|
nuclear@0
|
102 xe = bb.second.x;
|
nuclear@0
|
103 found = true;
|
nuclear@0
|
104 break;
|
nuclear@0
|
105 }
|
nuclear@0
|
106 }
|
nuclear@0
|
107
|
nuclear@0
|
108 if (!found) {
|
nuclear@0
|
109 // the rectangle [pmin,pend] is opaque, fill it
|
nuclear@0
|
110 out.push_back(pmin);
|
nuclear@0
|
111 out.push_back(IfcVector2(pmin.x,pmax.y));
|
nuclear@0
|
112 out.push_back(pmax);
|
nuclear@0
|
113 out.push_back(IfcVector2(pmax.x,pmin.y));
|
nuclear@0
|
114 return;
|
nuclear@0
|
115 }
|
nuclear@0
|
116
|
nuclear@0
|
117 xs = std::max(pmin.x,xs);
|
nuclear@0
|
118 xe = std::min(pmax.x,xe);
|
nuclear@0
|
119
|
nuclear@0
|
120 // see if there's an offset to fill at the top of our quad
|
nuclear@0
|
121 if (xs - pmin.x) {
|
nuclear@0
|
122 out.push_back(pmin);
|
nuclear@0
|
123 out.push_back(IfcVector2(pmin.x,pmax.y));
|
nuclear@0
|
124 out.push_back(IfcVector2(xs,pmax.y));
|
nuclear@0
|
125 out.push_back(IfcVector2(xs,pmin.y));
|
nuclear@0
|
126 }
|
nuclear@0
|
127
|
nuclear@0
|
128 // search along the y-axis for all openings that overlap xs and our quad
|
nuclear@0
|
129 IfcFloat ylast = pmin.y;
|
nuclear@0
|
130 found = false;
|
nuclear@0
|
131 for(; start != field.end(); ++start) {
|
nuclear@0
|
132 const BoundingBox& bb = bbs[(*start).second];
|
nuclear@0
|
133 if (bb.first.x > xs || bb.first.y >= pmax.y) {
|
nuclear@0
|
134 break;
|
nuclear@0
|
135 }
|
nuclear@0
|
136
|
nuclear@0
|
137 if (bb.second.y > ylast) {
|
nuclear@0
|
138
|
nuclear@0
|
139 found = true;
|
nuclear@0
|
140 const IfcFloat ys = std::max(bb.first.y,pmin.y), ye = std::min(bb.second.y,pmax.y);
|
nuclear@0
|
141 if (ys - ylast > 0.0f) {
|
nuclear@0
|
142 QuadrifyPart( IfcVector2(xs,ylast), IfcVector2(xe,ys) ,field,bbs,out);
|
nuclear@0
|
143 }
|
nuclear@0
|
144
|
nuclear@0
|
145 // the following are the window vertices
|
nuclear@0
|
146
|
nuclear@0
|
147 /*wnd.push_back(IfcVector2(xs,ys));
|
nuclear@0
|
148 wnd.push_back(IfcVector2(xs,ye));
|
nuclear@0
|
149 wnd.push_back(IfcVector2(xe,ye));
|
nuclear@0
|
150 wnd.push_back(IfcVector2(xe,ys));*/
|
nuclear@0
|
151 ylast = ye;
|
nuclear@0
|
152 }
|
nuclear@0
|
153 }
|
nuclear@0
|
154 if (!found) {
|
nuclear@0
|
155 // the rectangle [pmin,pend] is opaque, fill it
|
nuclear@0
|
156 out.push_back(IfcVector2(xs,pmin.y));
|
nuclear@0
|
157 out.push_back(IfcVector2(xs,pmax.y));
|
nuclear@0
|
158 out.push_back(IfcVector2(xe,pmax.y));
|
nuclear@0
|
159 out.push_back(IfcVector2(xe,pmin.y));
|
nuclear@0
|
160 return;
|
nuclear@0
|
161 }
|
nuclear@0
|
162 if (ylast < pmax.y) {
|
nuclear@0
|
163 QuadrifyPart( IfcVector2(xs,ylast), IfcVector2(xe,pmax.y) ,field,bbs,out);
|
nuclear@0
|
164 }
|
nuclear@0
|
165
|
nuclear@0
|
166 // now for the whole rest
|
nuclear@0
|
167 if (pmax.x-xe) {
|
nuclear@0
|
168 QuadrifyPart(IfcVector2(xe,pmin.y), pmax ,field,bbs,out);
|
nuclear@0
|
169 }
|
nuclear@0
|
170 }
|
nuclear@0
|
171
|
nuclear@0
|
172 typedef std::vector<IfcVector2> Contour;
|
nuclear@0
|
173 typedef std::vector<bool> SkipList; // should probably use int for performance reasons
|
nuclear@0
|
174
|
nuclear@0
|
175 struct ProjectedWindowContour
|
nuclear@0
|
176 {
|
nuclear@0
|
177 Contour contour;
|
nuclear@0
|
178 BoundingBox bb;
|
nuclear@0
|
179 SkipList skiplist;
|
nuclear@0
|
180 bool is_rectangular;
|
nuclear@0
|
181
|
nuclear@0
|
182
|
nuclear@0
|
183 ProjectedWindowContour(const Contour& contour, const BoundingBox& bb, bool is_rectangular)
|
nuclear@0
|
184 : contour(contour)
|
nuclear@0
|
185 , bb(bb)
|
nuclear@0
|
186 , is_rectangular(is_rectangular)
|
nuclear@0
|
187 {}
|
nuclear@0
|
188
|
nuclear@0
|
189
|
nuclear@0
|
190 bool IsInvalid() const {
|
nuclear@0
|
191 return contour.empty();
|
nuclear@0
|
192 }
|
nuclear@0
|
193
|
nuclear@0
|
194 void FlagInvalid() {
|
nuclear@0
|
195 contour.clear();
|
nuclear@0
|
196 }
|
nuclear@0
|
197
|
nuclear@0
|
198 void PrepareSkiplist() {
|
nuclear@0
|
199 skiplist.resize(contour.size(),false);
|
nuclear@0
|
200 }
|
nuclear@0
|
201 };
|
nuclear@0
|
202
|
nuclear@0
|
203 typedef std::vector< ProjectedWindowContour > ContourVector;
|
nuclear@0
|
204
|
nuclear@0
|
205 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
206 bool BoundingBoxesOverlapping( const BoundingBox &ibb, const BoundingBox &bb )
|
nuclear@0
|
207 {
|
nuclear@0
|
208 // count the '=' case as non-overlapping but as adjacent to each other
|
nuclear@0
|
209 return ibb.first.x < bb.second.x && ibb.second.x > bb.first.x &&
|
nuclear@0
|
210 ibb.first.y < bb.second.y && ibb.second.y > bb.first.y;
|
nuclear@0
|
211 }
|
nuclear@0
|
212
|
nuclear@0
|
213 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
214 bool IsDuplicateVertex(const IfcVector2& vv, const std::vector<IfcVector2>& temp_contour)
|
nuclear@0
|
215 {
|
nuclear@0
|
216 // sanity check for duplicate vertices
|
nuclear@0
|
217 BOOST_FOREACH(const IfcVector2& cp, temp_contour) {
|
nuclear@0
|
218 if ((cp-vv).SquareLength() < 1e-5f) {
|
nuclear@0
|
219 return true;
|
nuclear@0
|
220 }
|
nuclear@0
|
221 }
|
nuclear@0
|
222 return false;
|
nuclear@0
|
223 }
|
nuclear@0
|
224
|
nuclear@0
|
225 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
226 void ExtractVerticesFromClipper(const ClipperLib::Polygon& poly, std::vector<IfcVector2>& temp_contour,
|
nuclear@0
|
227 bool filter_duplicates = false)
|
nuclear@0
|
228 {
|
nuclear@0
|
229 temp_contour.clear();
|
nuclear@0
|
230 BOOST_FOREACH(const ClipperLib::IntPoint& point, poly) {
|
nuclear@0
|
231 IfcVector2 vv = IfcVector2( from_int64(point.X), from_int64(point.Y));
|
nuclear@0
|
232 vv = std::max(vv,IfcVector2());
|
nuclear@0
|
233 vv = std::min(vv,one_vec);
|
nuclear@0
|
234
|
nuclear@0
|
235 if (!filter_duplicates || !IsDuplicateVertex(vv, temp_contour)) {
|
nuclear@0
|
236 temp_contour.push_back(vv);
|
nuclear@0
|
237 }
|
nuclear@0
|
238 }
|
nuclear@0
|
239 }
|
nuclear@0
|
240
|
nuclear@0
|
241 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
242 BoundingBox GetBoundingBox(const ClipperLib::Polygon& poly)
|
nuclear@0
|
243 {
|
nuclear@0
|
244 IfcVector2 newbb_min, newbb_max;
|
nuclear@0
|
245 MinMaxChooser<IfcVector2>()(newbb_min, newbb_max);
|
nuclear@0
|
246
|
nuclear@0
|
247 BOOST_FOREACH(const ClipperLib::IntPoint& point, poly) {
|
nuclear@0
|
248 IfcVector2 vv = IfcVector2( from_int64(point.X), from_int64(point.Y));
|
nuclear@0
|
249
|
nuclear@0
|
250 // sanity rounding
|
nuclear@0
|
251 vv = std::max(vv,IfcVector2());
|
nuclear@0
|
252 vv = std::min(vv,one_vec);
|
nuclear@0
|
253
|
nuclear@0
|
254 newbb_min = std::min(newbb_min,vv);
|
nuclear@0
|
255 newbb_max = std::max(newbb_max,vv);
|
nuclear@0
|
256 }
|
nuclear@0
|
257 return BoundingBox(newbb_min, newbb_max);
|
nuclear@0
|
258 }
|
nuclear@0
|
259
|
nuclear@0
|
260 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
261 void InsertWindowContours(const ContourVector& contours,
|
nuclear@0
|
262 const std::vector<TempOpening>& openings,
|
nuclear@0
|
263 TempMesh& curmesh)
|
nuclear@0
|
264 {
|
nuclear@0
|
265 // fix windows - we need to insert the real, polygonal shapes into the quadratic holes that we have now
|
nuclear@0
|
266 for(size_t i = 0; i < contours.size();++i) {
|
nuclear@0
|
267 const BoundingBox& bb = contours[i].bb;
|
nuclear@0
|
268 const std::vector<IfcVector2>& contour = contours[i].contour;
|
nuclear@0
|
269 if(contour.empty()) {
|
nuclear@0
|
270 continue;
|
nuclear@0
|
271 }
|
nuclear@0
|
272
|
nuclear@0
|
273 // check if we need to do it at all - many windows just fit perfectly into their quadratic holes,
|
nuclear@0
|
274 // i.e. their contours *are* already their bounding boxes.
|
nuclear@0
|
275 if (contour.size() == 4) {
|
nuclear@0
|
276 std::set<IfcVector2,XYSorter> verts;
|
nuclear@0
|
277 for(size_t n = 0; n < 4; ++n) {
|
nuclear@0
|
278 verts.insert(contour[n]);
|
nuclear@0
|
279 }
|
nuclear@0
|
280 const std::set<IfcVector2,XYSorter>::const_iterator end = verts.end();
|
nuclear@0
|
281 if (verts.find(bb.first)!=end && verts.find(bb.second)!=end
|
nuclear@0
|
282 && verts.find(IfcVector2(bb.first.x,bb.second.y))!=end
|
nuclear@0
|
283 && verts.find(IfcVector2(bb.second.x,bb.first.y))!=end
|
nuclear@0
|
284 ) {
|
nuclear@0
|
285 continue;
|
nuclear@0
|
286 }
|
nuclear@0
|
287 }
|
nuclear@0
|
288
|
nuclear@0
|
289 const IfcFloat diag = (bb.first-bb.second).Length();
|
nuclear@0
|
290 const IfcFloat epsilon = diag/1000.f;
|
nuclear@0
|
291
|
nuclear@0
|
292 // walk through all contour points and find those that lie on the BB corner
|
nuclear@0
|
293 size_t last_hit = -1, very_first_hit = -1;
|
nuclear@0
|
294 IfcVector2 edge;
|
nuclear@0
|
295 for(size_t n = 0, e=0, size = contour.size();; n=(n+1)%size, ++e) {
|
nuclear@0
|
296
|
nuclear@0
|
297 // sanity checking
|
nuclear@0
|
298 if (e == size*2) {
|
nuclear@0
|
299 IFCImporter::LogError("encountered unexpected topology while generating window contour");
|
nuclear@0
|
300 break;
|
nuclear@0
|
301 }
|
nuclear@0
|
302
|
nuclear@0
|
303 const IfcVector2& v = contour[n];
|
nuclear@0
|
304
|
nuclear@0
|
305 bool hit = false;
|
nuclear@0
|
306 if (fabs(v.x-bb.first.x)<epsilon) {
|
nuclear@0
|
307 edge.x = bb.first.x;
|
nuclear@0
|
308 hit = true;
|
nuclear@0
|
309 }
|
nuclear@0
|
310 else if (fabs(v.x-bb.second.x)<epsilon) {
|
nuclear@0
|
311 edge.x = bb.second.x;
|
nuclear@0
|
312 hit = true;
|
nuclear@0
|
313 }
|
nuclear@0
|
314
|
nuclear@0
|
315 if (fabs(v.y-bb.first.y)<epsilon) {
|
nuclear@0
|
316 edge.y = bb.first.y;
|
nuclear@0
|
317 hit = true;
|
nuclear@0
|
318 }
|
nuclear@0
|
319 else if (fabs(v.y-bb.second.y)<epsilon) {
|
nuclear@0
|
320 edge.y = bb.second.y;
|
nuclear@0
|
321 hit = true;
|
nuclear@0
|
322 }
|
nuclear@0
|
323
|
nuclear@0
|
324 if (hit) {
|
nuclear@0
|
325 if (last_hit != (size_t)-1) {
|
nuclear@0
|
326
|
nuclear@0
|
327 const size_t old = curmesh.verts.size();
|
nuclear@0
|
328 size_t cnt = last_hit > n ? size-(last_hit-n) : n-last_hit;
|
nuclear@0
|
329 for(size_t a = last_hit, e = 0; e <= cnt; a=(a+1)%size, ++e) {
|
nuclear@0
|
330 // hack: this is to fix cases where opening contours are self-intersecting.
