rev |
line source |
nuclear@0
|
1 /*
|
nuclear@0
|
2 Open Asset Import Library (assimp)
|
nuclear@0
|
3 ----------------------------------------------------------------------
|
nuclear@0
|
4
|
nuclear@0
|
5 Copyright (c) 2006-2010, assimp team
|
nuclear@0
|
6 All rights reserved.
|
nuclear@0
|
7
|
nuclear@0
|
8 Redistribution and use of this software in source and binary forms,
|
nuclear@0
|
9 with or without modification, are permitted provided that the
|
nuclear@0
|
10 following conditions are met:
|
nuclear@0
|
11
|
nuclear@0
|
12 * Redistributions of source code must retain the above
|
nuclear@0
|
13 copyright notice, this list of conditions and the
|
nuclear@0
|
14 following disclaimer.
|
nuclear@0
|
15
|
nuclear@0
|
16 * Redistributions in binary form must reproduce the above
|
nuclear@0
|
17 copyright notice, this list of conditions and the
|
nuclear@0
|
18 following disclaimer in the documentation and/or other
|
nuclear@0
|
19 materials provided with the distribution.
|
nuclear@0
|
20
|
nuclear@0
|
21 * Neither the name of the assimp team, nor the names of its
|
nuclear@0
|
22 contributors may be used to endorse or promote products
|
nuclear@0
|
23 derived from this software without specific prior
|
nuclear@0
|
24 written permission of the assimp team.
|
nuclear@0
|
25
|
nuclear@0
|
26 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
nuclear@0
|
27 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
nuclear@0
|
28 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
nuclear@0
|
29 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
nuclear@0
|
30 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
nuclear@0
|
31 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
nuclear@0
|
32 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
nuclear@0
|
33 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
nuclear@0
|
34 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
nuclear@0
|
35 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
nuclear@0
|
36 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
nuclear@0
|
37
|
nuclear@0
|
38 ----------------------------------------------------------------------
|
nuclear@0
|
39 */
|
nuclear@0
|
40
|
nuclear@0
|
41 /** @file IFCGeometry.cpp
|
nuclear@0
|
42 * @brief Geometry conversion and synthesis for IFC
|
nuclear@0
|
43 */
|
nuclear@0
|
44
|
nuclear@0
|
45 #include "AssimpPCH.h"
|
nuclear@0
|
46
|
nuclear@0
|
47 #ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
|
nuclear@0
|
48 #include "IFCUtil.h"
|
nuclear@0
|
49 #include "PolyTools.h"
|
nuclear@0
|
50 #include "ProcessHelper.h"
|
nuclear@0
|
51
|
nuclear@0
|
52 #include "../contrib/poly2tri/poly2tri/poly2tri.h"
|
nuclear@0
|
53 #include "../contrib/clipper/clipper.hpp"
|
nuclear@0
|
54
|
nuclear@0
|
55 #include <iterator>
|
nuclear@0
|
56
|
nuclear@0
|
57 namespace Assimp {
|
nuclear@0
|
58 namespace IFC {
|
nuclear@0
|
59
|
nuclear@0
|
60 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
61 bool ProcessPolyloop(const IfcPolyLoop& loop, TempMesh& meshout, ConversionData& /*conv*/)
|
nuclear@0
|
62 {
|
nuclear@0
|
63 size_t cnt = 0;
|
nuclear@0
|
64 BOOST_FOREACH(const IfcCartesianPoint& c, loop.Polygon) {
|
nuclear@0
|
65 IfcVector3 tmp;
|
nuclear@0
|
66 ConvertCartesianPoint(tmp,c);
|
nuclear@0
|
67
|
nuclear@0
|
68 meshout.verts.push_back(tmp);
|
nuclear@0
|
69 ++cnt;
|
nuclear@0
|
70 }
|
nuclear@0
|
71
|
nuclear@0
|
72 meshout.vertcnt.push_back(cnt);
|
nuclear@0
|
73
|
nuclear@0
|
74 // zero- or one- vertex polyloops simply ignored
|
nuclear@0
|
75 if (meshout.vertcnt.back() > 1) {
|
nuclear@0
|
76 return true;
|
nuclear@0
|
77 }
|
nuclear@0
|
78
|
nuclear@0
|
79 if (meshout.vertcnt.back()==1) {
|
nuclear@0
|
80 meshout.vertcnt.pop_back();
|
nuclear@0
|
81 meshout.verts.pop_back();
|
nuclear@0
|
82 }
|
nuclear@0
|
83 return false;
|
nuclear@0
|
84 }
|
nuclear@0
|
85
|
nuclear@0
|
86 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
87 void ProcessPolygonBoundaries(TempMesh& result, const TempMesh& inmesh, size_t master_bounds = (size_t)-1)
|
nuclear@0
|
88 {
|
nuclear@0
|
89 // handle all trivial cases
|
nuclear@0
|
90 if(inmesh.vertcnt.empty()) {
|
nuclear@0
|
91 return;
|
nuclear@0
|
92 }
|
nuclear@0
|
93 if(inmesh.vertcnt.size() == 1) {
|
nuclear@0
|
94 result.Append(inmesh);
|
nuclear@0
|
95 return;
|
nuclear@0
|
96 }
|
nuclear@0
|
97
|
nuclear@0
|
98 ai_assert(std::count(inmesh.vertcnt.begin(), inmesh.vertcnt.end(), 0) == 0);
|
nuclear@0
|
99
|
nuclear@0
|
100 typedef std::vector<unsigned int>::const_iterator face_iter;
|
nuclear@0
|
101
|
nuclear@0
|
102 face_iter begin = inmesh.vertcnt.begin(), end = inmesh.vertcnt.end(), iit;
|
nuclear@0
|
103 std::vector<unsigned int>::const_iterator outer_polygon_it = end;
|
nuclear@0
|
104
|
nuclear@0
|
105 // major task here: given a list of nested polygon boundaries (one of which
|
nuclear@0
|
106 // is the outer contour), reduce the triangulation task arising here to
|
nuclear@0
|
107 // one that can be solved using the "quadrulation" algorithm which we use
|
nuclear@0
|
108 // for pouring windows out of walls. The algorithm does not handle all
|
nuclear@0
|
109 // cases but at least it is numerically stable and gives "nice" triangles.
