vrshoot

annotate src/curve.cc @ 3:c179c72369be

rename candy->vr
author John Tsiombikas <nuclear@member.fsf.org>
date Mon, 03 Feb 2014 08:52:13 +0200 (2014-02-03)
parents
children
rev   line source
nuclear@0 1 #include <float.h>
nuclear@0 2 #include <assert.h>
nuclear@0 3 #include "curve.h"
nuclear@0 4 #include "opengl.h"
nuclear@0 5 #include "shader.h"
nuclear@0 6 #include "logger.h"
nuclear@0 7
nuclear@0 8 #define DEF_THICKNESS 0.075
nuclear@0 9 #define DEF_SEGM_SUB 3
nuclear@0 10 #define DEF_RING_SUB 6
nuclear@0 11
nuclear@0 12 Curve::Curve()
nuclear@0 13 {
nuclear@0 14 thickness = DEF_THICKNESS;
nuclear@0 15 mesh_valid = false;
nuclear@0 16 lengths_valid = false;
nuclear@0 17
nuclear@0 18 bbox_valid = false;
nuclear@0 19
nuclear@0 20 segm_subdiv = DEF_SEGM_SUB;
nuclear@0 21 ring_subdiv = DEF_RING_SUB;
nuclear@0 22 }
nuclear@0 23
nuclear@0 24 Curve::Curve(const Vector3 *points, int num_points)
nuclear@0 25 {
nuclear@0 26 thickness = DEF_THICKNESS;
nuclear@0 27 mesh_valid = false;
nuclear@0 28 lengths_valid = false;
nuclear@0 29
nuclear@0 30 bbox_valid = false;
nuclear@0 31
nuclear@0 32 segm_subdiv = DEF_SEGM_SUB;
nuclear@0 33 ring_subdiv = DEF_RING_SUB;
nuclear@0 34
nuclear@0 35 for(int i=0; i<num_points; i++) {
nuclear@0 36 add_point(points[i]);
nuclear@0 37 }
nuclear@0 38 }
nuclear@0 39
nuclear@0 40 Curve::Curve(const Vector2 *points, int num_points)
nuclear@0 41 {
nuclear@0 42 thickness = DEF_THICKNESS;
nuclear@0 43 mesh_valid = false;
nuclear@0 44 lengths_valid = false;
nuclear@0 45
nuclear@0 46 bbox_valid = false;
nuclear@0 47
nuclear@0 48 segm_subdiv = DEF_SEGM_SUB;
nuclear@0 49 ring_subdiv = DEF_RING_SUB;
nuclear@0 50
nuclear@0 51 for(int i=0; i<num_points; i++) {
nuclear@0 52 add_point(Vector3(points[i].x, points[i].y, 0.0));
nuclear@0 53 }
nuclear@0 54 }
nuclear@0 55
nuclear@0 56 void Curve::set_name(const char *name)
nuclear@0 57 {
nuclear@0 58 this->name = name;
nuclear@0 59 }
nuclear@0 60
nuclear@0 61 const char *Curve::get_name() const
nuclear@0 62 {
nuclear@0 63 return name.c_str();
nuclear@0 64 }
nuclear@0 65
nuclear@0 66 bool Curve::empty() const
nuclear@0 67 {
nuclear@0 68 return cv.empty();
nuclear@0 69 }
nuclear@0 70
nuclear@0 71 void Curve::set_thickness(float thickness)
nuclear@0 72 {
nuclear@0 73 this->thickness = thickness;
nuclear@0 74 }
nuclear@0 75
nuclear@0 76 void Curve::set_subdiv(int seg, int ring)
nuclear@0 77 {
nuclear@0 78 if(seg < 1) seg = 1;
nuclear@0 79 if(ring < 3) ring = 3;
nuclear@0 80
nuclear@0 81 segm_subdiv = seg;
nuclear@0 82 ring_subdiv = ring;
nuclear@0 83 }
nuclear@0 84
nuclear@0 85 void Curve::clear()
nuclear@0 86 {
nuclear@0 87 mesh_valid = false;
nuclear@0 88 lengths_valid = false;
nuclear@0 89 bbox_valid = false;
nuclear@0 90 cv.clear();
nuclear@0 91 }
nuclear@0 92
nuclear@0 93 void Curve::add_point(const Vector3 &pt)
nuclear@0 94 {
nuclear@0 95 cv.push_back(pt);
nuclear@0 96 mesh_valid = false;
nuclear@0 97 lengths_valid = false;
nuclear@0 98 bbox_valid = false;
nuclear@0 99 }
nuclear@0 100
nuclear@0 101 Vector3 &Curve::get_point(int idx)
nuclear@0 102 {
nuclear@0 103 mesh_valid = false;
nuclear@0 104 lengths_valid = false;
nuclear@0 105 bbox_valid = false;
nuclear@0 106 return cv[idx];
nuclear@0 107 }
nuclear@0 108
nuclear@0 109 const Vector3 &Curve::get_point(int idx) const