|
nuclear@0
|
331 // Clipper doesn't produce such polygons, but as soon as we're back in
|
nuclear@0
|
332 // our brave new floating-point world, very small distances are consumed
|
nuclear@0
|
333 // by the maximum available precision, leading to self-intersecting
|
nuclear@0
|
334 // polygons. This fix makes concave windows fail even worse, but
|
nuclear@0
|
335 // anyway, fail is fail.
|
nuclear@0
|
336 if ((contour[a] - edge).SquareLength() > diag*diag*0.7) {
|
nuclear@0
|
337 continue;
|
nuclear@0
|
338 }
|
nuclear@0
|
339 curmesh.verts.push_back(IfcVector3(contour[a].x, contour[a].y, 0.0f));
|
nuclear@0
|
340 }
|
nuclear@0
|
341
|
nuclear@0
|
342 if (edge != contour[last_hit]) {
|
nuclear@0
|
343
|
nuclear@0
|
344 IfcVector2 corner = edge;
|
nuclear@0
|
345
|
nuclear@0
|
346 if (fabs(contour[last_hit].x-bb.first.x)<epsilon) {
|
nuclear@0
|
347 corner.x = bb.first.x;
|
nuclear@0
|
348 }
|
nuclear@0
|
349 else if (fabs(contour[last_hit].x-bb.second.x)<epsilon) {
|
nuclear@0
|
350 corner.x = bb.second.x;
|
nuclear@0
|
351 }
|
nuclear@0
|
352
|
nuclear@0
|
353 if (fabs(contour[last_hit].y-bb.first.y)<epsilon) {
|
nuclear@0
|
354 corner.y = bb.first.y;
|
nuclear@0
|
355 }
|
nuclear@0
|
356 else if (fabs(contour[last_hit].y-bb.second.y)<epsilon) {
|
nuclear@0
|
357 corner.y = bb.second.y;
|
nuclear@0
|
358 }
|
nuclear@0
|
359
|
nuclear@0
|
360 curmesh.verts.push_back(IfcVector3(corner.x, corner.y, 0.0f));
|
nuclear@0
|
361 }
|
nuclear@0
|
362 else if (cnt == 1) {
|
nuclear@0
|
363 // avoid degenerate polygons (also known as lines or points)
|
nuclear@0
|
364 curmesh.verts.erase(curmesh.verts.begin()+old,curmesh.verts.end());
|
nuclear@0
|
365 }
|
nuclear@0
|
366
|
nuclear@0
|
367 if (const size_t d = curmesh.verts.size()-old) {
|
nuclear@0
|
368 curmesh.vertcnt.push_back(d);
|
nuclear@0
|
369 std::reverse(curmesh.verts.rbegin(),curmesh.verts.rbegin()+d);
|
nuclear@0
|
370 }
|
nuclear@0
|
371 if (n == very_first_hit) {
|
nuclear@0
|
372 break;
|
nuclear@0
|
373 }
|
nuclear@0
|
374 }
|
nuclear@0
|
375 else {
|
nuclear@0
|
376 very_first_hit = n;
|
nuclear@0
|
377 }
|
nuclear@0
|
378
|
nuclear@0
|
379 last_hit = n;
|
nuclear@0
|
380 }
|
nuclear@0
|
381 }
|
nuclear@0
|
382 }
|
nuclear@0
|
383 }
|
nuclear@0
|
384
|
nuclear@0
|
385 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
386 void MergeWindowContours (const std::vector<IfcVector2>& a,
|
nuclear@0
|
387 const std::vector<IfcVector2>& b,
|
nuclear@0
|
388 ClipperLib::ExPolygons& out)
|
nuclear@0
|
389 {
|
nuclear@0
|
390 out.clear();
|
nuclear@0
|
391
|
nuclear@0
|
392 ClipperLib::Clipper clipper;
|
nuclear@0
|
393 ClipperLib::Polygon clip;
|
nuclear@0
|
394
|
nuclear@0
|
395 BOOST_FOREACH(const IfcVector2& pip, a) {
|
nuclear@0
|
396 clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
|
nuclear@0
|
397 }
|
nuclear@0
|
398
|
nuclear@0
|
399 if (ClipperLib::Orientation(clip)) {
|
nuclear@0
|
400 std::reverse(clip.begin(), clip.end());
|
nuclear@0
|
401 }
|
nuclear@0
|
402
|
nuclear@0
|
403 clipper.AddPolygon(clip, ClipperLib::ptSubject);
|
nuclear@0
|
404 clip.clear();
|
nuclear@0
|
405
|
nuclear@0
|
406 BOOST_FOREACH(const IfcVector2& pip, b) {
|
nuclear@0
|
407 clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
|
nuclear@0
|
408 }
|
nuclear@0
|
409
|
nuclear@0
|
410 if (ClipperLib::Orientation(clip)) {
|
nuclear@0
|
411 std::reverse(clip.begin(), clip.end());
|
nuclear@0
|
412 }
|
nuclear@0
|
413
|
nuclear@0
|
414 clipper.AddPolygon(clip, ClipperLib::ptSubject);
|
nuclear@0
|
415 clipper.Execute(ClipperLib::ctUnion, out,ClipperLib::pftNonZero,ClipperLib::pftNonZero);
|
nuclear@0
|
416 }
|
nuclear@0
|
417
|
nuclear@0
|
418 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
419 // Subtract a from b
|
nuclear@0
|
420 void MakeDisjunctWindowContours (const std::vector<IfcVector2>& a,
|
nuclear@0
|
421 const std::vector<IfcVector2>& b,
|
nuclear@0
|
422 ClipperLib::ExPolygons& out)
|
nuclear@0
|
423 {
|
nuclear@0
|
424 out.clear();
|
nuclear@0
|
425
|
nuclear@0
|
426 ClipperLib::Clipper clipper;
|
nuclear@0
|
427 ClipperLib::Polygon clip;
|
nuclear@0
|
428
|
nuclear@0
|
429 BOOST_FOREACH(const IfcVector2& pip, a) {
|
nuclear@0
|
430 clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
|
nuclear@0
|
431 }
|
nuclear@0
|
432
|
nuclear@0
|
433 if (ClipperLib::Orientation(clip)) {
|
nuclear@0
|
434 std::reverse(clip.begin(), clip.end());
|
nuclear@0
|
435 }
|
nuclear@0
|
436
|
nuclear@0
|
437 clipper.AddPolygon(clip, ClipperLib::ptClip);
|
nuclear@0
|
438 clip.clear();
|
nuclear@0
|
439
|
nuclear@0
|
440 BOOST_FOREACH(const IfcVector2& pip, b) {
|
nuclear@0
|
441 clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
|
nuclear@0
|
442 }
|
nuclear@0
|
443
|
nuclear@0
|
444 if (ClipperLib::Orientation(clip)) {
|
nuclear@0
|
445 std::reverse(clip.begin(), clip.end());
|
nuclear@0
|
446 }
|
nuclear@0
|
447
|
nuclear@0
|
448 clipper.AddPolygon(clip, ClipperLib::ptSubject);
|
nuclear@0
|
449 clipper.Execute(ClipperLib::ctDifference, out,ClipperLib::pftNonZero,ClipperLib::pftNonZero);
|
nuclear@0
|
450 }
|
nuclear@0
|
451
|
nuclear@0
|
452 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
453 void CleanupWindowContour(ProjectedWindowContour& window)
|
nuclear@0
|
454 {
|
nuclear@0
|
455 std::vector<IfcVector2> scratch;
|
nuclear@0
|
456 std::vector<IfcVector2>& contour = window.contour;
|
nuclear@0
|
457
|
nuclear@0
|
458 ClipperLib::Polygon subject;
|
nuclear@0
|
459 ClipperLib::Clipper clipper;
|
nuclear@0
|
460 ClipperLib::ExPolygons clipped;
|
nuclear@0
|
461
|
nuclear@0
|
462 BOOST_FOREACH(const IfcVector2& pip, contour) {
|
nuclear@0
|
463 subject.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
|
nuclear@0
|
464 }
|
nuclear@0
|
465
|
nuclear@0
|
466 clipper.AddPolygon(subject,ClipperLib::ptSubject);
|
nuclear@0
|
467 clipper.Execute(ClipperLib::ctUnion,clipped,ClipperLib::pftNonZero,ClipperLib::pftNonZero);
|
nuclear@0
|
468
|
nuclear@0
|
469 // This should yield only one polygon or something went wrong
|
nuclear@0
|
470 if (clipped.size() != 1) {
|
nuclear@0
|
471
|
nuclear@0
|
472 // Empty polygon? drop the contour altogether
|
nuclear@0
|
473 if(clipped.empty()) {
|
nuclear@0
|
474 IFCImporter::LogError("error during polygon clipping, window contour is degenerate");
|
nuclear@0
|
475 window.FlagInvalid();
|
nuclear@0
|
476 return;
|
nuclear@0
|
477 }
|
nuclear@0
|
478
|
nuclear@0
|
479 // Else: take the first only
|
nuclear@0
|
480 IFCImporter::LogError("error during polygon clipping, window contour is not convex");
|
nuclear@0
|
481 }
|
nuclear@0
|
482
|
nuclear@0
|
483 ExtractVerticesFromClipper(clipped[0].outer, scratch);
|
nuclear@0
|
484 // Assume the bounding box doesn't change during this operation
|
nuclear@0
|
485 }
|
nuclear@0
|
486
|
nuclear@0
|
487 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
488 void CleanupWindowContours(ContourVector& contours)
|
nuclear@0
|
489 {
|
nuclear@0
|
490 // Use PolyClipper to clean up window contours
|
nuclear@0
|
491 try {
|
nuclear@0
|
492 BOOST_FOREACH(ProjectedWindowContour& window, contours) {
|
nuclear@0
|
493 CleanupWindowContour(window);
|
nuclear@0
|
494 }
|
nuclear@0
|
495 }
|
nuclear@0
|
496 catch (const char* sx) {
|
nuclear@0
|
497 IFCImporter::LogError("error during polygon clipping, window shape may be wrong: (Clipper: "
|
nuclear@0
|
498 + std::string(sx) + ")");
|
nuclear@0
|
499 }
|
nuclear@0
|
500 }
|
nuclear@0
|
501
|
nuclear@0
|
502 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
503 void CleanupOuterContour(const std::vector<IfcVector2>& contour_flat, TempMesh& curmesh)
|
nuclear@0
|
504 {
|
nuclear@0
|
505 std::vector<IfcVector3> vold;
|
nuclear@0
|
506 std::vector<unsigned int> iold;
|
nuclear@0
|
507
|
nuclear@0
|
508 vold.reserve(curmesh.verts.size());
|
nuclear@0
|
509 iold.reserve(curmesh.vertcnt.size());
|
nuclear@0
|
510
|
nuclear@0
|
511 // Fix the outer contour using polyclipper
|
nuclear@0
|
512 try {
|
nuclear@0
|
513
|
nuclear@0
|
514 ClipperLib::Polygon subject;
|
nuclear@0
|
515 ClipperLib::Clipper clipper;
|
nuclear@0
|
516 ClipperLib::ExPolygons clipped;
|
nuclear@0
|
517
|
nuclear@0
|
518 ClipperLib::Polygon clip;
|
nuclear@0
|
519 clip.reserve(contour_flat.size());
|
nuclear@0
|
520 BOOST_FOREACH(const IfcVector2& pip, contour_flat) {
|
nuclear@0
|
521 clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
|
nuclear@0
|
522 }
|
nuclear@0
|
523
|
nuclear@0
|
524 if (!ClipperLib::Orientation(clip)) {
|
nuclear@0
|
525 std::reverse(clip.begin(), clip.end());
|
nuclear@0
|
526 }
|
nuclear@0
|
527
|
nuclear@0
|
528 // We need to run polyclipper on every single polygon -- we can't run it one all
|