|
nuclear@0
|
110
|
nuclear@0
|
111 // first compute normals for all polygons using Newell's algorithm
|
nuclear@0
|
112 // do not normalize 'normals', we need the original length for computing the polygon area
|
nuclear@0
|
113 std::vector<IfcVector3> normals;
|
nuclear@0
|
114 inmesh.ComputePolygonNormals(normals,false);
|
nuclear@0
|
115
|
nuclear@0
|
116 // One of the polygons might be a IfcFaceOuterBound (in which case `master_bounds`
|
nuclear@0
|
117 // is its index). Sadly we can't rely on it, the docs say 'At most one of the bounds
|
nuclear@0
|
118 // shall be of the type IfcFaceOuterBound'
|
nuclear@0
|
119 IfcFloat area_outer_polygon = 1e-10f;
|
nuclear@0
|
120 if (master_bounds != (size_t)-1) {
|
nuclear@0
|
121 ai_assert(master_bounds < inmesh.vertcnt.size());
|
nuclear@0
|
122 outer_polygon_it = begin + master_bounds;
|
nuclear@0
|
123 }
|
nuclear@0
|
124 else {
|
nuclear@0
|
125 for(iit = begin; iit != end; iit++) {
|
nuclear@0
|
126 // find the polygon with the largest area and take it as the outer bound.
|
nuclear@0
|
127 IfcVector3& n = normals[std::distance(begin,iit)];
|
nuclear@0
|
128 const IfcFloat area = n.SquareLength();
|
nuclear@0
|
129 if (area > area_outer_polygon) {
|
nuclear@0
|
130 area_outer_polygon = area;
|
nuclear@0
|
131 outer_polygon_it = iit;
|
nuclear@0
|
132 }
|
nuclear@0
|
133 }
|
nuclear@0
|
134 }
|
nuclear@0
|
135
|
nuclear@0
|
136 ai_assert(outer_polygon_it != end);
|
nuclear@0
|
137
|
nuclear@0
|
138 const size_t outer_polygon_size = *outer_polygon_it;
|
nuclear@0
|
139 const IfcVector3& master_normal = normals[std::distance(begin, outer_polygon_it)];
|
nuclear@0
|
140
|
nuclear@0
|
141 // Generate fake openings to meet the interface for the quadrulate
|
nuclear@0
|
142 // algorithm. It boils down to generating small boxes given the
|
nuclear@0
|
143 // inner polygon and the surface normal of the outer contour.
|
nuclear@0
|
144 // It is important that we use the outer contour's normal because
|
nuclear@0
|
145 // this is the plane onto which the quadrulate algorithm will
|
nuclear@0
|
146 // project the entire mesh.
|
nuclear@0
|
147 std::vector<TempOpening> fake_openings;
|
nuclear@0
|
148 fake_openings.reserve(inmesh.vertcnt.size()-1);
|
nuclear@0
|
149
|
nuclear@0
|
150 std::vector<IfcVector3>::const_iterator vit = inmesh.verts.begin(), outer_vit;
|
nuclear@0
|
151
|
nuclear@0
|
152 for(iit = begin; iit != end; vit += *iit++) {
|
nuclear@0
|
153 if (iit == outer_polygon_it) {
|
nuclear@0
|
154 outer_vit = vit;
|
nuclear@0
|
155 continue;
|
nuclear@0
|
156 }
|
nuclear@0
|
157
|
nuclear@0
|
158 // Filter degenerate polygons to keep them from causing trouble later on
|
nuclear@0
|
159 IfcVector3& n = normals[std::distance(begin,iit)];
|
nuclear@0
|
160 const IfcFloat area = n.SquareLength();
|
nuclear@0
|
161 if (area < 1e-5f) {
|
nuclear@0
|
162 IFCImporter::LogWarn("skipping degenerate polygon (ProcessPolygonBoundaries)");
|
nuclear@0
|
163 continue;
|
nuclear@0
|
164 }
|
nuclear@0
|
165
|
nuclear@0
|
166 fake_openings.push_back(TempOpening());
|
nuclear@0
|
167 TempOpening& opening = fake_openings.back();
|
nuclear@0
|
168
|
nuclear@0
|
169 opening.extrusionDir = master_normal;
|
nuclear@0
|
170 opening.solid = NULL;
|
nuclear@0
|
171
|
nuclear@0
|
172 opening.profileMesh = boost::make_shared<TempMesh>();
|
nuclear@0
|
173 opening.profileMesh->verts.reserve(*iit);
|
nuclear@0
|
174 opening.profileMesh->vertcnt.push_back(*iit);
|
nuclear@0
|
175
|
nuclear@0
|
176 std::copy(vit, vit + *iit, std::back_inserter(opening.profileMesh->verts));
|
nuclear@0
|
177 }
|
nuclear@0
|
178
|
nuclear@0
|
179 // fill a mesh with ONLY the main polygon
|
nuclear@0
|
180 TempMesh temp;
|
nuclear@0
|
181 temp.verts.reserve(outer_polygon_size);
|
nuclear@0
|
182 temp.vertcnt.push_back(outer_polygon_size);
|
nuclear@0
|
183 std::copy(outer_vit, outer_vit+outer_polygon_size,
|
nuclear@0
|
184 std::back_inserter(temp.verts));
|
nuclear@0
|
185
|
nuclear@0
|
186 GenerateOpenings(fake_openings, normals, temp, false, false);
|
nuclear@0
|
187 result.Append(temp);
|
nuclear@0
|
188 }
|
nuclear@0
|
189
|
nuclear@0
|
190 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
191 void ProcessConnectedFaceSet(const IfcConnectedFaceSet& fset, TempMesh& result, ConversionData& conv)
|
nuclear@0
|
192 {
|
nuclear@0
|
193 BOOST_FOREACH(const IfcFace& face, fset.CfsFaces) {
|
nuclear@0
|
194 // size_t ob = -1, cnt = 0;
|
nuclear@0
|
195 TempMesh meshout;
|
nuclear@0
|
196 BOOST_FOREACH(const IfcFaceBound& bound, face.Bounds) {
|
nuclear@0
|
197
|
nuclear@0
|
198 if(const IfcPolyLoop* const polyloop = bound.Bound->ToPtr<IfcPolyLoop>()) {
|
nuclear@0
|
199 if(ProcessPolyloop(*polyloop, meshout,conv)) {
|
nuclear@0
|
200
|
nuclear@0
|
201 // The outer boundary is better determined by checking which
|
nuclear@0
|
202 // polygon covers the largest area.
|
nuclear@0
|
203
|
nuclear@0
|
204 //if(bound.ToPtr<IfcFaceOuterBound>()) {
|
nuclear@0
|
205 // ob = cnt;
|
nuclear@0
|
206 //}
|
nuclear@0
|
207 //++cnt;
|
nuclear@0
|
208
|
nuclear@0
|
209 }
|
nuclear@0
|
210 }
|
nuclear@0
|
211 else {
|
nuclear@0
|
212 IFCImporter::LogWarn("skipping unknown IfcFaceBound entity, type is " + bound.Bound->GetClassName());
|
nuclear@0
|
213 continue;
|
nuclear@0
|
214 }
|
nuclear@0
|
215
|
nuclear@0
|
216 // And this, even though it is sometimes TRUE and sometimes FALSE,
|
nuclear@0
|
217 // does not really improve results.