nuclear@0 110 {
nuclear@0 111 return cv[idx];
nuclear@0 112 }
nuclear@0 113
nuclear@0 114 int Curve::get_count() const
nuclear@0 115 {
nuclear@0 116 return (int)cv.size();
nuclear@0 117 }
nuclear@0 118
nuclear@0 119 Vector3 &Curve::operator[] (int idx)
nuclear@0 120 {
nuclear@0 121 return get_point(idx);
nuclear@0 122 }
nuclear@0 123
nuclear@0 124 const Vector3 &Curve::operator[] (int idx) const
nuclear@0 125 {
nuclear@0 126 return get_point(idx);
nuclear@0 127 }
nuclear@0 128
nuclear@0 129 void Curve::get_bbox(Vector3 *bbmin, Vector3 *bbmax) const
nuclear@0 130 {
nuclear@0 131 if(!bbox_valid) {
nuclear@0 132 this->bbmin = Vector3(FLT_MAX, FLT_MAX, FLT_MAX);
nuclear@0 133 this->bbmax = -this->bbmin;
nuclear@0 134
nuclear@0 135 for(size_t i=0; i<cv.size(); i++) {
nuclear@0 136 for(int j=0; j<3; j++) {
nuclear@0 137 if(cv[i][j] < this->bbmin[j]) {
nuclear@0 138 this->bbmin[j] = cv[i][j];
nuclear@0 139 }
nuclear@0 140 if(cv[i][j] > this->bbmax[j]) {
nuclear@0 141 this->bbmax[j] = cv[i][j];
nuclear@0 142 }
nuclear@0 143 }
nuclear@0 144 }
nuclear@0 145 bbox_valid = true;
nuclear@0 146 }
nuclear@0 147
nuclear@0 148 if(bbmin) *bbmin = this->bbmin;
nuclear@0 149 if(bbmax) *bbmax = this->bbmax;
nuclear@0 150 }
nuclear@0 151
nuclear@0 152 void Curve::normalize()
nuclear@0 153 {
nuclear@0 154 get_bbox(0, 0); // force validation of the bounding box
nuclear@0 155
nuclear@0 156 float len = (bbmax - bbmin).length() * 0.5;
nuclear@0 157 if(len == 0.0) {
nuclear@0 158 return;
nuclear@0 159 }
nuclear@0 160
nuclear@0 161 for(size_t i=0; i<cv.size(); i++) {
nuclear@0 162 get_point(i) /= len;
nuclear@0 163 }
nuclear@0 164 }
nuclear@0 165
nuclear@0 166 Vector3 Curve::get_pos(float t) const
nuclear@0 167 {
nuclear@0 168 if(cv.empty()) {
nuclear@0 169 return Vector3(0, 0, 0);
nuclear@0 170 }
nuclear@0 171 if(cv.size() == 1 || t <= 0.0) {
nuclear@0 172 return cv[0];
nuclear@0 173 }
nuclear@0 174 if(t >= 1.0) {
nuclear@0 175 return cv.back();
nuclear@0 176 }
nuclear@0 177
nuclear@0 178 t = reparametrize(t);
nuclear@0 179
nuclear@0 180 int numcv = (int)cv.size();
nuclear@0 181 int idx0 = t * (numcv - 1);
nuclear@0 182 int idx1 = idx0 + 1;
nuclear@0 183
nuclear@0 184 int idx_prev = idx0 <= 0 ? idx0 : idx0 - 1;
nuclear@0 185 int idx_next = idx1 >= numcv - 1 ? idx1 : idx1 + 1;
nuclear@0 186
nuclear@0 187 float dt = 1.0 / (float)(numcv - 1);
nuclear@0 188
nuclear@0 189 float t0 = (float)idx0 * dt;
nuclear@0 190 float t1 = (float)idx1 * dt;
nuclear@0 191
nuclear@0 192 t = (t - t0) / (t1 - t0);
nuclear@0 193 if(t < 0.0) t = 0.0;
nuclear@0 194 if(t > 1.0) t = 1.0;
nuclear@0 195
nuclear@0 196 //return catmull_rom_spline(cv[idx_prev], cv[idx0], cv[idx1], cv[idx_next], t);
nuclear@0 197 return bspline(cv[idx_prev], cv[idx0], cv[idx1], cv[idx_next], t);
nuclear@0 198 }
nuclear@0 199
nuclear@0 200 Vector3 Curve::operator() (float t) const
nuclear@0 201 {
nuclear@0 202 return get_pos(t);
nuclear@0 203 }
nuclear@0 204
nuclear@0 205 void Curve::draw() const
nuclear@0 206 {
nuclear@0 207 update_mesh();
nuclear@0 208 if(!mesh_valid) {
nuclear@0 209 return;
nuclear@0 210 }
nuclear@0 211
nuclear@0 212 mesh.draw();
nuclear@0 213 }
nuclear@0 214
nuclear@0 215
nuclear@0 216 float Curve::reparametrize(float t) const
nuclear@0 217 {
nuclear@0 218 calc_cvlengths();
nuclear@0 219 return t; // TODO