nuclear@0
|
529 // of them at once or it would merge them all together which would undo all
|
nuclear@0
|
530 // previous steps
|
nuclear@0
|
531 subject.reserve(4);
|
nuclear@0
|
532 size_t index = 0;
|
nuclear@0
|
533 size_t countdown = 0;
|
nuclear@0
|
534 BOOST_FOREACH(const IfcVector3& pip, curmesh.verts) {
|
nuclear@0
|
535 if (!countdown) {
|
nuclear@0
|
536 countdown = curmesh.vertcnt[index++];
|
nuclear@0
|
537 if (!countdown) {
|
nuclear@0
|
538 continue;
|
nuclear@0
|
539 }
|
nuclear@0
|
540 }
|
nuclear@0
|
541 subject.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
|
nuclear@0
|
542 if (--countdown == 0) {
|
nuclear@0
|
543 if (!ClipperLib::Orientation(subject)) {
|
nuclear@0
|
544 std::reverse(subject.begin(), subject.end());
|
nuclear@0
|
545 }
|
nuclear@0
|
546
|
nuclear@0
|
547 clipper.AddPolygon(subject,ClipperLib::ptSubject);
|
nuclear@0
|
548 clipper.AddPolygon(clip,ClipperLib::ptClip);
|
nuclear@0
|
549
|
nuclear@0
|
550 clipper.Execute(ClipperLib::ctIntersection,clipped,ClipperLib::pftNonZero,ClipperLib::pftNonZero);
|
nuclear@0
|
551
|
nuclear@0
|
552 BOOST_FOREACH(const ClipperLib::ExPolygon& ex, clipped) {
|
nuclear@0
|
553 iold.push_back(ex.outer.size());
|
nuclear@0
|
554 BOOST_FOREACH(const ClipperLib::IntPoint& point, ex.outer) {
|
nuclear@0
|
555 vold.push_back(IfcVector3(
|
nuclear@0
|
556 from_int64(point.X),
|
nuclear@0
|
557 from_int64(point.Y),
|
nuclear@0
|
558 0.0f));
|
nuclear@0
|
559 }
|
nuclear@0
|
560 }
|
nuclear@0
|
561
|
nuclear@0
|
562 subject.clear();
|
nuclear@0
|
563 clipped.clear();
|
nuclear@0
|
564 clipper.Clear();
|
nuclear@0
|
565 }
|
nuclear@0
|
566 }
|
nuclear@0
|
567 }
|
nuclear@0
|
568 catch (const char* sx) {
|
nuclear@0
|
569 IFCImporter::LogError("Ifc: error during polygon clipping, wall contour line may be wrong: (Clipper: "
|
nuclear@0
|
570 + std::string(sx) + ")");
|
nuclear@0
|
571
|
nuclear@0
|
572 return;
|
nuclear@0
|
573 }
|
nuclear@0
|
574
|
nuclear@0
|
575 // swap data arrays
|
nuclear@0
|
576 std::swap(vold,curmesh.verts);
|
nuclear@0
|
577 std::swap(iold,curmesh.vertcnt);
|
nuclear@0
|
578 }
|
nuclear@0
|
579
|
nuclear@0
|
580 typedef std::vector<TempOpening*> OpeningRefs;
|
nuclear@0
|
581 typedef std::vector<OpeningRefs > OpeningRefVector;
|
nuclear@0
|
582
|
nuclear@0
|
583 typedef std::vector<std::pair<
|
nuclear@0
|
584 ContourVector::const_iterator,
|
nuclear@0
|
585 Contour::const_iterator>
|
nuclear@0
|
586 > ContourRefVector;
|
nuclear@0
|
587
|
nuclear@0
|
588 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
589 bool BoundingBoxesAdjacent(const BoundingBox& bb, const BoundingBox& ibb)
|
nuclear@0
|
590 {
|
nuclear@0
|
591 // TODO: I'm pretty sure there is a much more compact way to check this
|
nuclear@0
|
592 const IfcFloat epsilon = 1e-5f;
|
nuclear@0
|
593 return (fabs(bb.second.x - ibb.first.x) < epsilon && bb.first.y <= ibb.second.y && bb.second.y >= ibb.first.y) ||
|
nuclear@0
|
594 (fabs(bb.first.x - ibb.second.x) < epsilon && ibb.first.y <= bb.second.y && ibb.second.y >= bb.first.y) ||
|
nuclear@0
|
595 (fabs(bb.second.y - ibb.first.y) < epsilon && bb.first.x <= ibb.second.x && bb.second.x >= ibb.first.x) ||
|
nuclear@0
|
596 (fabs(bb.first.y - ibb.second.y) < epsilon && ibb.first.x <= bb.second.x && ibb.second.x >= bb.first.x);
|
nuclear@0
|
597 }
|
nuclear@0
|
598
|
nuclear@0
|
599 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
600 // Check if m0,m1 intersects n0,n1 assuming same ordering of the points in the line segments
|
nuclear@0
|
601 // output the intersection points on n0,n1
|
nuclear@0
|
602 bool IntersectingLineSegments(const IfcVector2& n0, const IfcVector2& n1,
|
nuclear@0
|
603 const IfcVector2& m0, const IfcVector2& m1,
|
nuclear@0
|
604 IfcVector2& out0, IfcVector2& out1)
|
nuclear@0
|
605 {
|
nuclear@0
|
606 const IfcVector2& n0_to_n1 = n1 - n0;
|
nuclear@0
|
607
|
nuclear@0
|
608 const IfcVector2& n0_to_m0 = m0 - n0;
|
nuclear@0
|
609 const IfcVector2& n1_to_m1 = m1 - n1;
|
nuclear@0
|
610
|
nuclear@0
|
611 const IfcVector2& n0_to_m1 = m1 - n0;
|
nuclear@0
|
612
|
nuclear@0
|
613 const IfcFloat e = 1e-5f;
|
nuclear@0
|
614 const IfcFloat smalle = 1e-9f;
|
nuclear@0
|
615
|
nuclear@0
|
616 static const IfcFloat inf = std::numeric_limits<IfcFloat>::infinity();
|
nuclear@0
|
617
|
nuclear@0
|
618 if (!(n0_to_m0.SquareLength() < e*e || fabs(n0_to_m0 * n0_to_n1) / (n0_to_m0.Length() * n0_to_n1.Length()) > 1-1e-5 )) {
|
nuclear@0
|
619 return false;
|
nuclear@0
|
620 }
|
nuclear@0
|
621
|
nuclear@0
|
622 if (!(n1_to_m1.SquareLength() < e*e || fabs(n1_to_m1 * n0_to_n1) / (n1_to_m1.Length() * n0_to_n1.Length()) > 1-1e-5 )) {
|
nuclear@0
|
623 return false;
|
nuclear@0
|
624 }
|
nuclear@0
|
625
|
nuclear@0
|
626 IfcFloat s0;
|
nuclear@0
|
627 IfcFloat s1;
|
nuclear@0
|
628
|
nuclear@0
|
629 // pick the axis with the higher absolute difference so the result
|
nuclear@0
|
630 // is more accurate. Since we cannot guarantee that the axis with
|
nuclear@0
|
631 // the higher absolute difference is big enough as to avoid
|
nuclear@0
|
632 // divisions by zero, the case 0/0 ~ infinity is detected and
|
nuclear@0
|
633 // handled separately.
|
nuclear@0
|
634 if(fabs(n0_to_n1.x) > fabs(n0_to_n1.y)) {
|
nuclear@0
|
635 s0 = n0_to_m0.x / n0_to_n1.x;
|
nuclear@0
|
636 s1 = n0_to_m1.x / n0_to_n1.x;
|
nuclear@0
|
637
|
nuclear@0
|
638 if (fabs(s0) == inf && fabs(n0_to_m0.x) < smalle) {
|
nuclear@0
|
639 s0 = 0.;
|
nuclear@0
|
640 }
|
nuclear@0
|
641 if (fabs(s1) == inf && fabs(n0_to_m1.x) < smalle) {
|
nuclear@0
|
642 s1 = 0.;
|
nuclear@0
|
643 }
|
nuclear@0
|
644 }
|
nuclear@0
|
645 else {
|
nuclear@0
|
646 s0 = n0_to_m0.y / n0_to_n1.y;
|
nuclear@0
|
647 s1 = n0_to_m1.y / n0_to_n1.y;
|
nuclear@0
|
648
|
nuclear@0
|
649 if (fabs(s0) == inf && fabs(n0_to_m0.y) < smalle) {
|
nuclear@0
|
650 s0 = 0.;
|
nuclear@0
|
651 }
|
nuclear@0
|
652 if (fabs(s1) == inf && fabs(n0_to_m1.y) < smalle) {
|
nuclear@0
|
653 s1 = 0.;
|
nuclear@0
|
654 }
|
nuclear@0
|
655 }
|
nuclear@0
|
656
|
nuclear@0
|
657 if (s1 < s0) {
|
nuclear@0
|
658 std::swap(s1,s0);
|
nuclear@0
|
659 }
|
nuclear@0
|
660
|
nuclear@0
|
661 s0 = std::max(0.0,s0);
|
nuclear@0
|
662 s1 = std::max(0.0,s1);
|
nuclear@0
|
663
|
nuclear@0
|
664 s0 = std::min(1.0,s0);
|
nuclear@0
|
665 s1 = std::min(1.0,s1);
|
nuclear@0
|
666
|
nuclear@0
|
667 if (fabs(s1-s0) < e) {
|
nuclear@0
|
668 return false;
|
nuclear@0
|
669 }
|
nuclear@0
|
670
|
nuclear@0
|
671 out0 = n0 + s0 * n0_to_n1;
|
nuclear@0
|
672 out1 = n0 + s1 * n0_to_n1;
|
nuclear@0
|
673
|
nuclear@0
|
674 return true;
|
nuclear@0
|
675 }
|
nuclear@0
|
676
|
nuclear@0
|
677 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
678 void FindAdjacentContours(ContourVector::iterator current, const ContourVector& contours)
|
nuclear@0
|
679 {
|
nuclear@0
|
680 const IfcFloat sqlen_epsilon = static_cast<IfcFloat>(1e-8);
|
nuclear@0
|
681 const BoundingBox& bb = (*current).bb;
|
nuclear@0
|
682
|
nuclear@0
|
683 // What is to be done here is to populate the skip lists for the contour
|
nuclear@0
|
684 // and to add necessary padding points when needed.
|
nuclear@0
|
685 SkipList& skiplist = (*current).skiplist;
|
nuclear@0
|
686
|
nuclear@0
|
687 // First step to find possible adjacent contours is to check for adjacent bounding
|
nuclear@0
|
688 // boxes. If the bounding boxes are not adjacent, the contours lines cannot possibly be.
|
nuclear@0
|
689 for (ContourVector::const_iterator it = contours.begin(), end = contours.end(); it != end; ++it) {
|
nuclear@0
|
690 if ((*it).IsInvalid()) {
|
nuclear@0
|
691 continue;
|
nuclear@0
|
692 }
|
nuclear@0
|
693
|
nuclear@0
|
694 // this left here to make clear we also run on the current contour
|
nuclear@0
|
695 // to check for overlapping contour segments (which can happen due
|
nuclear@0
|
696 // to projection artifacts).
|
nuclear@0
|
697 //if(it == current) {
|
nuclear@0
|
698 // continue;
|
nuclear@0
|
699 //}
|
nuclear@0
|
700
|
nuclear@0
|
701 const bool is_me = it == current;
|
nuclear@0
|
702
|
nuclear@0
|
703 const BoundingBox& ibb = (*it).bb;
|
nuclear@0
|
704
|
nuclear@0
|
705 // Assumption: the bounding boxes are pairwise disjoint or identical
|
nuclear@0
|
706 ai_assert(is_me || !BoundingBoxesOverlapping(bb, ibb));
|
nuclear@0
|
707
|
nuclear@0
|
708 if (is_me || BoundingBoxesAdjacent(bb, ibb)) {
|
nuclear@0
|
709
|
nuclear@0
|
710 // Now do a each-against-everyone check for intersecting contour
|
nuclear@0
|
711 // lines. This obviously scales terribly, but in typical real
|
nuclear@0
|
712 // world Ifc files it will not matter since most windows that
|
nuclear@0
|
713 // are adjacent to each others are rectangular anyway.