|
nuclear@0
|
218
|
nuclear@0
|
219 /*if(!IsTrue(bound.Orientation)) {
|
nuclear@0
|
220 size_t c = 0;
|
nuclear@0
|
221 BOOST_FOREACH(unsigned int& c, meshout.vertcnt) {
|
nuclear@0
|
222 std::reverse(result.verts.begin() + cnt,result.verts.begin() + cnt + c);
|
nuclear@0
|
223 cnt += c;
|
nuclear@0
|
224 }
|
nuclear@0
|
225 }*/
|
nuclear@0
|
226 }
|
nuclear@0
|
227 ProcessPolygonBoundaries(result, meshout);
|
nuclear@0
|
228 }
|
nuclear@0
|
229 }
|
nuclear@0
|
230
|
nuclear@0
|
231 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
232 void ProcessRevolvedAreaSolid(const IfcRevolvedAreaSolid& solid, TempMesh& result, ConversionData& conv)
|
nuclear@0
|
233 {
|
nuclear@0
|
234 TempMesh meshout;
|
nuclear@0
|
235
|
nuclear@0
|
236 // first read the profile description
|
nuclear@0
|
237 if(!ProcessProfile(*solid.SweptArea,meshout,conv) || meshout.verts.size()<=1) {
|
nuclear@0
|
238 return;
|
nuclear@0
|
239 }
|
nuclear@0
|
240
|
nuclear@0
|
241 IfcVector3 axis, pos;
|
nuclear@0
|
242 ConvertAxisPlacement(axis,pos,solid.Axis);
|
nuclear@0
|
243
|
nuclear@0
|
244 IfcMatrix4 tb0,tb1;
|
nuclear@0
|
245 IfcMatrix4::Translation(pos,tb0);
|
nuclear@0
|
246 IfcMatrix4::Translation(-pos,tb1);
|
nuclear@0
|
247
|
nuclear@0
|
248 const std::vector<IfcVector3>& in = meshout.verts;
|
nuclear@0
|
249 const size_t size=in.size();
|
nuclear@0
|
250
|
nuclear@0
|
251 bool has_area = solid.SweptArea->ProfileType == "AREA" && size>2;
|
nuclear@0
|
252 const IfcFloat max_angle = solid.Angle*conv.angle_scale;
|
nuclear@0
|
253 if(fabs(max_angle) < 1e-3) {
|
nuclear@0
|
254 if(has_area) {
|
nuclear@0
|
255 result = meshout;
|
nuclear@0
|
256 }
|
nuclear@0
|
257 return;
|
nuclear@0
|
258 }
|
nuclear@0
|
259
|
nuclear@0
|
260 const unsigned int cnt_segments = std::max(2u,static_cast<unsigned int>(16 * fabs(max_angle)/AI_MATH_HALF_PI_F));
|
nuclear@0
|
261 const IfcFloat delta = max_angle/cnt_segments;
|
nuclear@0
|
262
|
nuclear@0
|
263 has_area = has_area && fabs(max_angle) < AI_MATH_TWO_PI_F*0.99;
|
nuclear@0
|
264
|
nuclear@0
|
265 result.verts.reserve(size*((cnt_segments+1)*4+(has_area?2:0)));
|
nuclear@0
|
266 result.vertcnt.reserve(size*cnt_segments+2);
|
nuclear@0
|
267
|
nuclear@0
|
268 IfcMatrix4 rot;
|
nuclear@0
|
269 rot = tb0 * IfcMatrix4::Rotation(delta,axis,rot) * tb1;
|
nuclear@0
|
270
|
nuclear@0
|
271 size_t base = 0;
|
nuclear@0
|
272 std::vector<IfcVector3>& out = result.verts;
|
nuclear@0
|
273
|
nuclear@0
|
274 // dummy data to simplify later processing
|
nuclear@0
|
275 for(size_t i = 0; i < size; ++i) {
|
nuclear@0
|
276 out.insert(out.end(),4,in[i]);
|
nuclear@0
|
277 }
|
nuclear@0
|
278
|
nuclear@0
|
279 for(unsigned int seg = 0; seg < cnt_segments; ++seg) {
|
nuclear@0
|
280 for(size_t i = 0; i < size; ++i) {
|
nuclear@0
|
281 const size_t next = (i+1)%size;
|
nuclear@0
|
282
|
nuclear@0
|
283 result.vertcnt.push_back(4);
|
nuclear@0
|
284 const IfcVector3& base_0 = out[base+i*4+3],base_1 = out[base+next*4+3];
|
nuclear@0
|
285
|
nuclear@0
|
286 out.push_back(base_0);
|
nuclear@0
|
287 out.push_back(base_1);
|
nuclear@0
|
288 out.push_back(rot*base_1);
|
nuclear@0
|
289 out.push_back(rot*base_0);
|
nuclear@0
|
290 }
|
nuclear@0
|
291 base += size*4;
|
nuclear@0
|
292 }
|
nuclear@0
|
293
|
nuclear@0
|
294 out.erase(out.begin(),out.begin()+size*4);
|
nuclear@0
|
295
|
nuclear@0
|
296 if(has_area) {
|
nuclear@0
|
297 // leave the triangulation of the profile area to the ear cutting
|
nuclear@0
|
298 // implementation in aiProcess_Triangulate - for now we just
|
nuclear@0
|
299 // feed in two huge polygons.