nuclear@0 220 }
nuclear@0 221
nuclear@0 222 void Curve::calc_cvlengths() const
nuclear@0 223 {
nuclear@0 224 if(lengths_valid || cv.empty()) {
nuclear@0 225 return;
nuclear@0 226 }
nuclear@0 227
nuclear@0 228 length.clear();
nuclear@0 229 length.resize(cv.size());
nuclear@0 230
nuclear@0 231 length[0] = 0;
nuclear@0 232 for(size_t i=1; i<cv.size(); i++) {
nuclear@0 233 length[i] = length[i - 1] + (cv[i] - cv[i - 1]).length();
nuclear@0 234 }
nuclear@0 235
nuclear@0 236 lengths_valid = true;
nuclear@0 237 }
nuclear@0 238
nuclear@0 239 void Curve::update_mesh() const
nuclear@0 240 {
nuclear@0 241 if(mesh_valid) return;
nuclear@0 242
nuclear@0 243 if(cv.size() < 2) {
nuclear@0 244 return;
nuclear@0 245 }
nuclear@0 246
nuclear@0 247 mesh.clear();
nuclear@0 248
nuclear@0 249 int nsub = segm_subdiv * (cv.size() - 1);
nuclear@0 250 int num_rings = nsub + 1;
nuclear@0 251
nuclear@0 252 int num_verts = ring_subdiv * num_rings;
nuclear@0 253 int num_quads = ring_subdiv * nsub;
nuclear@0 254 int num_tri = num_quads * 2;
nuclear@0 255 int num_idx = num_tri * 3;
nuclear@0 256
nuclear@0 257 float *varr = mesh.set_attrib_data(MESH_ATTR_VERTEX, 3, num_verts);
nuclear@0 258 float *narr = mesh.set_attrib_data(MESH_ATTR_NORMAL, 3, num_verts);
nuclear@0 259 float *tcarr = mesh.set_attrib_data(MESH_ATTR_TEXCOORD, 2, num_verts);
nuclear@0 260 unsigned int *idxarr = mesh.set_index_data(num_idx);
nuclear@0 261
nuclear@0 262 float t = 0.0;
nuclear@0 263 float dt = 1.0 / (float)(num_rings - 1);
nuclear@0 264
nuclear@0 265 for(int i=0; i<num_rings; i++) {
nuclear@0 266 Vector3 p = get_pos(t);
nuclear@0 267 Vector3 dir = (get_pos(t + dt) - p).normalized();
nuclear@0 268
nuclear@0 269 Vector3 up = Vector3(0, 0, 1);
nuclear@0 270 float updotdir = dot_product(up, dir);
nuclear@0 271 if(1.0 - fabs(updotdir) < 1e-4) {
nuclear@0 272 up = Vector3(0, 1, 0);
nuclear@0 273 }
nuclear@0 274 Vector3 right = cross_product(up, dir).normalized();
nuclear@0 275 up = cross_product(dir, right);
nuclear@0 276
nuclear@0 277 for(int j=0; j<ring_subdiv; j++) {
nuclear@0 278 float u = (float)j / (float)ring_subdiv * M_PI * 2.0;
nuclear@0 279 Quaternion qrot(dir, u);
nuclear@0 280 Vector3 v = p + right.transformed(qrot) * thickness;
nuclear@0 281
nuclear@0 282 *varr++ = v.x;
nuclear@0 283 *varr++ = v.y;
nuclear@0 284 *varr++ = v.z;
nuclear@0 285
nuclear@0 286 Vector3 norm = (v - p).normalized();
nuclear@0 287 *narr++ = norm.x;
nuclear@0 288 *narr++ = norm.y;
nuclear@0 289 *narr++ = norm.z;
nuclear@0 290
nuclear@0 291 *tcarr++ = u;
nuclear@0 292 *tcarr++ = t;
nuclear@0 293
nuclear@0 294 if(i < nsub) {
nuclear@0 295 int quad = i * ring_subdiv + j;
nuclear@0 296
nuclear@0 297 int v0 = quad;
nuclear@0 298 int v1 = i * ring_subdiv + ((j + 1) % ring_subdiv);
nuclear@0 299 int v2 = (i + 1) * ring_subdiv + ((j + 1) % ring_subdiv);
nuclear@0 300 int v3 = (i + 1) * ring_subdiv + j;
nuclear@0 301
nuclear@0 302 idxarr[quad * 6] = v0;
nuclear@0 303 idxarr[quad * 6 + 1] = v1;
nuclear@0 304 idxarr[quad * 6 + 2] = v2;
nuclear@0 305
nuclear@0 306 idxarr[quad * 6 + 3] = v0;
nuclear@0 307 idxarr[quad * 6 + 4] = v2;
nuclear@0 308 idxarr[quad * 6 + 5] = v3;
nuclear@0 309 }
nuclear@0 310 }
nuclear@0 311
nuclear@0 312 t += dt;
nuclear@0 313 }
nuclear@0 314
nuclear@0 315 mesh_valid = true;
nuclear@0 316 }