|
nuclear@0
|
714
|
nuclear@0
|
715 Contour& ncontour = (*current).contour;
|
nuclear@0
|
716 const Contour& mcontour = (*it).contour;
|
nuclear@0
|
717
|
nuclear@0
|
718 for (size_t n = 0; n < ncontour.size(); ++n) {
|
nuclear@0
|
719 const IfcVector2& n0 = ncontour[n];
|
nuclear@0
|
720 const IfcVector2& n1 = ncontour[(n+1) % ncontour.size()];
|
nuclear@0
|
721
|
nuclear@0
|
722 for (size_t m = 0, mend = (is_me ? n : mcontour.size()); m < mend; ++m) {
|
nuclear@0
|
723 ai_assert(&mcontour != &ncontour || m < n);
|
nuclear@0
|
724
|
nuclear@0
|
725 const IfcVector2& m0 = mcontour[m];
|
nuclear@0
|
726 const IfcVector2& m1 = mcontour[(m+1) % mcontour.size()];
|
nuclear@0
|
727
|
nuclear@0
|
728 IfcVector2 isect0, isect1;
|
nuclear@0
|
729 if (IntersectingLineSegments(n0,n1, m0, m1, isect0, isect1)) {
|
nuclear@0
|
730
|
nuclear@0
|
731 if ((isect0 - n0).SquareLength() > sqlen_epsilon) {
|
nuclear@0
|
732 ++n;
|
nuclear@0
|
733
|
nuclear@0
|
734 ncontour.insert(ncontour.begin() + n, isect0);
|
nuclear@0
|
735 skiplist.insert(skiplist.begin() + n, true);
|
nuclear@0
|
736 }
|
nuclear@0
|
737 else {
|
nuclear@0
|
738 skiplist[n] = true;
|
nuclear@0
|
739 }
|
nuclear@0
|
740
|
nuclear@0
|
741 if ((isect1 - n1).SquareLength() > sqlen_epsilon) {
|
nuclear@0
|
742 ++n;
|
nuclear@0
|
743
|
nuclear@0
|
744 ncontour.insert(ncontour.begin() + n, isect1);
|
nuclear@0
|
745 skiplist.insert(skiplist.begin() + n, false);
|
nuclear@0
|
746 }
|
nuclear@0
|
747 }
|
nuclear@0
|
748 }
|
nuclear@0
|
749 }
|
nuclear@0
|
750 }
|
nuclear@0
|
751 }
|
nuclear@0
|
752 }
|
nuclear@0
|
753
|
nuclear@0
|
754 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
755 AI_FORCE_INLINE bool LikelyBorder(const IfcVector2& vdelta)
|
nuclear@0
|
756 {
|
nuclear@0
|
757 const IfcFloat dot_point_epsilon = static_cast<IfcFloat>(1e-5);
|
nuclear@0
|
758 return fabs(vdelta.x * vdelta.y) < dot_point_epsilon;
|
nuclear@0
|
759 }
|
nuclear@0
|
760
|
nuclear@0
|
761 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
762 void FindBorderContours(ContourVector::iterator current)
|
nuclear@0
|
763 {
|
nuclear@0
|
764 const IfcFloat border_epsilon_upper = static_cast<IfcFloat>(1-1e-4);
|
nuclear@0
|
765 const IfcFloat border_epsilon_lower = static_cast<IfcFloat>(1e-4);
|
nuclear@0
|
766
|
nuclear@0
|
767 bool outer_border = false;
|
nuclear@0
|
768 bool start_on_outer_border = false;
|
nuclear@0
|
769
|
nuclear@0
|
770 SkipList& skiplist = (*current).skiplist;
|
nuclear@0
|
771 IfcVector2 last_proj_point;
|
nuclear@0
|
772
|
nuclear@0
|
773 const Contour::const_iterator cbegin = (*current).contour.begin(), cend = (*current).contour.end();
|
nuclear@0
|
774
|
nuclear@0
|
775 for (Contour::const_iterator cit = cbegin; cit != cend; ++cit) {
|
nuclear@0
|
776 const IfcVector2& proj_point = *cit;
|
nuclear@0
|
777
|
nuclear@0
|
778 // Check if this connection is along the outer boundary of the projection
|
nuclear@0
|
779 // plane. In such a case we better drop it because such 'edges' should
|
nuclear@0
|
780 // not have any geometry to close them (think of door openings).
|
nuclear@0
|
781 if (proj_point.x <= border_epsilon_lower || proj_point.x >= border_epsilon_upper ||
|
nuclear@0
|
782 proj_point.y <= border_epsilon_lower || proj_point.y >= border_epsilon_upper) {
|
nuclear@0
|
783
|
nuclear@0
|
784 if (outer_border) {
|
nuclear@0
|
785 ai_assert(cit != cbegin);
|
nuclear@0
|
786 if (LikelyBorder(proj_point - last_proj_point)) {
|
nuclear@0
|
787 skiplist[std::distance(cbegin, cit) - 1] = true;
|
nuclear@0
|
788 }
|
nuclear@0
|
789 }
|
nuclear@0
|
790 else if (cit == cbegin) {
|
nuclear@0
|
791 start_on_outer_border = true;
|
nuclear@0
|
792 }
|
nuclear@0
|
793
|
nuclear@0
|
794 outer_border = true;
|
nuclear@0
|
795 }
|
nuclear@0
|
796 else {
|
nuclear@0
|
797 outer_border = false;
|
nuclear@0
|
798 }
|
nuclear@0
|
799
|
nuclear@0
|
800 last_proj_point = proj_point;
|
nuclear@0
|
801 }
|
nuclear@0
|
802
|
nuclear@0
|
803 // handle last segment
|
nuclear@0
|
804 if (outer_border && start_on_outer_border) {
|
nuclear@0
|
805 const IfcVector2& proj_point = *cbegin;
|
nuclear@0
|
806 if (LikelyBorder(proj_point - last_proj_point)) {
|
nuclear@0
|
807 skiplist[skiplist.size()-1] = true;
|
nuclear@0
|
808 }
|
nuclear@0
|
809 }
|
nuclear@0
|
810 }
|
nuclear@0
|
811
|
nuclear@0
|
812 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
813 AI_FORCE_INLINE bool LikelyDiagonal(IfcVector2 vdelta)
|
nuclear@0
|
814 {
|
nuclear@0
|
815 vdelta.x = fabs(vdelta.x);
|
nuclear@0
|
816 vdelta.y = fabs(vdelta.y);
|
nuclear@0
|
817 return (fabs(vdelta.x-vdelta.y) < 0.8 * std::max(vdelta.x, vdelta.y));
|
nuclear@0
|
818 }
|
nuclear@0
|
819
|
nuclear@0
|
820 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
821 void FindLikelyCrossingLines(ContourVector::iterator current)
|
nuclear@0
|
822 {
|
nuclear@0
|
823 SkipList& skiplist = (*current).skiplist;
|
nuclear@0
|
824 IfcVector2 last_proj_point;
|
nuclear@0
|
825
|
nuclear@0
|
826 const Contour::const_iterator cbegin = (*current).contour.begin(), cend = (*current).contour.end();
|
nuclear@0
|
827 for (Contour::const_iterator cit = cbegin; cit != cend; ++cit) {
|
nuclear@0
|
828 const IfcVector2& proj_point = *cit;
|
nuclear@0
|
829
|
nuclear@0
|
830 if (cit != cbegin) {
|
nuclear@0
|
831 IfcVector2 vdelta = proj_point - last_proj_point;
|
nuclear@0
|
832 if (LikelyDiagonal(vdelta)) {
|
nuclear@0
|
833 skiplist[std::distance(cbegin, cit) - 1] = true;
|
nuclear@0
|
834 }
|
nuclear@0
|
835 }
|
nuclear@0
|
836
|
nuclear@0
|
837 last_proj_point = proj_point;
|
nuclear@0
|
838 }
|
nuclear@0
|
839
|
nuclear@0
|
840 // handle last segment
|
nuclear@0
|
841 if (LikelyDiagonal(*cbegin - last_proj_point)) {
|
nuclear@0
|
842 skiplist[skiplist.size()-1] = true;
|
nuclear@0
|
843 }
|
nuclear@0
|
844 }
|
nuclear@0
|
845
|
nuclear@0
|
846 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
847 size_t CloseWindows(ContourVector& contours,
|
nuclear@0
|
848 const IfcMatrix4& minv,
|
nuclear@0
|
849 OpeningRefVector& contours_to_openings,
|
nuclear@0
|
850 TempMesh& curmesh)
|
nuclear@0
|
851 {
|
nuclear@0
|
852 size_t closed = 0;
|
nuclear@0
|
853 // For all contour points, check if one of the assigned openings does
|
nuclear@0
|
854 // already have points assigned to it. In this case, assume this is
|
nuclear@0
|
855 // the other side of the wall and generate connections between
|
nuclear@0
|
856 // the two holes in order to close the window.
|
nuclear@0
|
857
|
nuclear@0
|
858 // All this gets complicated by the fact that contours may pertain to
|
nuclear@0
|
859 // multiple openings(due to merging of adjacent or overlapping openings).
|
nuclear@0
|
860 // The code is based on the assumption that this happens symmetrically
|
nuclear@0
|
861 // on both sides of the wall. If it doesn't (which would be a bug anyway)
|
nuclear@0
|
862 // wrong geometry may be generated.
|
nuclear@0
|
863 for (ContourVector::iterator it = contours.begin(), end = contours.end(); it != end; ++it) {
|
nuclear@0
|
864 if ((*it).IsInvalid()) {
|
nuclear@0
|
865 continue;
|
nuclear@0
|
866 }
|
nuclear@0
|
867 OpeningRefs& refs = contours_to_openings[std::distance(contours.begin(), it)];
|
nuclear@0
|
868
|
nuclear@0
|
869 bool has_other_side = false;
|
nuclear@0
|
870 BOOST_FOREACH(const TempOpening* opening, refs) {
|
nuclear@0
|
871 if(!opening->wallPoints.empty()) {
|
nuclear@0
|
872 has_other_side = true;
|
nuclear@0
|
873 break;
|
nuclear@0
|
874 }
|
nuclear@0
|
875 }
|
nuclear@0
|
876
|
nuclear@0
|
877 if (has_other_side) {
|
nuclear@0
|
878
|
nuclear@0
|
879 ContourRefVector adjacent_contours;
|
nuclear@0
|
880
|
nuclear@0
|
881 // prepare a skiplist for this contour. The skiplist is used to
|
nuclear@0
|
882 // eliminate unwanted contour lines for adjacent windows and
|
nuclear@0
|
883 // those bordering the outer frame.
|
nuclear@0
|
884 (*it).PrepareSkiplist();
|
nuclear@0
|
885
|
nuclear@0
|
886 FindAdjacentContours(it, contours);
|
nuclear@0
|
887 FindBorderContours(it);
|
nuclear@0
|
888
|
nuclear@0
|
889 // if the window is the result of a finite union or intersection of rectangles,
|
nuclear@0
|
890 // there shouldn't be any crossing or diagonal lines in it. Such lines would
|
nuclear@0
|
891 // be artifacts caused by numerical inaccuracies or other bugs in polyclipper
|
nuclear@0
|
892 // and our own code. Since rectangular openings are by far the most frequent
|
nuclear@0
|
893 // case, it is worth filtering for this corner case.
|
nuclear@0
|
894 if((*it).is_rectangular) {
|
nuclear@0
|
895 FindLikelyCrossingLines(it);
|
nuclear@0
|
896 }
|
nuclear@0
|
897
|
nuclear@0
|
898 ai_assert((*it).skiplist.size() == (*it).contour.size());
|
nuclear@0
|
899
|
nuclear@0
|
900 SkipList::const_iterator skipbegin = (*it).skiplist.begin();
|
nuclear@0
|
901
|
nuclear@0
|
902 curmesh.verts.reserve(curmesh.verts.size() + (*it).contour.size() * 4);
|
nuclear@0
|
903 curmesh.vertcnt.reserve(curmesh.vertcnt.size() + (*it).contour.size());
|
nuclear@0
|
904
|
nuclear@0
|
905 // XXX this algorithm is really a bit inefficient - both in terms
|
nuclear@0
|
906 // of constant factor and of asymptotic runtime.
|
nuclear@0
|
907 std::vector<bool>::const_iterator skipit = skipbegin;
|
nuclear@0
|
908
|
nuclear@0
|
909 IfcVector3 start0;
|
nuclear@0
|
910 IfcVector3 start1;
|
nuclear@0
|
911
|
nuclear@0
|
912 IfcVector2 last_proj;
|
nuclear@0
|
913 //const IfcVector2& first_proj;
|
nuclear@0
|
914
|
nuclear@0
|
915 const Contour::const_iterator cbegin = (*it).contour.begin(), cend = (*it).contour.end();
|
nuclear@0
|
916
|
nuclear@0
|
917 bool drop_this_edge = false;
|
nuclear@0
|
918 for (Contour::const_iterator cit = cbegin; cit != cend; ++cit, drop_this_edge = *skipit++) {
|
nuclear@0
|
919 const IfcVector2& proj_point = *cit;
|
nuclear@0
|
920
|
nuclear@0
|
921 // Locate the closest opposite point. This should be a good heuristic to
|
nuclear@0
|
922 // connect only the points that are really intended to be connected.