|
nuclear@0
|
300 base -= size*8;
|
nuclear@0
|
301 for(size_t i = size; i--; ) {
|
nuclear@0
|
302 out.push_back(out[base+i*4+3]);
|
nuclear@0
|
303 }
|
nuclear@0
|
304 for(size_t i = 0; i < size; ++i ) {
|
nuclear@0
|
305 out.push_back(out[i*4]);
|
nuclear@0
|
306 }
|
nuclear@0
|
307 result.vertcnt.push_back(size);
|
nuclear@0
|
308 result.vertcnt.push_back(size);
|
nuclear@0
|
309 }
|
nuclear@0
|
310
|
nuclear@0
|
311 IfcMatrix4 trafo;
|
nuclear@0
|
312 ConvertAxisPlacement(trafo, solid.Position);
|
nuclear@0
|
313
|
nuclear@0
|
314 result.Transform(trafo);
|
nuclear@0
|
315 IFCImporter::LogDebug("generate mesh procedurally by radial extrusion (IfcRevolvedAreaSolid)");
|
nuclear@0
|
316 }
|
nuclear@0
|
317
|
nuclear@0
|
318
|
nuclear@0
|
319
|
nuclear@0
|
320 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
321 void ProcessSweptDiskSolid(const IfcSweptDiskSolid solid, TempMesh& result, ConversionData& conv)
|
nuclear@0
|
322 {
|
nuclear@0
|
323 const Curve* const curve = Curve::Convert(*solid.Directrix, conv);
|
nuclear@0
|
324 if(!curve) {
|
nuclear@0
|
325 IFCImporter::LogError("failed to convert Directrix curve (IfcSweptDiskSolid)");
|
nuclear@0
|
326 return;
|
nuclear@0
|
327 }
|
nuclear@0
|
328
|
nuclear@0
|
329 const std::vector<IfcVector3>& in = result.verts;
|
nuclear@0
|
330
|
nuclear@0
|
331 const unsigned int cnt_segments = 16;
|
nuclear@0
|
332 const IfcFloat deltaAngle = AI_MATH_TWO_PI/cnt_segments;
|
nuclear@0
|
333
|
nuclear@0
|
334 const size_t samples = curve->EstimateSampleCount(solid.StartParam,solid.EndParam);
|
nuclear@0
|
335
|
nuclear@0
|
336 result.verts.reserve(cnt_segments * samples * 4);
|
nuclear@0
|
337 result.vertcnt.reserve((cnt_segments - 1) * samples);
|
nuclear@0
|
338
|
nuclear@0
|
339 std::vector<IfcVector3> points;
|
nuclear@0
|
340 points.reserve(cnt_segments * samples);
|
nuclear@0
|
341
|
nuclear@0
|
342 TempMesh temp;
|
nuclear@0
|
343 curve->SampleDiscrete(temp,solid.StartParam,solid.EndParam);
|
nuclear@0
|
344 const std::vector<IfcVector3>& curve_points = temp.verts;
|
nuclear@0
|
345
|
nuclear@0
|
346 if(curve_points.empty()) {
|
nuclear@0
|
347 IFCImporter::LogWarn("curve evaluation yielded no points (IfcSweptDiskSolid)");
|
nuclear@0
|
348 return;
|
nuclear@0
|
349 }
|
nuclear@0
|
350
|
nuclear@0
|
351 IfcVector3 current = curve_points[0];
|
nuclear@0
|
352 IfcVector3 previous = current;
|
nuclear@0
|
353 IfcVector3 next;
|
nuclear@0
|
354
|
nuclear@0
|
355 IfcVector3 startvec;
|
nuclear@0
|
356 startvec.x = 1.0f;
|
nuclear@0
|
357 startvec.y = 1.0f;
|
nuclear@0
|
358 startvec.z = 1.0f;
|
nuclear@0
|
359
|
nuclear@0
|
360 unsigned int last_dir = 0;
|
nuclear@0
|
361
|
nuclear@0
|
362 // generate circles at the sweep positions
|
nuclear@0
|
363 for(size_t i = 0; i < samples; ++i) {
|
nuclear@0
|
364
|
nuclear@0
|
365 if(i != samples - 1) {
|
nuclear@0
|
366 next = curve_points[i + 1];
|
nuclear@0
|
367 }
|
nuclear@0
|
368
|
nuclear@0
|
369 // get a direction vector reflecting the approximate curvature (i.e. tangent)
|
nuclear@0
|
370 IfcVector3 d = (current-previous) + (next-previous);
|
nuclear@0
|
371
|
nuclear@0
|
372 d.Normalize();
|
nuclear@0
|
373
|
nuclear@0
|
374 // figure out an arbitrary point q so that (p-q) * d = 0,
|
nuclear@0
|
375 // try to maximize ||(p-q)|| * ||(p_last-q_last)||
|
nuclear@0
|
376 IfcVector3 q;
|
nuclear@0
|
377 bool take_any = false;
|
nuclear@0
|
378
|
nuclear@0
|
379 for (unsigned int i = 0; i < 2; ++i, take_any = true) {
|
nuclear@0
|
380 if ((last_dir == 0 || take_any) && abs(d.x) > 1e-6) {
|
nuclear@0
|
381 q.y = startvec.y;
|
nuclear@0
|
382 q.z = startvec.z;
|
nuclear@0
|
383 q.x = -(d.y * q.y + d.z * q.z) / d.x;
|
nuclear@0
|
384 last_dir = 0;
|
nuclear@0
|
385 break;
|
nuclear@0
|
386 }
|
nuclear@0
|
387 else if ((last_dir == 1 || take_any) && abs(d.y) > 1e-6) {
|
nuclear@0
|
388 q.x = startvec.x;
|
nuclear@0
|
389 q.z = startvec.z;
|
nuclear@0
|
390 q.y = -(d.x * q.x + d.z * q.z) / d.y;
|
nuclear@0
|
391 last_dir = 1;
|
nuclear@0
|
392 break;
|
nuclear@0
|
393 }
|
nuclear@0
|
394 else if ((last_dir == 2 && abs(d.z) > 1e-6) || take_any) {
|
nuclear@0
|
395 q.y = startvec.y;
|
nuclear@0
|
396 q.x = startvec.x;
|
nuclear@0
|
397 q.z = -(d.y * q.y + d.x * q.x) / d.z;
|
nuclear@0
|
398 last_dir = 2;
|
nuclear@0
|
399 break;
|
nuclear@0
|
400 }
|
nuclear@0
|
401 }
|
nuclear@0
|
402
|
nuclear@0
|
403 q *= solid.Radius / q.Length();
|
nuclear@0
|
404 startvec = q;
|
nuclear@0
|
405
|
nuclear@0
|
406 // generate a rotation matrix to rotate q around d
|
nuclear@0
|
407 IfcMatrix4 rot;
|
nuclear@0
|
408 IfcMatrix4::Rotation(deltaAngle,d,rot);
|
nuclear@0
|
409
|
nuclear@0
|
410 for (unsigned int seg = 0; seg < cnt_segments; ++seg, q *= rot ) {
|
nuclear@0
|
411 points.push_back(q + current);
|
nuclear@0
|
412 }
|
nuclear@0
|
413
|
nuclear@0
|
414 previous = current;
|
nuclear@0
|
415 current = next;
|
nuclear@0
|
416 }
|
nuclear@0
|
417
|
nuclear@0
|
418 // make quads
|
nuclear@0
|
419 for(size_t i = 0; i < samples - 1; ++i) {
|
nuclear@0
|
420
|
nuclear@0
|
421 const aiVector3D& this_start = points[ i * cnt_segments ];
|
nuclear@0
|
422
|
nuclear@0
|
423 // locate corresponding point on next sample ring
|
nuclear@0
|
424 unsigned int best_pair_offset = 0;
|
nuclear@0
|
425 float best_distance_squared = 1e10f;
|
nuclear@0
|
426 for (unsigned int seg = 0; seg < cnt_segments; ++seg) {
|
nuclear@0
|
427 const aiVector3D& p = points[ (i+1) * cnt_segments + seg];
|
nuclear@0
|
428 const float l = (p-this_start).SquareLength();
|
nuclear@0
|
429
|
nuclear@0
|
430 if(l < best_distance_squared) {
|
nuclear@0
|
431 best_pair_offset = seg;
|
nuclear@0
|
432 best_distance_squared = l;
|
nuclear@0
|
433 }
|
nuclear@0
|
434 }
|
nuclear@0
|
435
|
nuclear@0
|
436 for (unsigned int seg = 0; seg < cnt_segments; ++seg) {
|
nuclear@0
|
437
|
nuclear@0
|
438 result.verts.push_back(points[ i * cnt_segments + (seg % cnt_segments)]);
|
nuclear@0
|
439 result.verts.push_back(points[ i * cnt_segments + (seg + 1) % cnt_segments]);
|
nuclear@0
|
440 result.verts.push_back(points[ (i+1) * cnt_segments + ((seg + 1 + best_pair_offset) % cnt_segments)]);
|
nuclear@0
|
441 result.verts.push_back(points[ (i+1) * cnt_segments + ((seg + best_pair_offset) % cnt_segments)]);
|
nuclear@0
|
442
|
nuclear@0
|
443 IfcVector3& v1 = *(result.verts.end()-1);
|
nuclear@0
|
444 IfcVector3& v2 = *(result.verts.end()-2);
|
nuclear@0
|
445 IfcVector3& v3 = *(result.verts.end()-3);
|
nuclear@0
|
446 IfcVector3& v4 = *(result.verts.end()-4);
|
nuclear@0
|
447
|
nuclear@0
|
448 if (((v4-v3) ^ (v4-v1)) * (v4 - curve_points[i]) < 0.0f) {
|
nuclear@0
|
449 std::swap(v4, v1);
|
nuclear@0
|
450 std::swap(v3, v2);
|
nuclear@0
|
451 }
|
nuclear@0
|
452
|
nuclear@0
|
453 result.vertcnt.push_back(4);
|
nuclear@0
|
454 }
|
nuclear@0
|
455 }
|
nuclear@0
|
456
|
nuclear@0
|
457 IFCImporter::LogDebug("generate mesh procedurally by sweeping a disk along a curve (IfcSweptDiskSolid)");
|
nuclear@0
|
458 }
|
nuclear@0
|
459
|
nuclear@0
|
460 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
461 IfcMatrix3 DerivePlaneCoordinateSpace(const TempMesh& curmesh, bool& ok, IfcVector3& norOut)
|
nuclear@0
|
462 {
|
nuclear@0
|
463 const std::vector<IfcVector3>& out = curmesh.verts;
|
nuclear@0
|
464 IfcMatrix3 m;
|
nuclear@0
|
465
|
nuclear@0
|
466 ok = true;
|
nuclear@0
|
467
|
nuclear@0
|
468 // The input "mesh" must be a single polygon
|
nuclear@0
|
469 const size_t s = out.size();
|
nuclear@0
|
470 assert(curmesh.vertcnt.size() == 1 && curmesh.vertcnt.back() == s);
|
nuclear@0
|
471
|
nuclear@0
|
472 const IfcVector3 any_point = out[s-1];
|
nuclear@0
|
473 IfcVector3 nor;
|
nuclear@0
|
474
|
nuclear@0
|
475 // The input polygon is arbitrarily shaped, therefore we might need some tries
|
nuclear@0
|
476 // until we find a suitable normal. Note that Newell's algorithm would give
|
nuclear@0
|
477 // a more robust result, but this variant also gives us a suitable first
|
nuclear@0
|
478 // axis for the 2D coordinate space on the polygon plane, exploiting the
|
nuclear@0
|
479 // fact that the input polygon is nearly always a quad.
|
nuclear@0
|
480 bool done = false;
|
nuclear@0
|
481 size_t i, j;
|
nuclear@0
|
482 for (i = 0; !done && i < s-2; done || ++i) {
|
nuclear@0
|
483 for (j = i+1; j < s-1; ++j) {
|
nuclear@0
|
484 nor = -((out[i]-any_point)^(out[j]-any_point));
|
nuclear@0
|
485 if(fabs(nor.Length()) > 1e-8f) {
|
nuclear@0
|
486 done = true;
|
nuclear@0
|
487 break;
|
nuclear@0
|
488 }
|
nuclear@0
|
489 }
|
nuclear@0
|
490 }
|
nuclear@0
|
491
|
nuclear@0
|
492 if(!done) {
|
nuclear@0
|
493 ok = false;
|
nuclear@0
|
494 return m;
|
nuclear@0
|
495 }
|
nuclear@0
|
496
|
nuclear@0
|
497 nor.Normalize();
|
nuclear@0
|
498 norOut = nor;
|
nuclear@0
|
499
|
nuclear@0
|
500 IfcVector3 r = (out[i]-any_point);
|
nuclear@0
|
501 r.Normalize();
|
nuclear@0
|
502
|
nuclear@0
|
503 //if(d) {
|
nuclear@0
|
504 // *d = -any_point * nor;
|
nuclear@0
|
505 //}
|
nuclear@0
|
506
|
nuclear@0
|
507 // Reconstruct orthonormal basis
|
nuclear@0
|
508 // XXX use Gram Schmidt for increased robustness
|
nuclear@0
|
509 IfcVector3 u = r ^ nor;
|
nuclear@0
|
510 u.Normalize();
|
nuclear@0
|
511
|
nuclear@0
|
512 m.a1 = r.x;
|
nuclear@0
|
513 m.a2 = r.y;
|
nuclear@0
|
514 m.a3 = r.z;
|
nuclear@0
|
515
|
nuclear@0
|
516 m.b1 = u.x;
|
nuclear@0
|
517 m.b2 = u.y;
|
nuclear@0
|
518 m.b3 = u.z;
|
nuclear@0
|
519
|
nuclear@0
|
520 m.c1 = -nor.x;
|
nuclear@0
|
521 m.c2 = -nor.y;
|
nuclear@0
|
522 m.c3 = -nor.z;
|
nuclear@0
|
523
|
nuclear@0
|
524 return m;
|
nuclear@0
|
525 }
|
nuclear@0
|
526
|
nuclear@0
|
527
|
nuclear@0
|
528 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
529 void ProcessExtrudedAreaSolid(const IfcExtrudedAreaSolid& solid, TempMesh& result,
|
nuclear@0
|
530 ConversionData& conv, bool collect_openings)
|
nuclear@0
|
531 {
|
nuclear@0
|
532 TempMesh meshout;
|
nuclear@0
|
533
|
nuclear@0
|
534 // First read the profile description
|
nuclear@0
|
535 if(!ProcessProfile(*solid.SweptArea,meshout,conv) || meshout.verts.size()<=1) {
|
nuclear@0
|
536 return;
|
nuclear@0
|
537 }
|
nuclear@0
|
538
|
nuclear@0
|
539 IfcVector3 dir;
|
nuclear@0
|
540 ConvertDirection(dir,solid.ExtrudedDirection);
|
nuclear@0
|
541
|
nuclear@0
|
542 dir *= solid.Depth; /*
|
nuclear@0
|
543 if(conv.collect_openings && !conv.apply_openings) {
|
nuclear@0
|
544 dir *= 1000.0;
|
nuclear@0
|
545 } */
|
nuclear@0
|
546
|
nuclear@0
|
547 // Outline: assuming that `meshout.verts` is now a list of vertex points forming
|
nuclear@0
|
548 // the underlying profile, extrude along the given axis, forming new
|
nuclear@0
|
549 // triangles.