|
nuclear@0
|
923 IfcFloat best = static_cast<IfcFloat>(1e10);
|
nuclear@0
|
924 IfcVector3 bestv;
|
nuclear@0
|
925
|
nuclear@0
|
926 /* debug code to check for unwanted diagonal lines in window contours
|
nuclear@0
|
927 if (cit != cbegin) {
|
nuclear@0
|
928 const IfcVector2& vdelta = proj_point - last_proj;
|
nuclear@0
|
929 if (fabs(vdelta.x-vdelta.y) < 0.5 * std::max(vdelta.x, vdelta.y)) {
|
nuclear@0
|
930 //continue;
|
nuclear@0
|
931 }
|
nuclear@0
|
932 } */
|
nuclear@0
|
933
|
nuclear@0
|
934 const IfcVector3& world_point = minv * IfcVector3(proj_point.x,proj_point.y,0.0f);
|
nuclear@0
|
935
|
nuclear@0
|
936 last_proj = proj_point;
|
nuclear@0
|
937
|
nuclear@0
|
938 BOOST_FOREACH(const TempOpening* opening, refs) {
|
nuclear@0
|
939 BOOST_FOREACH(const IfcVector3& other, opening->wallPoints) {
|
nuclear@0
|
940 const IfcFloat sqdist = (world_point - other).SquareLength();
|
nuclear@0
|
941
|
nuclear@0
|
942 if (sqdist < best) {
|
nuclear@0
|
943 // avoid self-connections
|
nuclear@0
|
944 if(sqdist < 1e-5) {
|
nuclear@0
|
945 continue;
|
nuclear@0
|
946 }
|
nuclear@0
|
947
|
nuclear@0
|
948 bestv = other;
|
nuclear@0
|
949 best = sqdist;
|
nuclear@0
|
950 }
|
nuclear@0
|
951 }
|
nuclear@0
|
952 }
|
nuclear@0
|
953
|
nuclear@0
|
954 if (drop_this_edge) {
|
nuclear@0
|
955 curmesh.verts.pop_back();
|
nuclear@0
|
956 curmesh.verts.pop_back();
|
nuclear@0
|
957 }
|
nuclear@0
|
958 else {
|
nuclear@0
|
959 curmesh.verts.push_back(cit == cbegin ? world_point : bestv);
|
nuclear@0
|
960 curmesh.verts.push_back(cit == cbegin ? bestv : world_point);
|
nuclear@0
|
961
|
nuclear@0
|
962 curmesh.vertcnt.push_back(4);
|
nuclear@0
|
963 ++closed;
|
nuclear@0
|
964 }
|
nuclear@0
|
965
|
nuclear@0
|
966 if (cit == cbegin) {
|
nuclear@0
|
967 start0 = world_point;
|
nuclear@0
|
968 start1 = bestv;
|
nuclear@0
|
969 continue;
|
nuclear@0
|
970 }
|
nuclear@0
|
971
|
nuclear@0
|
972 curmesh.verts.push_back(world_point);
|
nuclear@0
|
973 curmesh.verts.push_back(bestv);
|
nuclear@0
|
974
|
nuclear@0
|
975 if (cit == cend - 1) {
|
nuclear@0
|
976 drop_this_edge = *skipit;
|
nuclear@0
|
977
|
nuclear@0
|
978 // Check if the final connection (last to first element) is itself
|
nuclear@0
|
979 // a border edge that needs to be dropped.
|
nuclear@0
|
980 if (drop_this_edge) {
|
nuclear@0
|
981 --closed;
|
nuclear@0
|
982 curmesh.vertcnt.pop_back();
|
nuclear@0
|
983 curmesh.verts.pop_back();
|
nuclear@0
|
984 curmesh.verts.pop_back();
|
nuclear@0
|
985 }
|
nuclear@0
|
986 else {
|
nuclear@0
|
987 curmesh.verts.push_back(start1);
|
nuclear@0
|
988 curmesh.verts.push_back(start0);
|
nuclear@0
|
989 }
|
nuclear@0
|
990 }
|
nuclear@0
|
991 }
|
nuclear@0
|
992 /*
|
nuclear@0
|
993 BOOST_FOREACH(TempOpening* opening, refs) {
|
nuclear@0
|
994 //opening->wallPoints.clear();
|
nuclear@0
|
995 }*/
|
nuclear@0
|
996
|
nuclear@0
|
997 }
|
nuclear@0
|
998 else {
|
nuclear@0
|
999
|
nuclear@0
|
1000 const Contour::const_iterator cbegin = (*it).contour.begin(), cend = (*it).contour.end();
|
nuclear@0
|
1001 BOOST_FOREACH(TempOpening* opening, refs) {
|
nuclear@0
|
1002 ai_assert(opening->wallPoints.empty());
|
nuclear@0
|
1003 opening->wallPoints.reserve(opening->wallPoints.capacity() + (*it).contour.size());
|
nuclear@0
|
1004 for (Contour::const_iterator cit = cbegin; cit != cend; ++cit) {
|
nuclear@0
|
1005
|
nuclear@0
|
1006 const IfcVector2& proj_point = *cit;
|
nuclear@0
|
1007 opening->wallPoints.push_back(minv * IfcVector3(proj_point.x,proj_point.y,0.0f));
|
nuclear@0
|
1008 }
|
nuclear@0
|
1009 }
|
nuclear@0
|
1010 }
|
nuclear@0
|
1011 }
|
nuclear@0
|
1012 return closed;
|
nuclear@0
|
1013 }
|
nuclear@0
|
1014
|
nuclear@0
|
1015 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
1016 void Quadrify(const std::vector< BoundingBox >& bbs, TempMesh& curmesh)
|
nuclear@0
|
1017 {
|
nuclear@0
|
1018 ai_assert(curmesh.IsEmpty());
|
nuclear@0
|
1019
|
nuclear@0
|
1020 std::vector<IfcVector2> quads;
|
nuclear@0
|
1021 quads.reserve(bbs.size()*4);
|
nuclear@0
|
1022
|
nuclear@0
|
1023 // sort openings by x and y axis as a preliminiary to the QuadrifyPart() algorithm
|
nuclear@0
|
1024 XYSortedField field;
|
nuclear@0
|
1025 for (std::vector<BoundingBox>::const_iterator it = bbs.begin(); it != bbs.end(); ++it) {
|
nuclear@0
|
1026 if (field.find((*it).first) != field.end()) {
|
nuclear@0
|
1027 IFCImporter::LogWarn("constraint failure during generation of wall openings, results may be faulty");
|
nuclear@0
|
1028 }
|
nuclear@0
|
1029 field[(*it).first] = std::distance(bbs.begin(),it);
|
nuclear@0
|
1030 }
|
nuclear@0
|
1031
|
nuclear@0
|
1032 QuadrifyPart(IfcVector2(),one_vec,field,bbs,quads);
|
nuclear@0
|
1033 ai_assert(!(quads.size() % 4));
|
nuclear@0
|
1034
|
nuclear@0
|
1035 curmesh.vertcnt.resize(quads.size()/4,4);
|
nuclear@0
|
1036 curmesh.verts.reserve(quads.size());
|
nuclear@0
|
1037 BOOST_FOREACH(const IfcVector2& v2, quads) {
|
nuclear@0
|
1038 curmesh.verts.push_back(IfcVector3(v2.x, v2.y, static_cast<IfcFloat>(0.0)));
|
nuclear@0
|
1039 }
|
nuclear@0
|
1040 }
|
nuclear@0
|
1041
|
nuclear@0
|
1042 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
1043 void Quadrify(const ContourVector& contours, TempMesh& curmesh)
|
nuclear@0
|
1044 {
|
nuclear@0
|
1045 std::vector<BoundingBox> bbs;
|
nuclear@0
|
1046 bbs.reserve(contours.size());
|
nuclear@0
|
1047
|
nuclear@0
|
1048 BOOST_FOREACH(const ContourVector::value_type& val, contours) {
|
nuclear@0
|
1049 bbs.push_back(val.bb);
|
nuclear@0
|
1050 }
|
nuclear@0
|
1051
|
nuclear@0
|
1052 Quadrify(bbs, curmesh);
|
nuclear@0
|
1053 }
|
nuclear@0
|
1054
|
nuclear@0
|
1055 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
1056 IfcMatrix4 ProjectOntoPlane(std::vector<IfcVector2>& out_contour, const TempMesh& in_mesh,
|
nuclear@0
|
1057 bool &ok, IfcVector3& nor_out)
|
nuclear@0
|
1058 {
|
nuclear@0
|
1059 const std::vector<IfcVector3>& in_verts = in_mesh.verts;
|
nuclear@0
|
1060 ok = true;
|
nuclear@0
|
1061
|
nuclear@0
|
1062 IfcMatrix4 m = IfcMatrix4(DerivePlaneCoordinateSpace(in_mesh, ok, nor_out));
|
nuclear@0
|
1063 if(!ok) {
|
nuclear@0
|
1064 return IfcMatrix4();
|
nuclear@0
|
1065 }
|
nuclear@0
|
1066 #ifdef _DEBUG
|
nuclear@0
|
1067 const IfcFloat det = m.Determinant();
|
nuclear@0
|
1068 ai_assert(fabs(det-1) < 1e-5);
|
nuclear@0
|
1069 #endif
|
nuclear@0
|
1070
|
nuclear@0
|
1071 IfcFloat zcoord = 0;
|
nuclear@0
|
1072 out_contour.reserve(in_verts.size());
|
nuclear@0
|
1073
|
nuclear@0
|
1074
|
nuclear@0
|
1075 IfcVector3 vmin, vmax;
|
nuclear@0
|
1076 MinMaxChooser<IfcVector3>()(vmin, vmax);
|
nuclear@0
|
1077
|
nuclear@0
|
1078 // Project all points into the new coordinate system, collect min/max verts on the way
|
nuclear@0
|
1079 BOOST_FOREACH(const IfcVector3& x, in_verts) {
|
nuclear@0
|
1080 const IfcVector3& vv = m * x;
|
nuclear@0
|
1081 // keep Z offset in the plane coordinate system. Ignoring precision issues
|
nuclear@0
|
1082 // (which are present, of course), this should be the same value for
|
nuclear@0
|
1083 // all polygon vertices (assuming the polygon is planar).
|
nuclear@0
|
1084
|
nuclear@0
|
1085 // XXX this should be guarded, but we somehow need to pick a suitable
|
nuclear@0
|
1086 // epsilon
|
nuclear@0
|
1087 // if(coord != -1.0f) {
|
nuclear@0
|
1088 // assert(fabs(coord - vv.z) < 1e-3f);
|
nuclear@0
|
1089 // }
|
nuclear@0
|
1090 zcoord += vv.z;
|
nuclear@0
|
1091 vmin = std::min(vv, vmin);
|
nuclear@0
|
1092 vmax = std::max(vv, vmax);
|
nuclear@0
|
1093
|
nuclear@0
|
1094 out_contour.push_back(IfcVector2(vv.x,vv.y));
|
nuclear@0
|
1095 }
|
nuclear@0
|
1096
|
nuclear@0
|
1097 zcoord /= in_verts.size();
|
nuclear@0
|
1098
|
nuclear@0
|
1099 // Further improve the projection by mapping the entire working set into
|
nuclear@0
|
1100 // [0,1] range. This gives us a consistent data range so all epsilons
|
nuclear@0
|
1101 // used below can be constants.
|
nuclear@0
|
1102 vmax -= vmin;
|
nuclear@0
|
1103 BOOST_FOREACH(IfcVector2& vv, out_contour) {
|
nuclear@0
|
1104 vv.x = (vv.x - vmin.x) / vmax.x;
|
nuclear@0
|
1105 vv.y = (vv.y - vmin.y) / vmax.y;
|
nuclear@0
|
1106
|
nuclear@0
|
1107 // sanity rounding
|
nuclear@0
|
1108 vv = std::max(vv,IfcVector2());
|
nuclear@0
|
1109 vv = std::min(vv,one_vec);
|
nuclear@0
|
1110 }
|
nuclear@0
|
1111
|
nuclear@0
|
1112 IfcMatrix4 mult;
|
nuclear@0
|
1113 mult.a1 = static_cast<IfcFloat>(1.0) / vmax.x;
|
nuclear@0
|
1114 mult.b2 = static_cast<IfcFloat>(1.0) / vmax.y;
|
nuclear@0
|
1115
|
nuclear@0
|
1116 mult.a4 = -vmin.x * mult.a1;
|
nuclear@0
|
1117 mult.b4 = -vmin.y * mult.b2;
|
nuclear@0
|
1118 mult.c4 = -zcoord;
|
nuclear@0
|
1119 m = mult * m;
|
nuclear@0
|
1120
|
nuclear@0
|
1121 // debug code to verify correctness
|
nuclear@0
|
1122 #ifdef _DEBUG
|
nuclear@0
|
1123 std::vector<IfcVector2> out_contour2;
|
nuclear@0
|
1124 BOOST_FOREACH(const IfcVector3& x, in_verts) {
|
nuclear@0
|
1125 const IfcVector3& vv = m * x;
|
nuclear@0
|
1126
|
nuclear@0
|
1127 out_contour2.push_back(IfcVector2(vv.x,vv.y));
|
nuclear@0
|
1128 ai_assert(fabs(vv.z) < vmax.z + 1e-8);
|
nuclear@0
|
1129 }
|
nuclear@0
|
1130
|
nuclear@0
|
1131 for(size_t i = 0; i < out_contour.size(); ++i) {
|
nuclear@0
|
1132 ai_assert((out_contour[i]-out_contour2[i]).SquareLength() < 1e-6);
|
nuclear@0
|
1133 }
|
nuclear@0
|
1134 #endif
|
nuclear@0
|
1135
|
nuclear@0
|
1136 return m;
|
nuclear@0
|
1137 }
|
nuclear@0
|
1138
|
nuclear@0
|
1139 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
1140 bool GenerateOpenings(std::vector<TempOpening>& openings,
|
nuclear@0
|
1141 const std::vector<IfcVector3>& nors,
|
nuclear@0
|
1142 TempMesh& curmesh,
|
nuclear@0
|
1143 bool check_intersection,
|
nuclear@0
|
1144 bool generate_connection_geometry,
|
nuclear@0
|
1145 const IfcVector3& wall_extrusion_axis)
|
nuclear@0
|
1146 {
|
nuclear@0
|
1147 OpeningRefVector contours_to_openings;
|
nuclear@0
|
1148
|
nuclear@0
|
1149 // Try to derive a solid base plane within the current surface for use as
|
nuclear@0
|
1150 // working coordinate system. Map all vertices onto this plane and
|
nuclear@0
|
1151 // rescale them to [0,1] range. This normalization means all further
|
nuclear@0
|
1152 // epsilons need not be scaled.