|
nuclear@0
|
550
|
nuclear@0
|
551 std::vector<IfcVector3>& in = meshout.verts;
|
nuclear@0
|
552 const size_t size=in.size();
|
nuclear@0
|
553
|
nuclear@0
|
554 const bool has_area = solid.SweptArea->ProfileType == "AREA" && size>2;
|
nuclear@0
|
555 if(solid.Depth < 1e-6) {
|
nuclear@0
|
556 if(has_area) {
|
nuclear@0
|
557 result = meshout;
|
nuclear@0
|
558 }
|
nuclear@0
|
559 return;
|
nuclear@0
|
560 }
|
nuclear@0
|
561
|
nuclear@0
|
562 result.verts.reserve(size*(has_area?4:2));
|
nuclear@0
|
563 result.vertcnt.reserve(meshout.vertcnt.size()+2);
|
nuclear@0
|
564
|
nuclear@0
|
565 // First step: transform all vertices into the target coordinate space
|
nuclear@0
|
566 IfcMatrix4 trafo;
|
nuclear@0
|
567 ConvertAxisPlacement(trafo, solid.Position);
|
nuclear@0
|
568
|
nuclear@0
|
569 IfcVector3 vmin, vmax;
|
nuclear@0
|
570 MinMaxChooser<IfcVector3>()(vmin, vmax);
|
nuclear@0
|
571 BOOST_FOREACH(IfcVector3& v,in) {
|
nuclear@0
|
572 v *= trafo;
|
nuclear@0
|
573
|
nuclear@0
|
574 vmin = std::min(vmin, v);
|
nuclear@0
|
575 vmax = std::max(vmax, v);
|
nuclear@0
|
576 }
|
nuclear@0
|
577
|
nuclear@0
|
578 vmax -= vmin;
|
nuclear@0
|
579 const IfcFloat diag = vmax.Length();
|
nuclear@0
|
580
|
nuclear@0
|
581 IfcVector3 min = in[0];
|
nuclear@0
|
582 dir *= IfcMatrix3(trafo);
|
nuclear@0
|
583
|
nuclear@0
|
584 std::vector<IfcVector3> nors;
|
nuclear@0
|
585 const bool openings = !!conv.apply_openings && conv.apply_openings->size();
|
nuclear@0
|
586
|
nuclear@0
|
587 // Compute the normal vectors for all opening polygons as a prerequisite
|
nuclear@0
|
588 // to TryAddOpenings_Poly2Tri()
|
nuclear@0
|
589 // XXX this belongs into the aforementioned function
|
nuclear@0
|
590 if (openings) {
|
nuclear@0
|
591
|
nuclear@0
|
592 if (!conv.settings.useCustomTriangulation) {
|
nuclear@0
|
593 // it is essential to apply the openings in the correct spatial order. The direction
|
nuclear@0
|
594 // doesn't matter, but we would screw up if we started with e.g. a door in between
|
nuclear@0
|
595 // two windows.
|
nuclear@0
|
596 std::sort(conv.apply_openings->begin(),conv.apply_openings->end(),
|
nuclear@0
|
597 TempOpening::DistanceSorter(min));
|
nuclear@0
|
598 }
|
nuclear@0
|
599
|
nuclear@0
|
600 nors.reserve(conv.apply_openings->size());
|
nuclear@0
|
601 BOOST_FOREACH(TempOpening& t,*conv.apply_openings) {
|
nuclear@0
|
602 TempMesh& bounds = *t.profileMesh.get();
|
nuclear@0
|
603
|
nuclear@0
|
604 if (bounds.verts.size() <= 2) {
|
nuclear@0
|
605 nors.push_back(IfcVector3());
|
nuclear@0
|
606 continue;
|
nuclear@0
|
607 }
|
nuclear@0
|
608 nors.push_back(((bounds.verts[2]-bounds.verts[0])^(bounds.verts[1]-bounds.verts[0]) ).Normalize());
|
nuclear@0
|
609 }
|
nuclear@0
|
610 }
|
nuclear@0
|
611
|
nuclear@0
|
612
|
nuclear@0
|
613 TempMesh temp;
|
nuclear@0
|
614 TempMesh& curmesh = openings ? temp : result;
|
nuclear@0
|
615 std::vector<IfcVector3>& out = curmesh.verts;
|
nuclear@0
|
616
|
nuclear@0
|
617 size_t sides_with_openings = 0;
|
nuclear@0
|
618 for(size_t i = 0; i < size; ++i) {
|
nuclear@0
|
619 const size_t next = (i+1)%size;
|
nuclear@0
|
620
|
nuclear@0
|
621 curmesh.vertcnt.push_back(4);
|
nuclear@0
|
622
|
nuclear@0
|
623 out.push_back(in[i]);
|
nuclear@0
|
624 out.push_back(in[i]+dir);
|
nuclear@0
|
625 out.push_back(in[next]+dir);
|
nuclear@0
|
626 out.push_back(in[next]);
|
nuclear@0
|
627
|
nuclear@0
|
628 if(openings) {
|
nuclear@0
|
629 if((in[i]-in[next]).Length() > diag * 0.1 && GenerateOpenings(*conv.apply_openings,nors,temp,true, true, dir)) {
|
nuclear@0
|
630 ++sides_with_openings;
|
nuclear@0
|
631 }
|
nuclear@0
|
632
|
nuclear@0
|
633 result.Append(temp);
|
nuclear@0
|
634 temp.Clear();
|
nuclear@0
|
635 }
|
nuclear@0
|
636 }
|
nuclear@0
|
637
|
nuclear@0
|
638 if(openings) {
|
nuclear@0
|
639 BOOST_FOREACH(TempOpening& opening, *conv.apply_openings) {
|
nuclear@0
|
640 if (!opening.wallPoints.empty()) {
|
nuclear@0
|
641 IFCImporter::LogError("failed to generate all window caps");
|
nuclear@0
|
642 }
|
nuclear@0
|
643 opening.wallPoints.clear();
|
nuclear@0
|
644 }
|
nuclear@0
|
645 }
|
nuclear@0
|
646
|
nuclear@0
|
647 size_t sides_with_v_openings = 0;
|
nuclear@0
|
648 if(has_area) {
|
nuclear@0
|
649
|
nuclear@0
|
650 for(size_t n = 0; n < 2; ++n) {
|
nuclear@0
|
651 for(size_t i = size; i--; ) {
|
nuclear@0
|
652 out.push_back(in[i]+(n?dir:IfcVector3()));
|
nuclear@0
|
653 }
|
nuclear@0
|
654
|
nuclear@0
|
655 curmesh.vertcnt.push_back(size);
|
nuclear@0
|
656 if(openings && size > 2) {
|
nuclear@0
|
657 if(GenerateOpenings(*conv.apply_openings,nors,temp,true, true, dir)) {
|
nuclear@0
|
658 ++sides_with_v_openings;
|
nuclear@0
|
659 }
|
nuclear@0
|
660
|
nuclear@0
|
661 result.Append(temp);
|
nuclear@0
|
662 temp.Clear();
|
nuclear@0
|
663 }
|
nuclear@0
|
664 }
|
nuclear@0
|
665 }
|
nuclear@0
|
666
|
nuclear@0
|
667 if(openings && ((sides_with_openings == 1 && sides_with_openings) || (sides_with_v_openings == 2 && sides_with_v_openings))) {
|
nuclear@0
|
668 IFCImporter::LogWarn("failed to resolve all openings, presumably their topology is not supported by Assimp");
|
nuclear@0
|
669 }
|
nuclear@0
|
670
|
nuclear@0
|
671 IFCImporter::LogDebug("generate mesh procedurally by extrusion (IfcExtrudedAreaSolid)");
|
nuclear@0
|
672
|
nuclear@0
|
673 // If this is an opening element, store both the extruded mesh and the 2D profile mesh
|
nuclear@0
|
674 // it was created from. Return an empty mesh to the caller.