|
nuclear@0
|
1153 bool ok = true;
|
nuclear@0
|
1154
|
nuclear@0
|
1155 std::vector<IfcVector2> contour_flat;
|
nuclear@0
|
1156
|
nuclear@0
|
1157 IfcVector3 nor;
|
nuclear@0
|
1158 const IfcMatrix4& m = ProjectOntoPlane(contour_flat, curmesh, ok, nor);
|
nuclear@0
|
1159 if(!ok) {
|
nuclear@0
|
1160 return false;
|
nuclear@0
|
1161 }
|
nuclear@0
|
1162
|
nuclear@0
|
1163 // Obtain inverse transform for getting back to world space later on
|
nuclear@0
|
1164 const IfcMatrix4 minv = IfcMatrix4(m).Inverse();
|
nuclear@0
|
1165
|
nuclear@0
|
1166 // Compute bounding boxes for all 2D openings in projection space
|
nuclear@0
|
1167 ContourVector contours;
|
nuclear@0
|
1168
|
nuclear@0
|
1169 std::vector<IfcVector2> temp_contour;
|
nuclear@0
|
1170 std::vector<IfcVector2> temp_contour2;
|
nuclear@0
|
1171
|
nuclear@0
|
1172 IfcVector3 wall_extrusion_axis_norm = wall_extrusion_axis;
|
nuclear@0
|
1173 wall_extrusion_axis_norm.Normalize();
|
nuclear@0
|
1174
|
nuclear@0
|
1175 BOOST_FOREACH(TempOpening& opening,openings) {
|
nuclear@0
|
1176
|
nuclear@0
|
1177 // extrusionDir may be 0,0,0 on case where the opening mesh is not an
|
nuclear@0
|
1178 // IfcExtrudedAreaSolid but something else (i.e. a brep)
|
nuclear@0
|
1179 IfcVector3 norm_extrusion_dir = opening.extrusionDir;
|
nuclear@0
|
1180 if (norm_extrusion_dir.SquareLength() > 1e-10) {
|
nuclear@0
|
1181 norm_extrusion_dir.Normalize();
|
nuclear@0
|
1182 }
|
nuclear@0
|
1183 else {
|
nuclear@0
|
1184 norm_extrusion_dir = IfcVector3();
|
nuclear@0
|
1185 }
|
nuclear@0
|
1186
|
nuclear@0
|
1187 TempMesh* profile_data = opening.profileMesh.get();
|
nuclear@0
|
1188 bool is_2d_source = false;
|
nuclear@0
|
1189 if (opening.profileMesh2D && norm_extrusion_dir.SquareLength() > 0) {
|
nuclear@0
|
1190
|
nuclear@0
|
1191 if(fabs(norm_extrusion_dir * wall_extrusion_axis_norm) < 0.1) {
|
nuclear@0
|
1192 // horizontal extrusion
|
nuclear@0
|
1193 if (fabs(norm_extrusion_dir * nor) > 0.9) {
|
nuclear@0
|
1194 profile_data = opening.profileMesh2D.get();
|
nuclear@0
|
1195 is_2d_source = true;
|
nuclear@0
|
1196 }
|
nuclear@0
|
1197 else {
|
nuclear@0
|
1198 //continue;
|
nuclear@0
|
1199 }
|
nuclear@0
|
1200 }
|
nuclear@0
|
1201 else {
|
nuclear@0
|
1202 // vertical extrusion
|
nuclear@0
|
1203 if (fabs(norm_extrusion_dir * nor) > 0.9) {
|
nuclear@0
|
1204 continue;
|
nuclear@0
|
1205 }
|
nuclear@0
|
1206 continue;
|
nuclear@0
|
1207 }
|
nuclear@0
|
1208 }
|
nuclear@0
|
1209 std::vector<IfcVector3> profile_verts = profile_data->verts;
|
nuclear@0
|
1210 std::vector<unsigned int> profile_vertcnts = profile_data->vertcnt;
|
nuclear@0
|
1211 if(profile_verts.size() <= 2) {
|
nuclear@0
|
1212 continue;
|
nuclear@0
|
1213 }
|
nuclear@0
|
1214
|
nuclear@0
|
1215 // The opening meshes are real 3D meshes so skip over all faces
|
nuclear@0
|
1216 // clearly facing into the wrong direction. Also, we need to check
|
nuclear@0
|
1217 // whether the meshes do actually intersect the base surface plane.
|
nuclear@0
|
1218 // This is done by recording minimum and maximum values for the
|
nuclear@0
|
1219 // d component of the plane equation for all polys and checking
|
nuclear@0
|
1220 // against surface d.
|
nuclear@0
|
1221
|
nuclear@0
|
1222 // Use the sign of the dot product of the face normal to the plane
|
nuclear@0
|
1223 // normal to determine to which side of the difference mesh a
|
nuclear@0
|
1224 // triangle belongs. Get independent bounding boxes and vertex
|
nuclear@0
|
1225 // sets for both sides and take the better one (we can't just
|
nuclear@0
|
1226 // take both - this would likely cause major screwup of vertex
|
nuclear@0
|
1227 // winding, producing errors as late as in CloseWindows()).
|
nuclear@0
|
1228 IfcFloat dmin, dmax;
|
nuclear@0
|
1229 MinMaxChooser<IfcFloat>()(dmin,dmax);
|
nuclear@0
|
1230
|
nuclear@0
|
1231 temp_contour.clear();
|
nuclear@0
|
1232 temp_contour2.clear();
|
nuclear@0
|
1233
|
nuclear@0
|
1234 IfcVector2 vpmin,vpmax;
|
nuclear@0
|
1235 MinMaxChooser<IfcVector2>()(vpmin,vpmax);
|
nuclear@0
|
1236
|
nuclear@0
|
1237 IfcVector2 vpmin2,vpmax2;
|
nuclear@0
|
1238 MinMaxChooser<IfcVector2>()(vpmin2,vpmax2);
|
nuclear@0
|
1239
|
nuclear@0
|
1240 for (size_t f = 0, vi_total = 0, fend = profile_vertcnts.size(); f < fend; ++f) {
|
nuclear@0
|
1241
|
nuclear@0
|
1242 bool side_flag = true;
|
nuclear@0
|
1243 if (!is_2d_source) {
|
nuclear@0
|
1244 const IfcVector3& face_nor = ((profile_verts[vi_total+2] - profile_verts[vi_total]) ^
|
nuclear@0
|
1245 (profile_verts[vi_total+1] - profile_verts[vi_total])).Normalize();
|
nuclear@0
|
1246
|
nuclear@0
|
1247 const IfcFloat abs_dot_face_nor = abs(nor * face_nor);
|
nuclear@0
|
1248 if (abs_dot_face_nor < 0.9) {
|
nuclear@0
|
1249 vi_total += profile_vertcnts[f];
|
nuclear@0
|
1250 continue;
|
nuclear@0
|
1251 }
|
nuclear@0
|
1252
|
nuclear@0
|
1253 side_flag = nor * face_nor > 0;
|
nuclear@0
|
1254 }
|
nuclear@0
|
1255
|
nuclear@0
|
1256 for (unsigned int vi = 0, vend = profile_vertcnts[f]; vi < vend; ++vi, ++vi_total) {
|
nuclear@0
|
1257 const IfcVector3& x = profile_verts[vi_total];
|
nuclear@0
|
1258
|
nuclear@0
|
1259 const IfcVector3& v = m * x;
|
nuclear@0
|
1260 IfcVector2 vv(v.x, v.y);
|
nuclear@0
|
1261
|
nuclear@0
|
1262 //if(check_intersection) {
|
nuclear@0
|
1263 dmin = std::min(dmin, v.z);
|
nuclear@0
|
1264 dmax = std::max(dmax, v.z);
|
nuclear@0
|
1265 //}
|
nuclear@0
|
1266
|
nuclear@0
|
1267 // sanity rounding
|
nuclear@0
|
1268 vv = std::max(vv,IfcVector2());
|
nuclear@0
|
1269 vv = std::min(vv,one_vec);
|
nuclear@0
|
1270
|
nuclear@0
|
1271 if(side_flag) {
|
nuclear@0
|
1272 vpmin = std::min(vpmin,vv);
|
nuclear@0
|
1273 vpmax = std::max(vpmax,vv);
|
nuclear@0
|
1274 }
|
nuclear@0
|
1275 else {
|
nuclear@0
|
1276 vpmin2 = std::min(vpmin2,vv);
|
nuclear@0
|
1277 vpmax2 = std::max(vpmax2,vv);
|
nuclear@0
|
1278 }
|
nuclear@0
|
1279
|
nuclear@0
|
1280 std::vector<IfcVector2>& store = side_flag ? temp_contour : temp_contour2;
|
nuclear@0
|
1281
|
nuclear@0
|
1282 if (!IsDuplicateVertex(vv, store)) {
|
nuclear@0
|
1283 store.push_back(vv);
|
nuclear@0
|
1284 }
|
nuclear@0
|
1285 }
|
nuclear@0
|
1286 }
|
nuclear@0
|
1287
|
nuclear@0
|
1288 if (temp_contour2.size() > 2) {
|
nuclear@0
|
1289 ai_assert(!is_2d_source);
|
nuclear@0
|
1290 const IfcVector2 area = vpmax-vpmin;
|
nuclear@0
|
1291 const IfcVector2 area2 = vpmax2-vpmin2;
|
nuclear@0
|
1292 if (temp_contour.size() <= 2 || fabs(area2.x * area2.y) > fabs(area.x * area.y)) {
|
nuclear@0
|
1293 temp_contour.swap(temp_contour2);
|
nuclear@0
|
1294
|
nuclear@0
|
1295 vpmax = vpmax2;
|
nuclear@0
|
1296 vpmin = vpmin2;
|
nuclear@0
|
1297 }
|
nuclear@0
|
1298 }
|
nuclear@0
|
1299 if(temp_contour.size() <= 2) {
|
nuclear@0
|
1300 continue;
|
nuclear@0
|
1301 }
|
nuclear@0
|
1302
|
nuclear@0
|
1303 // TODO: This epsilon may be too large
|
nuclear@0
|
1304 const IfcFloat epsilon = fabs(dmax-dmin) * 0.0001;
|
nuclear@0
|
1305 if (!is_2d_source && check_intersection && (0 < dmin-epsilon || 0 > dmax+epsilon)) {
|
nuclear@0
|
1306 continue;
|
nuclear@0
|
1307 }
|
nuclear@0
|
1308
|
nuclear@0
|
1309 BoundingBox bb = BoundingBox(vpmin,vpmax);
|
nuclear@0
|
1310
|
nuclear@0
|
1311 // Skip over very small openings - these are likely projection errors
|
nuclear@0
|
1312 // (i.e. they don't belong to this side of the wall)
|
nuclear@0
|
1313 if(fabs(vpmax.x - vpmin.x) * fabs(vpmax.y - vpmin.y) < static_cast<IfcFloat>(1e-10)) {
|
nuclear@0
|
1314 continue;
|
nuclear@0
|
1315 }
|
nuclear@0
|
1316 std::vector<TempOpening*> joined_openings(1, &opening);
|
nuclear@0
|
1317
|
nuclear@0
|
1318 bool is_rectangle = temp_contour.size() == 4;
|
nuclear@0
|
1319
|
nuclear@0
|
1320 // See if this BB intersects or is in close adjacency to any other BB we have so far.
|
nuclear@0
|
1321 for (ContourVector::iterator it = contours.begin(); it != contours.end(); ) {
|
nuclear@0
|
1322 const BoundingBox& ibb = (*it).bb;
|
nuclear@0
|
1323
|
nuclear@0
|
1324 if (BoundingBoxesOverlapping(ibb, bb)) {
|
nuclear@0
|
1325
|
nuclear@0
|
1326 if (!(*it).is_rectangular) {
|
nuclear@0
|
1327 is_rectangle = false;
|
nuclear@0
|
1328 }
|
nuclear@0
|
1329
|
nuclear@0
|
1330 const std::vector<IfcVector2>& other = (*it).contour;
|
nuclear@0
|
1331 ClipperLib::ExPolygons poly;
|
nuclear@0
|
1332
|
nuclear@0
|
1333 // First check whether subtracting the old contour (to which ibb belongs)
|
nuclear@0
|
1334 // from the new contour (to which bb belongs) yields an updated bb which
|
nuclear@0
|
1335 // no longer overlaps ibb
|
nuclear@0
|
1336 MakeDisjunctWindowContours(other, temp_contour, poly);
|
nuclear@0
|
1337 if(poly.size() == 1) {
|
nuclear@0
|
1338
|
nuclear@0
|
1339 const BoundingBox& newbb = GetBoundingBox(poly[0].outer);
|
nuclear@0
|
1340 if (!BoundingBoxesOverlapping(ibb, newbb )) {
|
nuclear@0
|
1341 // Good guy bounding box
|
nuclear@0
|
1342 bb = newbb ;
|
nuclear@0
|
1343
|
nuclear@0
|
1344 ExtractVerticesFromClipper(poly[0].outer, temp_contour, false);
|
nuclear@0
|
1345 continue;
|
nuclear@0
|
1346 }
|
nuclear@0
|
1347 }
|
nuclear@0
|
1348
|
nuclear@0
|
1349 // Take these two overlapping contours and try to merge them. If they
|
nuclear@0
|
1350 // overlap (which should not happen, but in fact happens-in-the-real-
|
nuclear@0
|
1351 // world [tm] ), resume using a single contour and a single bounding box.
|
nuclear@0
|
1352 MergeWindowContours(temp_contour, other, poly);
|
nuclear@0
|
1353
|
nuclear@0
|
1354 if (poly.size() > 1) {
|
nuclear@0
|
1355 return TryAddOpenings_Poly2Tri(openings, nors, curmesh);
|
nuclear@0
|
1356 }
|
nuclear@0
|
1357 else if (poly.size() == 0) {
|
nuclear@0
|
1358 IFCImporter::LogWarn("ignoring duplicate opening");
|
nuclear@0
|
1359 temp_contour.clear();
|
nuclear@0
|
1360 break;
|
nuclear@0
|
1361 }
|
nuclear@0
|
1362 else {
|
nuclear@0
|
1363 IFCImporter::LogDebug("merging overlapping openings");
|
nuclear@0
|
1364 ExtractVerticesFromClipper(poly[0].outer, temp_contour, false);
|
nuclear@0
|
1365
|
nuclear@0
|
1366 // Generate the union of the bounding boxes
|
nuclear@0
|
1367 bb.first = std::min(bb.first, ibb.first);
|
nuclear@0
|
1368 bb.second = std::max(bb.second, ibb.second);
|
nuclear@0
|
1369
|
nuclear@0
|
1370 // Update contour-to-opening tables accordingly
|
nuclear@0
|
1371 if (generate_connection_geometry) {
|
nuclear@0
|
1372 std::vector<TempOpening*>& t = contours_to_openings[std::distance(contours.begin(),it)];
|
nuclear@0
|
1373 joined_openings.insert(joined_openings.end(), t.begin(), t.end());
|
nuclear@0
|
1374
|
nuclear@0
|
1375 contours_to_openings.erase(contours_to_openings.begin() + std::distance(contours.begin(),it));
|
nuclear@0
|
1376 }
|
nuclear@0
|
1377
|
nuclear@0
|
1378 contours.erase(it);
|
nuclear@0
|
1379
|
nuclear@0
|
1380 // Restart from scratch because the newly formed BB might now
|
nuclear@0
|
1381 // overlap any other BB which its constituent BBs didn't
|
nuclear@0
|
1382 // previously overlap.
|
nuclear@0
|
1383 it = contours.begin();
|
nuclear@0
|
1384 continue;
|
nuclear@0
|
1385 }
|
nuclear@0
|
1386 }
|
nuclear@0
|
1387 ++it;
|
nuclear@0
|
1388 }
|
nuclear@0
|
1389
|
nuclear@0
|
1390 if(!temp_contour.empty()) {
|
nuclear@0
|
1391 if (generate_connection_geometry) {
|
nuclear@0
|
1392 contours_to_openings.push_back(std::vector<TempOpening*>(
|
nuclear@0
|
1393 joined_openings.begin(),
|
nuclear@0
|
1394 joined_openings.end()));
|
nuclear@0
|
1395 }
|
nuclear@0
|
1396
|
nuclear@0
|
1397 contours.push_back(ProjectedWindowContour(temp_contour, bb, is_rectangle));
|
nuclear@0
|
1398 }
|
nuclear@0
|
1399 }
|
nuclear@0
|
1400
|
nuclear@0
|
1401 // Check if we still have any openings left - it may well be that this is
|
nuclear@0
|
1402 // not the cause, for example if all the opening candidates don't intersect
|
nuclear@0
|
1403 // this surface or point into a direction perpendicular to it.
|
nuclear@0
|
1404 if (contours.empty()) {
|
nuclear@0
|
1405 return false;
|
nuclear@0
|
1406 }
|
nuclear@0
|
1407
|
nuclear@0
|
1408 curmesh.Clear();
|
nuclear@0
|
1409
|
nuclear@0
|
1410 // Generate a base subdivision into quads to accommodate the given list
|
nuclear@0
|
1411 // of window bounding boxes.
|
nuclear@0
|
1412 Quadrify(contours,curmesh);
|
nuclear@0
|
1413
|
nuclear@0
|
1414 // Run a sanity cleanup pass on the window contours to avoid generating
|
nuclear@0
|
1415 // artifacts during the contour generation phase later on.
|
nuclear@0
|
1416 CleanupWindowContours(contours);
|
nuclear@0
|
1417
|
nuclear@0
|
1418 // Previously we reduced all windows to rectangular AABBs in projection
|
nuclear@0
|
1419 // space, now it is time to fill the gaps between the BBs and the real
|
nuclear@0
|
1420 // window openings.
|
nuclear@0
|
1421 InsertWindowContours(contours,openings, curmesh);
|
nuclear@0
|
1422
|
nuclear@0
|
1423 // Clip the entire outer contour of our current result against the real
|
nuclear@0
|
1424 // outer contour of the surface. This is necessary because the result
|
nuclear@0
|
1425 // of the Quadrify() algorithm is always a square area spanning
|
nuclear@0
|
1426 // over [0,1]^2 (i.e. entire projection space).
|
nuclear@0
|
1427 CleanupOuterContour(contour_flat, curmesh);
|
nuclear@0
|
1428
|
nuclear@0
|
1429 // Undo the projection and get back to world (or local object) space
|
nuclear@0
|
1430 BOOST_FOREACH(IfcVector3& v3, curmesh.verts) {
|
nuclear@0
|
1431 v3 = minv * v3;
|
nuclear@0
|
1432 }
|
nuclear@0
|
1433
|
nuclear@0
|
1434 // Generate window caps to connect the symmetric openings on both sides
|
nuclear@0
|
1435 // of the wall.
|
nuclear@0
|
1436 if (generate_connection_geometry) {
|
nuclear@0
|
1437 CloseWindows(contours, minv, contours_to_openings, curmesh);
|
nuclear@0
|
1438 }
|
nuclear@0
|
1439 return true;
|
nuclear@0
|
1440 }
|
nuclear@0
|
1441
|
nuclear@0
|
1442 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
1443 bool TryAddOpenings_Poly2Tri(const std::vector<TempOpening>& openings,const std::vector<IfcVector3>& nors,
|
nuclear@0
|
1444 TempMesh& curmesh)
|
nuclear@0
|
1445 {
|
nuclear@0
|
1446 IFCImporter::LogWarn("forced to use poly2tri fallback method to generate wall openings");
|
nuclear@0
|
1447 std::vector<IfcVector3>& out = curmesh.verts;
|
nuclear@0
|
1448
|
nuclear@0
|
1449 bool result = false;
|
nuclear@0
|
1450
|
nuclear@0
|
1451 // Try to derive a solid base plane within the current surface for use as
|
nuclear@0
|
1452 // working coordinate system.
|
nuclear@0
|
1453 bool ok;
|
nuclear@0
|
1454 IfcVector3 nor;
|
nuclear@0
|
1455 const IfcMatrix3& m = DerivePlaneCoordinateSpace(curmesh, ok, nor);
|
nuclear@0
|
1456 if (!ok) {
|
nuclear@0
|
1457 return false;
|
nuclear@0
|
1458 }
|
nuclear@0
|
1459
|
nuclear@0
|
1460 const IfcMatrix3 minv = IfcMatrix3(m).Inverse();
|
nuclear@0
|
1461
|
nuclear@0
|
1462
|
nuclear@0
|
1463 IfcFloat coord = -1;
|
nuclear@0
|
1464
|
nuclear@0
|
1465 std::vector<IfcVector2> contour_flat;
|
nuclear@0
|
1466 contour_flat.reserve(out.size());
|
nuclear@0
|
1467
|
nuclear@0
|
1468 IfcVector2 vmin, vmax;
|
nuclear@0
|
1469 MinMaxChooser<IfcVector2>()(vmin, vmax);
|
nuclear@0
|
1470
|
nuclear@0
|
1471 // Move all points into the new coordinate system, collecting min/max verts on the way
|
nuclear@0
|
1472 BOOST_FOREACH(IfcVector3& x, out) {
|
nuclear@0
|
1473 const IfcVector3 vv = m * x;
|
nuclear@0
|
1474
|
nuclear@0
|
1475 // keep Z offset in the plane coordinate system. Ignoring precision issues
|
nuclear@0
|
1476 // (which are present, of course), this should be the same value for
|
nuclear@0
|
1477 // all polygon vertices (assuming the polygon is planar).
|
nuclear@0
|
1478
|
nuclear@0
|
1479
|
nuclear@0
|
1480 // XXX this should be guarded, but we somehow need to pick a suitable
|
nuclear@0
|
1481 // epsilon
|
nuclear@0
|
1482 // if(coord != -1.0f) {
|
nuclear@0
|
1483 // assert(fabs(coord - vv.z) < 1e-3f);
|
nuclear@0
|
1484 // }
|
nuclear@0
|
1485
|
nuclear@0
|
1486 coord = vv.z;
|
nuclear@0
|
1487
|
nuclear@0
|
1488 vmin = std::min(IfcVector2(vv.x, vv.y), vmin);
|
nuclear@0
|
1489 vmax = std::max(IfcVector2(vv.x, vv.y), vmax);
|
nuclear@0
|
1490
|
nuclear@0
|
1491 contour_flat.push_back(IfcVector2(vv.x,vv.y));
|
nuclear@0
|
1492 }
|
nuclear@0
|
1493
|
nuclear@0
|
1494 // With the current code in DerivePlaneCoordinateSpace,
|
nuclear@0
|
1495 // vmin,vmax should always be the 0...1 rectangle (+- numeric inaccuracies)
|
nuclear@0
|
1496 // but here we won't rely on this.
|
nuclear@0
|
1497
|
nuclear@0
|
1498 vmax -= vmin;
|
nuclear@0
|
1499
|
nuclear@0
|
1500 // If this happens then the projection must have been wrong.
|
nuclear@0
|
1501 assert(vmax.Length());
|
nuclear@0
|
1502
|
nuclear@0
|
1503 ClipperLib::ExPolygons clipped;
|
nuclear@0
|
1504 ClipperLib::Polygons holes_union;
|
nuclear@0
|
1505
|
nuclear@0
|
1506
|
nuclear@0
|
1507 IfcVector3 wall_extrusion;
|
nuclear@0
|
1508 bool do_connections = false, first = true;
|
nuclear@0
|
1509
|
nuclear@0
|
1510 try {
|
nuclear@0
|
1511
|
nuclear@0
|
1512 ClipperLib::Clipper clipper_holes;
|
nuclear@0
|
1513 size_t c = 0;
|
nuclear@0
|
1514
|
nuclear@0
|
1515 BOOST_FOREACH(const TempOpening& t,openings) {
|
nuclear@0
|
1516 const IfcVector3& outernor = nors[c++];
|
nuclear@0
|
1517 const IfcFloat dot = nor * outernor;
|
nuclear@0
|
1518 if (fabs(dot)<1.f-1e-6f) {
|
nuclear@0
|
1519 continue;
|
nuclear@0
|
1520 }
|
nuclear@0
|
1521
|
nuclear@0
|
1522 const std::vector<IfcVector3>& va = t.profileMesh->verts;
|
nuclear@0
|
1523 if(va.size() <= 2) {
|
nuclear@0
|
1524 continue;
|
nuclear@0
|
1525 }
|
nuclear@0
|
1526
|
nuclear@0
|
1527 std::vector<IfcVector2> contour;
|
nuclear@0
|
1528
|
nuclear@0
|
1529 BOOST_FOREACH(const IfcVector3& xx, t.profileMesh->verts) {
|
nuclear@0
|
1530 IfcVector3 vv = m * xx, vv_extr = m * (xx + t.extrusionDir);
|
nuclear@0
|
1531
|
nuclear@0
|
1532 const bool is_extruded_side = fabs(vv.z - coord) > fabs(vv_extr.z - coord);
|
nuclear@0
|
1533 if (first) {
|
nuclear@0
|
1534 first = false;
|
nuclear@0
|
1535 if (dot > 0.f) {
|
nuclear@0
|
1536 do_connections = true;
|
nuclear@0
|
1537 wall_extrusion = t.extrusionDir;
|
nuclear@0
|
1538 if (is_extruded_side) {
|
nuclear@0
|
1539 wall_extrusion = - wall_extrusion;
|
nuclear@0
|
1540 }
|
nuclear@0
|
1541 }
|
nuclear@0
|
1542 }
|
nuclear@0
|
1543
|
nuclear@0
|
1544 // XXX should not be necessary - but it is. Why? For precision reasons?