|
nuclear@0
|
675 if(collect_openings && !result.IsEmpty()) {
|
nuclear@0
|
676 ai_assert(conv.collect_openings);
|
nuclear@0
|
677 boost::shared_ptr<TempMesh> profile = boost::shared_ptr<TempMesh>(new TempMesh());
|
nuclear@0
|
678 profile->Swap(result);
|
nuclear@0
|
679
|
nuclear@0
|
680 boost::shared_ptr<TempMesh> profile2D = boost::shared_ptr<TempMesh>(new TempMesh());
|
nuclear@0
|
681 profile2D->Swap(meshout);
|
nuclear@0
|
682 conv.collect_openings->push_back(TempOpening(&solid,dir,profile, profile2D));
|
nuclear@0
|
683
|
nuclear@0
|
684 ai_assert(result.IsEmpty());
|
nuclear@0
|
685 }
|
nuclear@0
|
686 }
|
nuclear@0
|
687
|
nuclear@0
|
688 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
689 void ProcessSweptAreaSolid(const IfcSweptAreaSolid& swept, TempMesh& meshout,
|
nuclear@0
|
690 ConversionData& conv)
|
nuclear@0
|
691 {
|
nuclear@0
|
692 if(const IfcExtrudedAreaSolid* const solid = swept.ToPtr<IfcExtrudedAreaSolid>()) {
|
nuclear@0
|
693 ProcessExtrudedAreaSolid(*solid,meshout,conv, !!conv.collect_openings);
|
nuclear@0
|
694 }
|
nuclear@0
|
695 else if(const IfcRevolvedAreaSolid* const rev = swept.ToPtr<IfcRevolvedAreaSolid>()) {
|
nuclear@0
|
696 ProcessRevolvedAreaSolid(*rev,meshout,conv);
|
nuclear@0
|
697 }
|
nuclear@0
|
698 else {
|
nuclear@0
|
699 IFCImporter::LogWarn("skipping unknown IfcSweptAreaSolid entity, type is " + swept.GetClassName());
|
nuclear@0
|
700 }
|
nuclear@0
|
701 }
|
nuclear@0
|
702
|
nuclear@0
|
703 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
704 bool ProcessGeometricItem(const IfcRepresentationItem& geo, std::vector<unsigned int>& mesh_indices,
|
nuclear@0
|
705 ConversionData& conv)
|
nuclear@0
|
706 {
|
nuclear@0
|
707 bool fix_orientation = true;
|
nuclear@0
|
708 boost::shared_ptr< TempMesh > meshtmp = boost::make_shared<TempMesh>();
|
nuclear@0
|
709 if(const IfcShellBasedSurfaceModel* shellmod = geo.ToPtr<IfcShellBasedSurfaceModel>()) {
|
nuclear@0
|
710 BOOST_FOREACH(boost::shared_ptr<const IfcShell> shell,shellmod->SbsmBoundary) {
|
nuclear@0
|
711 try {
|
nuclear@0
|
712 const EXPRESS::ENTITY& e = shell->To<ENTITY>();
|
nuclear@0
|
713 const IfcConnectedFaceSet& fs = conv.db.MustGetObject(e).To<IfcConnectedFaceSet>();
|
nuclear@0
|
714
|
nuclear@0
|
715 ProcessConnectedFaceSet(fs,*meshtmp.get(),conv);
|
nuclear@0
|
716 }
|
nuclear@0
|
717 catch(std::bad_cast&) {
|
nuclear@0
|
718 IFCImporter::LogWarn("unexpected type error, IfcShell ought to inherit from IfcConnectedFaceSet");
|
nuclear@0
|
719 }
|
nuclear@0
|
720 }
|
nuclear@0
|
721 }
|
nuclear@0
|
722 else if(const IfcConnectedFaceSet* fset = geo.ToPtr<IfcConnectedFaceSet>()) {
|
nuclear@0
|
723 ProcessConnectedFaceSet(*fset,*meshtmp.get(),conv);
|
nuclear@0
|
724 }
|
nuclear@0
|
725 else if(const IfcSweptAreaSolid* swept = geo.ToPtr<IfcSweptAreaSolid>()) {
|
nuclear@0
|
726 ProcessSweptAreaSolid(*swept,*meshtmp.get(),conv);
|
nuclear@0
|
727 }
|
nuclear@0
|
728 else if(const IfcSweptDiskSolid* disk = geo.ToPtr<IfcSweptDiskSolid>()) {
|
nuclear@0
|
729 ProcessSweptDiskSolid(*disk,*meshtmp.get(),conv);
|
nuclear@0
|
730 fix_orientation = false;
|
nuclear@0
|
731 }
|
nuclear@0
|
732 else if(const IfcManifoldSolidBrep* brep = geo.ToPtr<IfcManifoldSolidBrep>()) {
|
nuclear@0
|
733 ProcessConnectedFaceSet(brep->Outer,*meshtmp.get(),conv);
|
nuclear@0
|
734 }
|
nuclear@0
|
735 else if(const IfcFaceBasedSurfaceModel* surf = geo.ToPtr<IfcFaceBasedSurfaceModel>()) {
|
nuclear@0
|
736 BOOST_FOREACH(const IfcConnectedFaceSet& fc, surf->FbsmFaces) {
|
nuclear@0
|
737 ProcessConnectedFaceSet(fc,*meshtmp.get(),conv);
|
nuclear@0
|
738 }
|
nuclear@0
|
739 }
|
nuclear@0
|
740 else if(const IfcBooleanResult* boolean = geo.ToPtr<IfcBooleanResult>()) {
|
nuclear@0
|
741 ProcessBoolean(*boolean,*meshtmp.get(),conv);
|
nuclear@0
|
742 }
|
nuclear@0
|
743 else if(geo.ToPtr<IfcBoundingBox>()) {
|
nuclear@0
|
744 // silently skip over bounding boxes
|
nuclear@0
|
745 return false;
|
nuclear@0
|
746 }
|
nuclear@0
|
747 else {
|
nuclear@0
|
748 IFCImporter::LogWarn("skipping unknown IfcGeometricRepresentationItem entity, type is " + geo.GetClassName());
|
nuclear@0
|
749 return false;
|
nuclear@0
|
750 }
|
nuclear@0
|
751
|
nuclear@0
|
752 // Do we just collect openings for a parent element (i.e. a wall)?