|
nuclear@0
|
1545 vv = is_extruded_side ? vv_extr : vv;
|
nuclear@0
|
1546 contour.push_back(IfcVector2(vv.x,vv.y));
|
nuclear@0
|
1547 }
|
nuclear@0
|
1548
|
nuclear@0
|
1549 ClipperLib::Polygon hole;
|
nuclear@0
|
1550 BOOST_FOREACH(IfcVector2& pip, contour) {
|
nuclear@0
|
1551 pip.x = (pip.x - vmin.x) / vmax.x;
|
nuclear@0
|
1552 pip.y = (pip.y - vmin.y) / vmax.y;
|
nuclear@0
|
1553
|
nuclear@0
|
1554 hole.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
|
nuclear@0
|
1555 }
|
nuclear@0
|
1556
|
nuclear@0
|
1557 if (!ClipperLib::Orientation(hole)) {
|
nuclear@0
|
1558 std::reverse(hole.begin(), hole.end());
|
nuclear@0
|
1559 // assert(ClipperLib::Orientation(hole));
|
nuclear@0
|
1560 }
|
nuclear@0
|
1561
|
nuclear@0
|
1562 /*ClipperLib::Polygons pol_temp(1), pol_temp2(1);
|
nuclear@0
|
1563 pol_temp[0] = hole;
|
nuclear@0
|
1564
|
nuclear@0
|
1565 ClipperLib::OffsetPolygons(pol_temp,pol_temp2,5.0);
|
nuclear@0
|
1566 hole = pol_temp2[0];*/
|
nuclear@0
|
1567
|
nuclear@0
|
1568 clipper_holes.AddPolygon(hole,ClipperLib::ptSubject);
|
nuclear@0
|
1569 }
|
nuclear@0
|
1570
|
nuclear@0
|
1571 clipper_holes.Execute(ClipperLib::ctUnion,holes_union,
|
nuclear@0
|
1572 ClipperLib::pftNonZero,
|
nuclear@0
|
1573 ClipperLib::pftNonZero);
|
nuclear@0
|
1574
|
nuclear@0
|
1575 if (holes_union.empty()) {
|
nuclear@0
|
1576 return false;
|
nuclear@0
|
1577 }
|
nuclear@0
|
1578
|
nuclear@0
|
1579 // Now that we have the big union of all holes, subtract it from the outer contour
|
nuclear@0
|
1580 // to obtain the final polygon to feed into the triangulator.
|
nuclear@0
|
1581 {
|
nuclear@0
|
1582 ClipperLib::Polygon poly;
|
nuclear@0
|
1583 BOOST_FOREACH(IfcVector2& pip, contour_flat) {
|
nuclear@0
|
1584 pip.x = (pip.x - vmin.x) / vmax.x;
|
nuclear@0
|
1585 pip.y = (pip.y - vmin.y) / vmax.y;
|
nuclear@0
|
1586
|
nuclear@0
|
1587 poly.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
|
nuclear@0
|
1588 }
|
nuclear@0
|
1589
|
nuclear@0
|
1590 if (ClipperLib::Orientation(poly)) {
|
nuclear@0
|
1591 std::reverse(poly.begin(), poly.end());
|
nuclear@0
|
1592 }
|
nuclear@0
|
1593 clipper_holes.Clear();
|
nuclear@0
|
1594 clipper_holes.AddPolygon(poly,ClipperLib::ptSubject);
|
nuclear@0
|
1595
|
nuclear@0
|
1596 clipper_holes.AddPolygons(holes_union,ClipperLib::ptClip);
|
nuclear@0
|
1597 clipper_holes.Execute(ClipperLib::ctDifference,clipped,
|
nuclear@0
|
1598 ClipperLib::pftNonZero,
|
nuclear@0
|
1599 ClipperLib::pftNonZero);
|
nuclear@0
|
1600 }
|
nuclear@0
|
1601
|
nuclear@0
|
1602 }
|
nuclear@0
|
1603 catch (const char* sx) {
|
nuclear@0
|
1604 IFCImporter::LogError("Ifc: error during polygon clipping, skipping openings for this face: (Clipper: "
|
nuclear@0
|
1605 + std::string(sx) + ")");
|
nuclear@0
|
1606
|
nuclear@0
|
1607 return false;
|
nuclear@0
|
1608 }
|
nuclear@0
|
1609
|
nuclear@0
|
1610 std::vector<IfcVector3> old_verts;
|
nuclear@0
|
1611 std::vector<unsigned int> old_vertcnt;
|
nuclear@0
|
1612
|
nuclear@0
|
1613 old_verts.swap(curmesh.verts);
|
nuclear@0
|
1614 old_vertcnt.swap(curmesh.vertcnt);
|
nuclear@0
|
1615
|
nuclear@0
|
1616
|
nuclear@0
|
1617 // add connection geometry to close the adjacent 'holes' for the openings
|
nuclear@0
|
1618 // this should only be done from one side of the wall or the polygons
|
nuclear@0
|
1619 // would be emitted twice.
|
nuclear@0
|
1620 if (false && do_connections) {
|
nuclear@0
|
1621
|
nuclear@0
|
1622 std::vector<IfcVector3> tmpvec;
|
nuclear@0
|
1623 BOOST_FOREACH(ClipperLib::Polygon& opening, holes_union) {
|
nuclear@0
|
1624
|
nuclear@0
|
1625 assert(ClipperLib::Orientation(opening));
|
nuclear@0
|
1626
|
nuclear@0
|
1627 tmpvec.clear();
|
nuclear@0
|
1628
|
nuclear@0
|
1629 BOOST_FOREACH(ClipperLib::IntPoint& point, opening) {
|
nuclear@0
|
1630
|
nuclear@0
|
1631 tmpvec.push_back( minv * IfcVector3(
|
nuclear@0
|
1632 vmin.x + from_int64(point.X) * vmax.x,
|
nuclear@0
|
1633 vmin.y + from_int64(point.Y) * vmax.y,
|
nuclear@0
|
1634 coord));
|
nuclear@0
|
1635 }
|
nuclear@0
|
1636
|
nuclear@0
|
1637 for(size_t i = 0, size = tmpvec.size(); i < size; ++i) {
|
nuclear@0
|
1638 const size_t next = (i+1)%size;
|
nuclear@0
|
1639
|
nuclear@0
|
1640 curmesh.vertcnt.push_back(4);
|
nuclear@0
|
1641
|
nuclear@0
|
1642 const IfcVector3& in_world = tmpvec[i];
|
nuclear@0
|
1643 const IfcVector3& next_world = tmpvec[next];
|
nuclear@0
|
1644
|
nuclear@0
|
1645 // Assumptions: no 'partial' openings, wall thickness roughly the same across the wall
|
nuclear@0
|
1646 curmesh.verts.push_back(in_world);
|
nuclear@0
|
1647 curmesh.verts.push_back(in_world+wall_extrusion);
|
nuclear@0
|
1648 curmesh.verts.push_back(next_world+wall_extrusion);
|
nuclear@0
|
1649 curmesh.verts.push_back(next_world);
|
nuclear@0
|
1650 }
|
nuclear@0
|
1651 }
|
nuclear@0
|
1652 }
|
nuclear@0
|
1653
|
nuclear@0
|
1654 std::vector< std::vector<p2t::Point*> > contours;
|
nuclear@0
|
1655 BOOST_FOREACH(ClipperLib::ExPolygon& clip, clipped) {
|
nuclear@0
|
1656
|
nuclear@0
|
1657 contours.clear();
|
nuclear@0
|
1658
|
nuclear@0
|
1659 // Build the outer polygon contour line for feeding into poly2tri
|
nuclear@0
|
1660 std::vector<p2t::Point*> contour_points;
|
nuclear@0
|
1661 BOOST_FOREACH(ClipperLib::IntPoint& point, clip.outer) {
|
nuclear@0
|
1662 contour_points.push_back( new p2t::Point(from_int64(point.X), from_int64(point.Y)) );
|
nuclear@0
|
1663 }
|
nuclear@0
|
1664
|
nuclear@0
|
1665 p2t::CDT* cdt ;
|
nuclear@0
|
1666 try {
|
nuclear@0
|
1667 // Note: this relies on custom modifications in poly2tri to raise runtime_error's
|
nuclear@0
|
1668 // instead if assertions. These failures are not debug only, they can actually
|
nuclear@0
|
1669 // happen in production use if the input data is broken. An assertion would be
|
nuclear@0
|
1670 // inappropriate.
|
nuclear@0
|
1671 cdt = new p2t::CDT(contour_points);
|
nuclear@0
|
1672 }
|
nuclear@0
|
1673 catch(const std::exception& e) {
|
nuclear@0
|
1674 IFCImporter::LogError("Ifc: error during polygon triangulation, skipping some openings: (poly2tri: "
|
nuclear@0
|
1675 + std::string(e.what()) + ")");
|
nuclear@0
|
1676 continue;
|
nuclear@0
|
1677 }
|
nuclear@0
|
1678
|
nuclear@0
|
1679
|
nuclear@0
|
1680 // Build the poly2tri inner contours for all holes we got from ClipperLib
|
nuclear@0
|
1681 BOOST_FOREACH(ClipperLib::Polygon& opening, clip.holes) {
|
nuclear@0
|
1682
|
nuclear@0
|
1683 contours.push_back(std::vector<p2t::Point*>());
|
nuclear@0
|
1684 std::vector<p2t::Point*>& contour = contours.back();
|
nuclear@0
|
1685
|
nuclear@0
|
1686 BOOST_FOREACH(ClipperLib::IntPoint& point, opening) {
|
nuclear@0
|
1687 contour.push_back( new p2t::Point(from_int64(point.X), from_int64(point.Y)) );
|
nuclear@0
|
1688 }
|
nuclear@0
|
1689
|
nuclear@0
|
1690 cdt->AddHole(contour);
|
nuclear@0
|
1691 }
|
nuclear@0
|
1692
|
nuclear@0
|
1693 try {
|
nuclear@0
|
1694 // Note: See above
|
nuclear@0
|
1695 cdt->Triangulate();
|
nuclear@0
|
1696 }
|
nuclear@0
|
1697 catch(const std::exception& e) {
|
nuclear@0
|
1698 IFCImporter::LogError("Ifc: error during polygon triangulation, skipping some openings: (poly2tri: "
|
nuclear@0
|
1699 + std::string(e.what()) + ")");
|
nuclear@0
|
1700 continue;
|
nuclear@0
|
1701 }
|
nuclear@0
|
1702
|
nuclear@0
|
1703 const std::vector<p2t::Triangle*>& tris = cdt->GetTriangles();
|
nuclear@0
|
1704
|
nuclear@0
|
1705 // Collect the triangles we just produced
|
nuclear@0
|
1706 BOOST_FOREACH(p2t::Triangle* tri, tris) {
|
nuclear@0
|
1707 for(int i = 0; i < 3; ++i) {
|
nuclear@0
|
1708
|
nuclear@0
|
1709 const IfcVector2& v = IfcVector2(
|
nuclear@0
|
1710 static_cast<IfcFloat>( tri->GetPoint(i)->x ),
|
nuclear@0
|
1711 static_cast<IfcFloat>( tri->GetPoint(i)->y )
|
nuclear@0
|
1712 );
|
nuclear@0
|
1713
|
nuclear@0
|
1714 assert(v.x <= 1.0 && v.x >= 0.0 && v.y <= 1.0 && v.y >= 0.0);
|
nuclear@0
|
1715 const IfcVector3 v3 = minv * IfcVector3(vmin.x + v.x * vmax.x, vmin.y + v.y * vmax.y,coord) ;
|
nuclear@0
|
1716
|
nuclear@0
|
1717 curmesh.verts.push_back(v3);
|
nuclear@0
|
1718 }
|
nuclear@0
|
1719 curmesh.vertcnt.push_back(3);
|
nuclear@0
|
1720 }
|
nuclear@0
|
1721
|
nuclear@0
|
1722 result = true;
|
nuclear@0
|
1723 }
|
nuclear@0
|
1724
|
nuclear@0
|
1725 if (!result) {
|
nuclear@0
|
1726 // revert -- it's a shame, but better than nothing
|
nuclear@0
|
1727 curmesh.verts.insert(curmesh.verts.end(),old_verts.begin(), old_verts.end());
|
nuclear@0
|
1728 curmesh.vertcnt.insert(curmesh.vertcnt.end(),old_vertcnt.begin(), old_vertcnt.end());
|
nuclear@0
|
1729
|
nuclear@0
|
1730 IFCImporter::LogError("Ifc: revert, could not generate openings for this wall");
|
nuclear@0
|
1731 }
|
nuclear@0
|
1732
|
nuclear@0
|
1733 return result;
|
nuclear@0
|
1734 }
|
nuclear@0
|
1735
|
nuclear@0
|
1736
|
nuclear@0
|
1737 } // ! IFC
|
nuclear@0
|
1738 } // ! Assimp
|
nuclear@0
|
1739
|
nuclear@0
|
1740 #undef to_int64
|
nuclear@0
|
1741 #undef from_int64
|
nuclear@0
|
1742 #undef one_vec
|
nuclear@0
|
1743
|
nuclear@0
|
1744 #endif |