|
nuclear@0
|
753 // In such a case, we generate the polygonal mesh as usual,
|
nuclear@0
|
754 // but attach it to a TempOpening instance which will later be applied
|
nuclear@0
|
755 // to the wall it pertains to.
|
nuclear@0
|
756
|
nuclear@0
|
757 // Note: swep area solids are added in ProcessExtrudedAreaSolid(),
|
nuclear@0
|
758 // which returns an empty mesh.
|
nuclear@0
|
759 if(conv.collect_openings) {
|
nuclear@0
|
760 if (!meshtmp->IsEmpty()) {
|
nuclear@0
|
761 conv.collect_openings->push_back(TempOpening(geo.ToPtr<IfcSolidModel>(),
|
nuclear@0
|
762 IfcVector3(0,0,0),
|
nuclear@0
|
763 meshtmp,
|
nuclear@0
|
764 boost::shared_ptr<TempMesh>()));
|
nuclear@0
|
765 }
|
nuclear@0
|
766 return true;
|
nuclear@0
|
767 }
|
nuclear@0
|
768
|
nuclear@0
|
769 if (meshtmp->IsEmpty()) {
|
nuclear@0
|
770 return false;
|
nuclear@0
|
771 }
|
nuclear@0
|
772
|
nuclear@0
|
773 meshtmp->RemoveAdjacentDuplicates();
|
nuclear@0
|
774 meshtmp->RemoveDegenerates();
|
nuclear@0
|
775
|
nuclear@0
|
776 if(fix_orientation) {
|
nuclear@0
|
777 meshtmp->FixupFaceOrientation();
|
nuclear@0
|
778 }
|
nuclear@0
|
779
|
nuclear@0
|
780 aiMesh* const mesh = meshtmp->ToMesh();
|
nuclear@0
|
781 if(mesh) {
|
nuclear@0
|
782 mesh->mMaterialIndex = ProcessMaterials(geo,conv);
|
nuclear@0
|
783 mesh_indices.push_back(conv.meshes.size());
|
nuclear@0
|
784 conv.meshes.push_back(mesh);
|
nuclear@0
|
785 return true;
|
nuclear@0
|
786 }
|
nuclear@0
|
787 return false;
|
nuclear@0
|
788 }
|
nuclear@0
|
789
|
nuclear@0
|
790 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
791 void AssignAddedMeshes(std::vector<unsigned int>& mesh_indices,aiNode* nd,
|
nuclear@0
|
792 ConversionData& /*conv*/)
|
nuclear@0
|
793 {
|
nuclear@0
|
794 if (!mesh_indices.empty()) {
|
nuclear@0
|
795
|
nuclear@0
|
796 // make unique
|
nuclear@0
|
797 std::sort(mesh_indices.begin(),mesh_indices.end());
|
nuclear@0
|
798 std::vector<unsigned int>::iterator it_end = std::unique(mesh_indices.begin(),mesh_indices.end());
|
nuclear@0
|
799
|
nuclear@0
|
800 const size_t size = std::distance(mesh_indices.begin(),it_end);
|
nuclear@0
|
801
|
nuclear@0
|
802 nd->mNumMeshes = size;
|
nuclear@0
|
803 nd->mMeshes = new unsigned int[nd->mNumMeshes];
|
nuclear@0
|
804 for(unsigned int i = 0; i < nd->mNumMeshes; ++i) {
|
nuclear@0
|
805 nd->mMeshes[i] = mesh_indices[i];
|
nuclear@0
|
806 }
|
nuclear@0
|
807 }
|
nuclear@0
|
808 }
|
nuclear@0
|
809
|
nuclear@0
|
810 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
811 bool TryQueryMeshCache(const IfcRepresentationItem& item,
|
nuclear@0
|
812 std::vector<unsigned int>& mesh_indices,
|
nuclear@0
|
813 ConversionData& conv)
|
nuclear@0
|
814 {
|
nuclear@0
|
815 ConversionData::MeshCache::const_iterator it = conv.cached_meshes.find(&item);
|
nuclear@0
|
816 if (it != conv.cached_meshes.end()) {
|
nuclear@0
|
817 std::copy((*it).second.begin(),(*it).second.end(),std::back_inserter(mesh_indices));
|
nuclear@0
|
818 return true;
|
nuclear@0
|
819 }
|
nuclear@0
|
820 return false;
|
nuclear@0
|
821 }
|
nuclear@0
|
822
|
nuclear@0
|
823 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
824 void PopulateMeshCache(const IfcRepresentationItem& item,
|
nuclear@0
|
825 const std::vector<unsigned int>& mesh_indices,
|
nuclear@0
|
826 ConversionData& conv)
|
nuclear@0
|
827 {
|
nuclear@0
|
828 conv.cached_meshes[&item] = mesh_indices;
|
nuclear@0
|
829 }
|
nuclear@0
|
830
|
nuclear@0
|
831 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
832 bool ProcessRepresentationItem(const IfcRepresentationItem& item,
|
nuclear@0
|
833 std::vector<unsigned int>& mesh_indices,
|
nuclear@0
|
834 ConversionData& conv)
|
nuclear@0
|
835 {
|
nuclear@0
|
836 if (!TryQueryMeshCache(item,mesh_indices,conv)) {
|
nuclear@0
|
837 if(ProcessGeometricItem(item,mesh_indices,conv)) {
|
nuclear@0
|
838 if(mesh_indices.size()) {
|
nuclear@0
|
839 PopulateMeshCache(item,mesh_indices,conv);
|
nuclear@0
|
840 }
|
nuclear@0
|
841 }
|
nuclear@0
|
842 else return false;
|
nuclear@0
|
843 }
|
nuclear@0
|
844 return true;
|
nuclear@0
|
845 }
|
nuclear@0
|
846
|
nuclear@0
|
847
|
nuclear@0
|
848 } // ! IFC
|
nuclear@0
|
849 } // ! Assimp
|
nuclear@0
|
850
|
nuclear@0
|
851 #endif
|